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Abstract. In this article, we  put a direct method to construct  the rational solitary  wave solutions for some 
nonlinear differential difference equations in mathematical physics  which may be called  the rational solitary 
wave difference method.  We  use the proposed method  to construct  the rational solitary exact solutions for 
some nonlinear differential difference equations via the  lattice equation,  the  discrete  nonlinear Klein 
Gordon equation.  The proposed method is more effective and powerful to obtain many rational solitary exact 
solutions for nonlinear differential difference equations. 
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1. Introduction  
It is well known that the investigation of differential difference  equations (DDEs) which describe many 

important  phenomena and dynamical processes in many different fields, such as particle vibrations in 
lattices, currents in electrical networks, pulses in biological chains a many others and so on, has played an 
important role in the study of modern physics. Unlike difference equations which are fully discredited, DDEs 
are semi- discredited with some (or all) of their special variables discredited while time is usually kept 
continuous. DDEs also play an important role in numerical simulations of nonlinear partial differential 
equations (NLPDEs), queuing problems, and  discretization  in solid state and quantum physics. 

Since the work of Fermi, Pasta, and Ulam in the 1960s [1], DDEs have been the focus of many nonlinear 
studies. On the other hand, a considerable number of well-known analytic methods are successfully extended 
to nonlinear DDEs by researchers [2–17]. However, no method obeys the strength and the flexibility for 
finding all solutions to all types of nonlinear DDEs.  Zhang etal. [18] and Aslan [19] used the ( )/ GG′ -
expansion method to some physically important  nonlinear DDEs. Qiong etal. [12] constructed the Jacobi 
elliptic solutions for nonlinear DDEs.  Recently Zhang etal [20] and Gepreel [29,30]  have  used  the Jacobi 
elliptic function method for constructing new and more general Jacobi elliptic function solutions of some 
nonlinear difference differential equations.   The main objective of this paper, is to modify   the rational 
solitary wave method which discussed by Xie [31] to solve the nonlinear differential difference equations 
instead of solving the nonlinear partial differential equations which my be called rational solitary wave 
difference method.  We use  the proposed  method to calculate the rational solitary wave solutions  for some 
nonlinear DDEs in mathematical physics via the  lattice equation and  the  discrete  nonlinear Klein Gordon 
equation. 

2. Description of the rational  solitary wave difference method 
In this section, we would like to outline  on algorithm for using  the  rational solitary  wave difference  

method to solve  nonlinear DDEs.  For a given nonlinear DDEs 
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where ),...,(),,...,,(),,...,( 1211 Qmg nnnxxxx ==ΔΔ=Δ  and kp,...,p,Q,m,g 1 are integers,  )r(
i

)r(
i v,u  

denotes the set of all r th order derivatives of ii v,u  with respect x . 
The main steps of the algorithm for the rational  solitary wave difference method to solve nonlinear DDEs 
are outlined as follows: 
Step 1. We  take  the traveling wave solutions of the following form:  

...),()(),()( nnnn VxvUxu ξξ == ,                                                     (2) 
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and  ),..,1( Qidi = , )m,...,j(,c j 1= , the phase 0ξ  are constants to be determined later. The 
transformations (2)  is reduced Eqs.(1) to the following nonlinear differential difference  equations  
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where ),...,( 1 gΩΩ=Ω .  

Step 2.   We  suppose the rational  solitary  wave series expansion solutions of Eqs (4) in the following  form: 
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which  satisfy 

,
)()()](1)[()](1)[(

)()(
)(

,
)()()](1)[()](1)[(

)](1)][(1[)()(
)(

,)](1[1)()(

),()()()],(1[
)(

)()(

222

2

2
2

22

2

dgBgdBgfBgdf
dgg

dg

dggBAdBgfABgdfA
dBgBgfdfA

df

Bg
A

gf

gAfgBg
A

Bg
Agf

nnn

n
n

nnn

nn
n

nnn

nnnn
n

nn

ξξξ
ξ

ξ

ξξξ
ξξ

ξ

ξξξ

ξξξξ
ξ

ξξ

+−±−
=±

+−±−

−−±
=±

−+=

−=′−+−=′

                  (7) 

where  iia α, , BAb jj ,,,β  are constants to be determined. 

Also,  we can assume that  
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which  satisfy 
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Equations (7) and (9) can be written into unified form 
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Step 4.  Determine the degree ,...,LN  of  Eqs. (4)  by balancing the  nonlinear term(s) and the highest 
order derivatives of ),...(V),(U nn ξξ  in Eqs. (4).  It should be noted that the leading terms 

0≠±± p),...,(V),(U pnpn ξξ will not affect the balance because we are interested in balancing the terms 

of )( nf ξ and )( ng ξ . 
      
Step 5. Substituting  Eqs. (5) and (10)  the given values of ,...L,K   into Eqs.(4).  Cleaning  the denominator 
and collecting all terms with the same degree of )( nf ξ and )( ng ξ  together, the  left hand side of Eq. (4) is 
converted into a  polynomial in )( nf ξ and )( ng ξ .  Setting each coefficients 

,...2,1,0,1,0)((),( == jigf n
j

n
i ξξ ) of these polynomials to be zero, we derive a set of algebraic equations 

for iia α, , BACb ijj ,,,β .  
 
