

Published by World Academic Press, World Academic Union

ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 8, No. 1, 2013, pp. 055-062

Shared Crossover Method for Solving Traveling Salesman
Problem

Mouhammd Al kasassbeh, Ahmad Alabadleh, Tahsen Al-Ramadeen
1 Information Technology Department, Mutah University, Karak, Jordan

(Received September 11, 2012, accepted November 30, 2012)

Abstract. Genetic algorithms (GA) are evolutionary techniques that used crossover and mutation operators
to solve optimization problems using a survival of the fittest idea. They have been used successfully in a
variety of different problems, including the traveling salesman problem. The main idea of Traveling
Salesman Problem (TSP) is to find the minimum traveling cost for visiting cities; the salesman must visit
each city exactly once and return to the starting point of origin. Genetic algorithms are search methods that
employ processes found in natural biological evolution. These algorithms search on a given population of
potential solutions to find those that pass some specifications or criteria. In this paper, we apply modified
genetic algorithm methodology for finding near-optimal solutions for TSP problem using shared neighbours
to insure that the closest cities to have the highest priorities to be carried out to the next generation.

Keywords: Traveling Salesman Problem (TSP), Genetic Algorithm (GA), Order Crossover (OX), Swap
Crossover, Shared Crossover.

1. Introduction

1.1. Traveling Salesman Problem (TSP)

 The main idea of the TSP is the discovery of the shortest possible tour path through a given set of nodes
or cities. The comprehensive surveys of works on the TSP can be found in [1-6]. Researchers have
suggested genetic algorithms (GA’s) for solving TSP [7]. The TSP is one of the significant subjects, which
has been widely addressed by mathematicians and computer scientists. Its importance stems from the fact,
there is a plenty of fields in which finds potential applications such as DNA fragment assembly and VLSI
design. Formally, the TSP may be defined as follows [8].

 It is a combination problem with the objective of finding the path of the shortest length (or the
minimum cost) on an undirected graph that represents cities or nodes to be visited. The traveling salesman
begins at one node, visits all other nodes consecutively only once, and finally returns to the starting point. In
other words, given n cities, named {c1, c2, …, cn}, and permutations, {σ1, σ2, …, σn}, the goal is to choose
σi such that the sum of all Euclidean distances between each node and its successor is minimized. The
successor of the last node in the permutation is the first one. The Euclidean distance d between any two cities
with coordinate (x1, y1) and (x2, y2) is calculated by.

2 2
1 2 1 2() ()d x x y y= − + − (1)

And the minimum total distance is calculated as follows;

() ()
1

1 1
1

, ,
N

i i N
i

Minimize d dc c c c
−

+
=

⎡ ⎤+⎢ ⎥⎣ ⎦
∑ (2)

Recently, Robert Bosch [9] created a 100,000-city instance of the traveling salesman problem (TSP)
that provides a representation of Leonardo da Vinci's Mona Lisa as a continuous-line drawing. An optimal
solution for this case set a new world record for the TSP. The current best known results for the Mona Lisa
TSP are; Tour: 5,757,191, Bound: 5,757,044 and Gap 147 (0.0026%). The tour was found on March 17,

Mouhammd Al kasassbeh et.al.: Shared Crossover Method for Solving Traveling Salesman Problem

JIC email for contribution: editor@jic.org.uk

56

2009, by Yuichi Nagata [9]. The bound B is given such that no tour has length less than B; this bound was
found on November 4, 2009, with the Concorde code [9].

The remainder of this paper is organized as follows: in Section 2, we discuss related work .Section 3
the problem statement. In Section 4 provides an overview of our new crossover technique to solve the TSP.
The discussion and the comparison between OX, swap and our proposed shared crossover are illustrated in
Section 5. Finally, we summarize and conclude in Section 6.

1.2. Genetic Algorithms (GA)

Genetic Algorithms are search algorithms developed by Johan Holland in the 1970’s [5], it can be
used to solve a variety of problems that are not easy to solve using other techniques. Fundamentally, Genetic
Algorithms consist of the three basic operations, selection operation, crossover operation, and mutation
operation. When we use a GA to solve a problem, random possible solutions will be generated, each one of
them will be tested until we have a best solution, then it will be good enough for a specific problem.

Selection operation used to select a random possible solution from a set of population called
chromosomes using fitness function, which is determined by the type of the problem. The crossover
operation used to produce new chromosomes called children chromosomes from the parent chromosomes by
choose a randomly crossover point. Finally, the mutation used to make some change on the children
chromosomes to make the solution very close to the realty. Figure 1 illustrates the simple GA structure.

