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Abstract. Genetic algorithms (GA) are evolutionary techniques that used crossover and mutation operators 
to solve optimization problems using a survival of the fittest idea. They have been used successfully in a 
variety of different problems, including the traveling salesman problem. The main idea of Traveling 
Salesman Problem (TSP) is to find the minimum traveling cost for visiting cities; the salesman must visit 
each city exactly once and return to the starting point of origin. Genetic algorithms are search methods that 
employ processes found in natural biological evolution. These algorithms search on a given population of 
potential solutions to find those that pass some specifications or criteria. In this paper, we apply modified 
genetic algorithm methodology for finding near-optimal solutions for TSP problem using shared neighbours 
to insure that the closest cities to have the highest priorities to be carried out to the next generation. 

Keywords: Traveling Salesman Problem (TSP), Genetic Algorithm (GA), Order Crossover (OX), Swap 
Crossover, Shared Crossover. 

1. Introduction  

1.1. Traveling Salesman Problem (TSP) 

    The main idea of the TSP is the discovery of the shortest possible tour path through a given set of nodes 
or cities. The comprehensive surveys of works on the TSP can be found in [1-6]. Researchers have 
suggested  genetic algorithms (GA’s) for  solving TSP [7].  The TSP is one of the significant subjects, which 
has been widely addressed by mathematicians and computer scientists. Its importance stems from the fact, 
there is a plenty of fields in which finds potential applications such as DNA fragment assembly and VLSI 
design. Formally, the TSP may be defined as follows [8]. 

 It is a combination problem with the objective of finding the path of the shortest length (or the 
minimum cost) on an undirected graph that represents cities or nodes to be visited. The traveling salesman 
begins at one node, visits all other nodes consecutively only once, and finally returns to the starting point. In 
other words, given n cities, named {c1, c2, …, cn}, and permutations, {σ1, σ2, …, σn}, the goal is to choose 
σi such that the sum of all Euclidean distances between each node and its successor is minimized. The 
successor of the last node in the permutation is the first one. The Euclidean distance d between any two cities 
with coordinate (x1, y1) and (x2, y2) is calculated by. 
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And the minimum total distance is calculated as follows; 
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Recently, Robert Bosch [9] created a 100,000-city instance of the traveling salesman problem (TSP) 
that provides a representation of Leonardo da Vinci's Mona Lisa as a continuous-line drawing.  An optimal 
solution for this case set a new world record for the TSP. The current best known results for the Mona Lisa 
TSP are; Tour:  5,757,191, Bound:  5,757,044 and Gap  147 (0.0026%). The tour was found on March 17, 
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2009, by Yuichi Nagata [9]. The bound  B is given  such that no tour has length less than B; this bound was 
found on November 4, 2009, with the Concorde code [9]. 

The remainder of this paper is organized as follows: in Section 2, we discuss related work .Section 3 
the problem statement. In Section 4 provides an overview of our new crossover technique to solve the TSP. 
The discussion and the comparison between OX, swap and our proposed shared crossover are illustrated in 
Section 5. Finally, we summarize and conclude in Section 6. 

1.2. Genetic Algorithms (GA) 

Genetic Algorithms are search algorithms developed by Johan Holland in the 1970’s [5], it can be 
used to solve a variety of problems that are not easy to solve using other techniques. Fundamentally, Genetic 
Algorithms consist of the three basic operations, selection operation, crossover operation, and mutation 
operation.   When we use a GA to solve a problem, random possible solutions will be generated, each one of 
them will be tested until we have a best solution, then it will be good enough for a specific problem. 

Selection operation used to select a random possible solution from a set of population called 
chromosomes using fitness function, which is determined by the type of the problem. The crossover 
operation used to produce new chromosomes called children chromosomes from the parent chromosomes by 
choose a randomly crossover point. Finally, the mutation used to make some change on the children 
chromosomes to make the solution very close to the realty. Figure 1 illustrates the simple GA structure. 

 
Figure 1:   The structure of a simple genetic algorithm 

Moreover, to illustrate GA operations, here is a very simple example: 
Suppose we have the following population: 

No Chromosome 

1 1001100011 

2 1110001111 

3 1010101011 

4 1100110011 

- Selection : suppose we select chromosome 1 and 3 

- Crossover: suppose the crossover point is 4 

Parent 1:  1001  100011    Child 1 : 1001101011 

Parent 2:  1010  101011    Child 2 : 1010100011 

- Mutation : Usually done with small probability  

 Child 1: 1 0 0 0 1 0 1 0 1 1           Child 2: 1 0 1 0 1 0 0 0 0 1 
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In this example, we gave a brief idea about the GA and its operations, in the following section. We 

will talk about the previous work that has been done in the area of GA and TSP.        