Step 6.  Solving the over determined system of nonlinear algebraic equations by using  Maple or 
Mathematica software package. We end up with explicit expressions for  iia α, , BACb ijj ,,,β  
 
Step7.  Substituting iia α, , BACb ijj ,,,β  into Eq.(5) along with (6) and (8), we can finally obtain the 
rational solitary wave solutions for nonlinear difference differential equations (1).

             

 

3. Applications 
In this section, we apply the proposed  rational solitary wave difference  method to construct the traveling 
wave solutions for some nonlinear DDEs via  the  the  lattice equation,  the  discrete  nonlinear Klein Gordon 
equation, which are very important in the mathematical physics, modern physics and have been paid 
attention by  many  researchers. 
3.1.  Example 1.  The   lattice equation 
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In this section, we study the lattice  equation which take  the following form [30,32] 

),)((
)(

11
2

−+ −++= nnnn
n uuuu
dt

tdu
γβα                                                             (20) 

where γβα ,,  is  an arbitrary constant.  The lattice  equation contains hybrid lattice equation, mKdV lattice 
equation, modified Volterra lattice equation, and Langmuir chain equation for some special values γβα ,, .   
According to the above steps, to seek traveling wave solutions of Eq. (20), we construct  the traveling wave  
transformation 

         ,),()( 01 ξξξ +−== tcndUtu nnn                                                       (21) 

where  d , 1c  and  0ξ  are constants.  The transformation (21)  permits us converting Eq. (20)  into the 
following form: 

           )],()())[()(()( 2
1 dUdUUUUc nnnnn −−+++=′− ξξξγξβαξ                       (22) 

where  ndd ξ/'= .  Considering the homogeneous balance between the highest order derivative and the 
nonlinear term in (22), we get  1=N .  Thus the solution of Eq. (22) has the following form:  

                    ),()()( 110 nnn gbfaaU ξξξ ++=                                                            (23)  

where 0a , 1a  and 1b  are constants to be determined later. With the aid of Maple, substituting Eq.(23) and 

Eqs.(10) into Eq.(22) and collecting all terms with the same power in ,...).2,1,0,1,0)((),( == jigf n
j

n
i ξξ  

Setting the coefficients of these terms ,...)2,1,0,1,0)((),( == jigf n
j

n
i ξξ  to be zero yields a set of 

algebraic equations which have the following solutions: 
When δ =1 
 

Case 1. 
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where  βγ ,,,, 2aBA  are arbitrary constants.  In this case the rational hyperbolic solitary wave solution for  

the  nonlinear  lattice equation  takes  the following form: 
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When 1−=δ  

 

Case 2. 
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In this case the rational trigonometric solitary wave solution for the  nonlinear lattice equation have  the 

following form: 
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Note that, there  are other cases which are omitted here for convenience.  
 
3.2 Example 2.   The discrete  nonlinear Klein Gordon equation 
 
In this section, we consider the following discrete  nonlinear Klein Gordon equation [29,33]:     
 

              )2)(()(
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2

nnnn
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tud

−+= −+                                                  (30) 

 
The non-constant ( in contrast to the standard models of harmonic coupling and linear  dispersion [34]) 
function )( nug  ensures the presence of nonlinear dispersion , which is critical for the existence of compactly 
supported solutions and s can take values in the interval [-1,1] .  Kevrekidis etal [33] have obtained some 
exact compaction solutions and claim that this DDE does not have the traveling  compact solution.  If we set 

2)( nn uug −= α  as similar in [33] and take the traveling transformation  
           ,),( 01 ξξξ +−== tcdnUu nnn                                                                (31) 

where  d , 1c , s and  0ξ  are constants.  The transformation (31)  permits us converting Eq. (30) into the 
following form: 
 

)],(2)()())[(()( 22
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where  ndd ξ/'= .  Considering the homogeneous balance between the highest order derivative and the 
nonlinear term in (32), we get  1=N .  Thus the solution of Eq. (32) has  the following form:  

               ),()()( 110 nnn gbfaaU ξξξ ++=                                                                   (33) 

 where 0a , 1a and 1b  are constants to be determined later .With the aid of Maple, substituting Eqs.(33) and 

(10) into Eq.(32) and collecting all terms with the same power in ,...).2,1,0,1,0)((),( == jigf n
j

n
i ξξ  

Setting the coefficients of these terms ,...)2,1,0,1,0)((),( == jigf n
j

n
i ξξ  to be zero yields a set of 

algebraic equations which have the following solutions:When δ =1 
Case 3. 
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where  daBA ,,, 2 are arbitrary constants.  In this case the rational hyperbolic  solitary wave solution for the  
discrete  nonlinear Klein Gordon equation  have  the following form: 
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When 1−=δ  
Case 4.
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where  BAa ,,2  are arbitrary constants.  In this case the rational trigonometric  solitary wave solution for the  
discrete  nonlinear Klein Gordon equation  have  the following form: 
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  Note that, there  are other cases which are omitted here for convenience. 
 

4. Conclusion 
In this paper, we put a direct method to calculate the rational solitary wave solutions some nonlinear 

difference  differential equations via the  the  lattice equation,  the  discrete  nonlinear Klein Gordon equation.  
As a result, many new and more rational  solitary wave solutions are obtained, from which hyperbolic 
function solutions and trigonometric function solutions. 
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