Figure 1: The structure of a simple genetic algorithm

Moreover, to illustrate GA operations, here is a very simple example:
Suppose we have the following population:

No Chromosome

1 1001100011

2 1110001111

3 1010101011

4 1100110011

- Selection : suppose we select chromosome 1 and 3

- Crossover: suppose the crossover point is 4

Parent 1: 1001 100011 Child 1 : 1001101011

Parent 2: 1010 101011 Child 2 : 1010100011

- Mutation : Usually done with small probability

 Child 1: 1 0 0 0 1 0 1 0 1 1 Child 2: 1 0 1 0 1 0 0 0 0 1

Journal of Information and Computing Science, Vol. 8 (2013) No. 1, pp 055-062

JIC email for subscription: publishing@WAU.org.uk

57

In this example, we gave a brief idea about the GA and its operations, in the following section. We

will talk about the previous work that has been done in the area of GA and TSP.

2. Related Work
 Previously, many researchers had proposed and used many algorithms and enhancement approaches for
solving the TSP. For example, a research by [10] resolved the problem of crossover in genetic algorithm
using DNA-strands. Although the crossover technique might be different from one problem to another
depending on the problem itself, they show that it is possible to find a suitable crossover for NP-Complete
problems such as the TSP . In brief, they represent a new approach to the simulation of genetic algorithms
with DNA-strands. Similarly, the work of [11] used “2-opt” algorithm for local optimization, which is a
simple local search algorithm, the main idea is to take a route that crosses over itself and reorders it again,
also a new breeding technique was used that involves selecting two chromosomes that have shared partial
tours. Furthermore, the work of [12] used one-chromosome generation in their algorithm, they rely on
mutation without applying crossover, and they used 3-opt for local optimization, 3-opt analysis involves
deleting three edges in a tour, later, they were trying reconnecting the graph in all other possible ways, then
they evaluate each reconnection method to find the optimum solution. This process is then repeated for a
different set of three connections. In [13] they used Lin-Kernighan algorithm for local optimization, which
involves swapping pairs of sub-tours to make a new tour. It is a generalization of 2-opt and 3-opt. the 2-opt
and 3-opt work by switching two or three paths to make the tour shorter. Lin-Kernighan is adaptive and at
each step decides how many paths between cities need to be switched to find a shorter tour. What is more in
the area of GA and TSP, the work of [14] claims that the use of the heuristic to solve the TSP gives quite
well results when they tested on a set of 41 standard problems with known optimal objective values, and they
find the optimal solution in the majority of the cases. Their procedure, mainly, combines a local tour
enhancement heuristic into a random-key genetic algorithm and shows good results in both solution quality
and computation time.
 The previous algorithms used local optimization algorithm to solve the problem, which leads to finding
a local optimal solution. These algorithms, in addition, work with high time complexities. New crossover and
mutation techniques were developed, but they fail with a large number of cities, and these techniques need
large memory space [15].

3. Problem Statement
 The majority of the existing crossover methods generally find only the local optimal solutions in TSP.
Usually the crossover methods show degradation in performance when they applied using the large number
of cities in TSP [16, 17]. In addition, these methods are not efficient in terms of memory and performance.
Typically, crossover point is determined randomly. In TSP, we must guarantee that no city will appear in the
child chromosome more than one time after crossover the operation.

4. The Proposed Procedure
 Our study aims to find a new crossover technique to solve the TSP, and it should be genetic, simple and
fast at the same time. Furthermore, we concentrated in our study on reducing the execution time and number
of populations. We proposed a new procedure for the crossover operation in solving TSP using GA; the
detailed clarifications about how it works are as follows;
1. Pick two chromosomes; one of them is the fittest according to the fitness function. i.e .one of them has the

shortest path found so far.
2. Randomly, we chose an initial city from the fittest chromosome to start from.
3. Find the exact location of this selected city (current city) in both of the two parent chromosomes.
4. Determine the neighbor cities of the current city in the two parent chromosomes.

Mouhammd Al kasassbeh et.al.: Shared Crossover Method for Solving Traveling Salesman Problem

JIC email for contribution: editor@jic.org.uk

58

5. Pick the shared neighbor between the two parent chromosomes and insert it in the new child
chromosome.

6. If the shared neighbor which has been selected was visited before, or if the current city has no shared
neighbor between the two parent chromosomes, pick up the nearest neighbor to the current city.