2. Related Work 
        Previously, many researchers had proposed and used many algorithms and enhancement approaches for 
solving the TSP. For example, a research by [10] resolved the problem of crossover in genetic algorithm 
using DNA-strands. Although the crossover technique might be different from one problem to another 
depending on the problem itself, they show that it is possible to find a suitable crossover for NP-Complete 
problems such as the TSP . In brief, they represent a new approach to the simulation of genetic algorithms 
with DNA-strands. Similarly, the work of  [11] used “2-opt” algorithm for local optimization, which is a 
simple local search algorithm, the main idea is to take a route that crosses over itself and reorders it again, 
also a new breeding technique was used that involves selecting two chromosomes that have shared partial 
tours. Furthermore, the work of  [12] used one-chromosome generation in their algorithm, they rely on 
mutation without applying crossover, and they used 3-opt for local optimization, 3-opt analysis involves 
deleting three edges in a tour, later, they were trying  reconnecting the graph in all other possible ways, then 
they evaluate each reconnection method to find the optimum solution. This process is then repeated for a 
different set of three connections. In [13] they used Lin-Kernighan algorithm for local optimization, which 
involves swapping pairs of sub-tours to make a new tour. It is a generalization of 2-opt and 3-opt. the 2-opt 
and 3-opt work by switching two or three paths to make the tour shorter. Lin-Kernighan is adaptive and at 
each step decides how many paths between cities need to be switched to find a shorter tour. What is more in 
the area of GA and TSP, the work of [14] claims that the use of the heuristic to solve the TSP gives quite 
well results when they tested on a set of 41 standard problems with known optimal objective values, and they  
find the optimal solution in the majority of the cases. Their procedure, mainly, combines a local tour 
enhancement heuristic into a random-key genetic algorithm and shows good results in both solution quality 
and computation time. 
        The previous algorithms used local optimization algorithm to solve the problem, which leads to finding 
a local optimal solution. These algorithms, in addition, work with high time complexities. New crossover and 
mutation techniques were developed, but they fail with a large number of cities, and these techniques need 
large memory space [15]. 

3. Problem Statement 
        The majority of the existing crossover methods generally find only the local optimal solutions in TSP. 
Usually the crossover methods show degradation in performance when they applied using the large number 
of cities in TSP [16, 17]. In addition, these methods are not efficient in terms of memory and performance. 
Typically, crossover point is determined randomly. In TSP, we must guarantee that no city will appear in the 
child chromosome more than one time after crossover the operation. 

4. The Proposed Procedure 
        Our study aims to find a new crossover technique to solve the TSP, and it should be genetic, simple and 
fast at the same time. Furthermore, we concentrated in our study on reducing the execution time and number 
of populations. We proposed a new procedure for the crossover operation in solving TSP using GA; the 
detailed clarifications about how it works are as follows; 
1. Pick two chromosomes; one of them is the fittest according to the fitness function. i.e .one of them has the 

shortest path found so far. 
2. Randomly, we chose an initial city from the fittest chromosome to start from. 
3. Find the exact location of this selected city (current city) in both of the two parent chromosomes. 
4. Determine the neighbor cities of the current city in the two parent chromosomes. 
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5. Pick the shared neighbor between the two parent chromosomes and insert it in the new child 
chromosome. 

6. If the shared neighbor which has been selected was visited before, or if the current city has no shared 
neighbor between the two parent chromosomes, pick up the nearest neighbor to the current city. 

7. Repeat steps 3-6 until you reach the last not visited city, and then insert it in the new child chromosome. 
Further down, our algorithm has been explained in details; 
Function SharedCrossover 
 

C1 :Best chromosome 
C2 :Random Chromosome 
InitialCity :Random city from C1 
 
Neighbors[0..3]:Contain the  Neighbors' cities around  InitialCity in C1 and C2 and its distances  
 
i=0 
While not-end -cities 
 
If there is a shared city in Neighbors [] and NOT(SharedCity .Visited) 
 ChildChrom[i].City  =SharedCity 
 SharedCity .visited  =true 
 InitialCity  =SharedCity 
Else 
 NearestCity  =Neighbors.City (Min (Neighbors.Distance ))and NOT(NearestCity.Visted) 

ChildChrom[i].City =LowestCity 
NearestCity.Visited =true 

 InitialCity   =NearestCity 
End if 
i++ 
End while 

End Function 
 
An example, to give the reader clear idea, how our proposed algorithm works. At first, the data for our 
example is given below; 

City London Oxford Cambridge Brighton Bath 
Code 1 2 3 4 5 

The second table shows the distance between the cities in miles; 
 London Oxford Cambridge Brighton Bath 
London 0 350 50 280 470 
Oxford  0 130 270 310 
Cambridge   0 210 340 
Brighton    0 220 
Bath     0 

According to the above algorithm, the best chromosome is as follow, with the minimum fitness value 790 
miles. 

C1(Best) 1 3 4 5 2 
 
Subsequently, we choose randomly the other chromosome C2 

C2(Random) 1 2 3 4 5 
 
 
 
 
 
 
 
 
 
After applying the proposed algorithm, the following table illustrates the algorithm tracing; 
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 InitialCity InitialCity 
neighbors  
in C1

InitialCity 
neighbors 
in C2

SharedCity NearestCity 
if no shared

Step 1 (3  ) Randomly 
selected in the 
first time from 
C1 

1 4 2 4 4 
Add to child 

No need 

Step 2 4 3 5 3 5 5 
Add to child 
(3 Already 
visited) 

No need 

Step 3 5 4 2 4  4 (But it was 
visited before) 

2 
Add to 
child 

Step 4 2 5  1 3 No shared 1 
Add to 
child 

Step 5 1 All visited 
 
In step 1, the initial city was picked up randomly. In our example, we selected Cambridge city with label 
number 3. As we can see in chromosome c1, the neighbors of city 3 are city 2 and city 4. Likewise, the 
neighbors of city 3 in chromosome c2 are city 4 and city 5. Apparently, city 4 is the shared city between 
chromosome c1 and c2, subsequently; it will be added to the child chromosome, and it will be the new initial 
city as shown at step 2. The same process, we did on city 3, will be repeated on city 4 again, and so on. In 
case there is no shared city between chromosome c1 and c2, or the shared cities have been previously visited, 
the closest in distance will be chosen as shown in step 4. The table below will show the output of the above 
steps;  

Step 1 output 3     
Step 2 output 3 4    
Step 3 output 3 4 5   
Step 4 output 3 4 5 2  
Step 5(Final Child Chromosome) 3 4 5 2 1 

 
In the final step (step 5), the first child chromosome is created with values; 

first child chromosome 3 4 5 2 1 
 
This child will be carried out to the next population and so on. 
 

5. Experimental Results 
        All the tested methods we adopted in our work, including our proposed algorithm are implemented 
using C++ programing language. The suggested algorithm was tested with a crossover probability of 90% 
and a mutation probability of 10%  [18, 19]. The standard population size was set at 100 chromosomes, and 
each chromosome has 29 cities, the testdata has been chosen from the TSPLIB. The data obtained from a real 
world problem namely, the road distances that contained 29 cities in Bavaria, Germany(street distance), the 
source of our data is Zuse Institute Berlin [20]. 
        The experiment was carried out using three crossover techniques; OX, swap, and our proposed shared 
crossover. In this experiment, we tried to show the performance of our technique in two main cases 
comparing to the OX and the swap techniques.  The first case, is to find the optimal solution at specific 
generation; in this case, the number of generations was 1000, when we tested the three algorithms the results 
were as follows; 
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• The optimal solution of the proposed shared crossover during the 1000 generation was 3720, 
precisely at 640 generations.  

• For the OX algorithm, it reaches the optimal solution 3870 in 660 generations. 
• Lastly, the swap reaches the optimal solution 4000 in 870 generations. 

From the results of the first case, it is noticeable that the shared crossover reaches the best solution in fewer 
numbers of generations, as it can be observed in Figure 2. 
 

 
Figure 2:  Optimal Solution at specific generation 

 
The second case was to find the number of generations that they used in their process when we gave them a 
specific fitness value. The results are as follow:  
The fitness value Number of generation 

in the shared crossover 
Number of generation 
in the OX 

Number of generation 
in the Swap 

4400 50 60 103 
4300 55 70 136 
4200 55 83 560 
4100 213 300 1030 
4000 733 860 1320 
3900 912 1101 1473 
3800 1000 1224 1683 
3700 1511 1570 2517 
3600 2120 2214 5000 
3500 2431 2580 6000 
 
        Figure 3 represents the graph of these results. The number of the generations in the shared crossover 
algorithm always has fewer numbers of generations than the others to reach the optimal solution; therefore, 
the execution time will be less. 
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Figure 3:  Number of generation at specific value 

Finally, the simulation’s results indicate that, the proposed crossover algorithm supersedes the swap and the 
OX algorithms, in terms of the number of generations and execution time. 

6. Conclusion 
The proposed GA shared crossover technique was developed to assist for obtaining the optimal tour to 

visit number of cities. The new technique depends on passing as many as possible of the shared paths 
between cities to the next generation. With a guarantee that none of the cities will appear in the child 
chromosome more than once after applying the crossover method, and we achieved this goal without using 
any time consuming search methods. We have shown in the experimental results a great reduction in the 
execution time.  
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