7. Repeat steps 3-6 until you reach the last not visited city, and then insert it in the new child chromosome.
Further down, our algorithm has been explained in details;
Function SharedCrossover

C1 :Best chromosome
C2 :Random Chromosome
InitialCity :Random city from C1

Neighbors[0..3]:Contain the Neighbors' cities around InitialCity in C1 and C2 and its distances

i=0
While not-end -cities

If there is a shared city in Neighbors [] and NOT(SharedCity .Visited)
 ChildChrom[i].City =SharedCity
 SharedCity .visited =true
 InitialCity =SharedCity
Else
 NearestCity =Neighbors.City (Min (Neighbors.Distance))and NOT(NearestCity.Visted)

ChildChrom[i].City =LowestCity
NearestCity.Visited =true

 InitialCity =NearestCity
End if
i++
End while

End Function

An example, to give the reader clear idea, how our proposed algorithm works. At first, the data for our
example is given below;

City London Oxford Cambridge Brighton Bath
Code 1 2 3 4 5

The second table shows the distance between the cities in miles;
 London Oxford Cambridge Brighton Bath
London 0 350 50 280 470
Oxford 0 130 270 310
Cambridge 0 210 340
Brighton 0 220
Bath 0

According to the above algorithm, the best chromosome is as follow, with the minimum fitness value 790
miles.

C1(Best) 1 3 4 5 2

Subsequently, we choose randomly the other chromosome C2

C2(Random) 1 2 3 4 5

After applying the proposed algorithm, the following table illustrates the algorithm tracing;

Journal of Information and Computing Science, Vol. 8 (2013) No. 1, pp 055-062

JIC email for subscription: publishing@WAU.org.uk

59

 InitialCity InitialCity
neighbors
in C1

InitialCity
neighbors
in C2

SharedCity NearestCity
if no shared

Step 1 (3) Randomly
selected in the
first time from
C1

1 4 2 4 4
Add to child

No need

Step 2 4 3 5 3 5 5
Add to child
(3 Already
visited)

No need

Step 3 5 4 2 4 4 (But it was
visited before)

2
Add to
child

Step 4 2 5 1 3 No shared 1
Add to
child

Step 5 1 All visited

In step 1, the initial city was picked up randomly. In our example, we selected Cambridge city with label
number 3. As we can see in chromosome c1, the neighbors of city 3 are city 2 and city 4. Likewise, the
neighbors of city 3 in chromosome c2 are city 4 and city 5. Apparently, city 4 is the shared city between
chromosome c1 and c2, subsequently; it will be added to the child chromosome, and it will be the new initial
city as shown at step 2. The same process, we did on city 3, will be repeated on city 4 again, and so on. In
case there is no shared city between chromosome c1 and c2, or the shared cities have been previously visited,
the closest in distance will be chosen as shown in step 4. The table below will show the output of the above
steps;

Step 1 output 3
Step 2 output 3 4
Step 3 output 3 4 5
Step 4 output 3 4 5 2
Step 5(Final Child Chromosome) 3 4 5 2 1

In the final step (step 5), the first child chromosome is created with values;

first child chromosome 3 4 5 2 1

This child will be carried out to the next population and so on.

5. Experimental Results
 All the tested methods we adopted in our work, including our proposed algorithm are implemented
using C++ programing language. The suggested algorithm was tested with a crossover probability of 90%
and a mutation probability of 10% [18, 19]. The standard population size was set at 100 chromosomes, and
each chromosome has 29 cities, the testdata has been chosen from the TSPLIB. The data obtained from a real
world problem namely, the road distances that contained 29 cities in Bavaria, Germany(street distance), the
source of our data is Zuse Institute Berlin [20].
 The experiment was carried out using three crossover techniques; OX, swap, and our proposed shared
crossover. In this experiment, we tried to show the performance of our technique in two main cases
comparing to the OX and the swap techniques. The first case, is to find the optimal solution at specific
generation; in this case, the number of generations was 1000, when we tested the three algorithms the results
were as follows;

Mouhammd Al kasassbeh et.al.: Shared Crossover Method for Solving Traveling Salesman Problem

JIC email for contribution: editor@jic.org.uk

60

• The optimal solution of the proposed shared crossover during the 1000 generation was 3720,
precisely at 640 generations.

• For the OX algorithm, it reaches the optimal solution 3870 in 660 generations.
• Lastly, the swap reaches the optimal solution 4000 in 870 generations.

From the results of the first case, it is noticeable that the shared crossover reaches the best solution in fewer
numbers of generations, as it can be observed in Figure 2.

Figure 2: Optimal Solution at specific generation

The second case was to find the number of generations that they used in their process when we gave them a
specific fitness value. The results are as follow:
The fitness value Number of generation

in the shared crossover
Number of generation
in the OX

Number of generation
in the Swap

4400 50 60 103
4300 55 70 136
4200 55 83 560
4100 213 300 1030
4000 733 860 1320
3900 912 1101 1473
3800 1000 1224 1683
3700 1511 1570 2517
3600 2120 2214 5000
3500 2431 2580 6000

 Figure 3 represents the graph of these results. The number of the generations in the shared crossover
algorithm always has fewer numbers of generations than the others to reach the optimal solution; therefore,
the execution time will be less.

Journal of Information and Computing Science, Vol. 8 (2013) No. 1, pp 055-062

JIC email for subscription: publishing@WAU.org.uk

61

Figure 3: Number of generation at specific value

Finally, the simulation’s results indicate that, the proposed crossover algorithm supersedes the swap and the
OX algorithms, in terms of the number of generations and execution time.

6. Conclusion
The proposed GA shared crossover technique was developed to assist for obtaining the optimal tour to

visit number of cities. The new technique depends on passing as many as possible of the shared paths
between cities to the next generation. With a guarantee that none of the cities will appear in the child
chromosome more than once after applying the crossover method, and we achieved this goal without using
any time consuming search methods. We have shown in the experimental results a great reduction in the
execution time.

7. References
[1] J. J. Bentley, "Fast algorithms for geometric traveling salesman problems," INFORMS Journal on Computing,

vol. 4, pp. 387, 1992.
[2] D. B. Fogel, "Empirical estimation of the computation required to discover approximate solutions to the

traveling salesman problem using evolutionary programming," 1993.
[3] G. G. Mitchell, D. O'Donoghue, D. Barnes, and M. McCarville, "GeneRepair-a repair operator for genetic

algorithms." 2003.
[4] G. G. Mitchell, D. O'Donoghue, and A. Trenaman, "A new operator for efficient evolutionary solutions to the

travelling salesman problem," 2000.
[5] M. Mitchell, An introduction to genetic algorithms: The MIT press, 1998.
[6] R. Yang, "Solving large travelling salesman problems with small populations," 1997.
[7] C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, "Genetic algorithms for the travelling salesman

problem: A review of representations and operators," Artificial Intelligence Review, vol. 13, pp. 129–170,
1999.

[8] S. Sur-Kolay, S. Banerjee, and C. A. Murthy, "Flavours of Traveling Salesman Problem in VLSI Design,"
2003.

[9] R. Bosch, "Mona Lisa TSP Problem," Georgia, 2009, pp. The Traveling Salesman Problem. 2010.
[10] G. Moreno, "Solving Travelling Salesman Problem in a Simulation of Genetic Algorithms with DNA," 2008.
[11] R. M. Brady, "Optimization strategies gleaned from biological evolution," 1985.
[12] O. Martin, S. W. Otto, and E. W. Felten, "Large-step Markov chains for the TSP incorporating local search

heuristics," Operations Research Letters, vol. 11, pp. 219-224, 1992.
[13] B. Freisleben and P. Merz, "A genetic local search algorithm for solving symmetric and asymmetric traveling

salesman problems," 1996.

Mouhammd Al kasassbeh et.al.: Shared Crossover Method for Solving Traveling Salesman Problem

JIC email for contribution: editor@jic.org.uk

62

[14] L. V. Snyder and M. S. Daskin, "A random-key genetic algorithm for the generalized traveling salesman
problem," European Journal of Operational Research, vol. 174, pp. 38-53, 2006.

[15] X. B. Hu and E. Di Paolo, "A Hybrid Genetic Algorithm for the Travelling Salesman Problem," Nature
Inspired Cooperative Strategies for Optimization (NICSO 2007), pp. 357-367, 2008.

[16] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, "Implementation of an effective hybrid GA for
large-scale traveling salesman problems," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 37, pp. 92-99, 2007.

[17] B. Freisleben and P. Merz, "A genetic local search algorithm for solving symmetric and asymmetric traveling
salesman problems," 2002.

[18] J. Zhang, H. S. H. Chung, and W. L. Lo, "Clustering-based adaptive crossover and mutation probabilities for
genetic algorithms," IEEE Transactions on Evolutionary Computation, vol. 11, pp. 326-335, 2007.

[19] L. I. Geng, Z. O. U. Jin, and Z. Bing, "The Genetic Algorithm Simulated Annealing of Large Probability of
Mutation and its Application in Reservoir Optimization," China Rural Water and Hydropower, 2010.

[20] Z. I. Berlin, "MP-TESTDATA- the TSPLIB Symmetric Traveling Salesman Problem Instances," vol. 2010:
Zuse Institute Berlin, 2010.

