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Abstract. In this paper, the determination of the heat source and heat flux at 0x =  in one-dimensional 
inverse heat conduction problem (IHCP) is investigated. First with an suitable transformation, the problem is 
reduced, then the method of fundamental solutions (MFS) is used to solve the problem. Due to ill-posed the 
IHCP, the Tikhonov regularization method with Generalized cross validation (GCV)  criterion are employed 
in numerical procedure. Finally, some numerical examples are presented to show the accuracy and 
effectiveness of the algorithm. 
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1. Introduction  
    Boundary heat flux reconstruction and heat source identification are the most commonly encountered 
inverse problems in heat conduction. These problems have been studied over several decades due to their 
significance in a variety of scientific and engineering applications. In the process of transportation, diffusion 
and conduction of natural materials, the following heat equation is a suitable approximation [1]: 

( ) ( ) [ ] [ ]
2

2 , ; ; , 0,1 0, ,U U f x t U x t T
t x

∂ ∂
− = ∈ ×

∂ ∂
 

where U represents the state variable, T is final time and f denotes physical law. Unfortunately, the 
characteristics of sources in actual problems are always unknown. This problem is an inverse problem [2]. 
Another example of the IHCP is the estimation of the heating history experienced by a shuttle or missile 
reentering the earth's atmosphere from space. The heat flux at the heated surface is needed [3].  

IHCPs are mathematically ill-posed in the sense that the existence, uniqueness and stability of their 
solutions can not be assured. A number of numerical approaches have been developed toward the solution of 
these problems, the boundary element method [4], Ritz-Galerkin method [5] and iterative regularization 
method [6]. Recently, Y.C. Hon and T. Wei [7] successfully applied the method of fundamental solutions to 
approximate the solution of IHCP. A meshless and integration-free scheme for solving the problem. 
Following their works, many researchers applied this method to solve many inverse problems [8-12].  In this 
study we use the MFS with Tikhonov regularization method and GCV criterion to solve the inverse problem. 

The organization of the paper is as follows: In section 2, the formulation of IHCP is presented. Section 3 
is devoted to the numerical procedure, MFS. Several numerical examples are presented in section 4. 
Conclusion is finally discussed in section 5. 

2. Mathematical formulation  
In this work we consider the following inverse partial differential equation (PDE): 

                                       ( ) ( ) ( )
2

2, , ; 0 1, 0 ,U Ux t x t f x x t T
t x

∂ ∂
= + < < < <

∂ ∂
                                     (1)                       

with initial condition: 

                                                                ( ,0) ( ); 0 1,U x x xϕ= ≤ ≤                                                      (2) 

and boundary condition: 
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                                              (1, ) (1, ) ( ); 0 ,U t U t g t t T
x

β γ∂
+ = ≤ ≤

∂
                                                   (3) 

and overspecified conditions: 

                                                       ( , ) ( ); 0 ,U x t h t t T∗ = ≤ ≤                                                              (4) 

                                                      ( , ) ( ); 0 1,U x T x xψ= ≤ ≤                                                               (5) 

where ( )0,1x ∗ ∈  and is known, T is the final time, β and γ  are positive constants and , ,g hϕ  and ψ are 
known continuous functions in their domain satisfying the compatibility conditions: 

              ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(0), ( ) , 1 1 0 , 1 1 ,x h h T x g g Tϕ ψ βϕ γϕ βψ γψ∗ ∗ ′ ′= = + = + =                           (6) 

and heat source ( )f x , heat flux ( ) ( )0,U t q t
x

∂
=

∂
 and heat distribution ( ),U x t  are unknowns to be   

determined. 

If the triple ( ) ( ), 0, ,UU t f x
x

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 is known, then the direct initial  boundary value problem (1)-(5) 

has a unique smooth solution ( ),U x t  [13]. 

The IHCP is ill-posed, so we solve the inverse problem with numerical approach. To obtain a PDE 
containing only one unknown function using the following suitable transformation: 

                                          ( ) ( ) ( ), , ,V x t U x t r x= +                                                                    (7) 

                                          ( ) ( ) ( )
0

,
x

r x x f dα α α= −∫                                                                 (8) 

By considering (6), (7) and (8), the IHCP (1)-(5) is transformed into the following problem: 

                                              ( ) ( )
2

2, , ; 0 1, 0 ,V Vx t x t x t T
t x

∂ ∂
= < < < <

∂ ∂
                                          (9) 

                                                   ( ) ( ) ( ) ( ), ,0 ,V x t V x h t xϕ∗ ∗ ∗− = −                                                      (10) 

                      ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1, 1,0 1, 1,0 1 1 ,V Vt V t V g t
x x

β γ βϕ γϕ∂ ∂⎛ ⎞ ′− + − = − −⎜ ⎟∂ ∂⎝ ⎠
                         (11) 

                                                 ( ) ( ) ( ) ( ), ,0 ,V x T V x x xψ ϕ− = −                                                          (12) 

In equations (10)-(12) we have 0 1x≤ ≤  and 0 t T≤ ≤ . By solving the backward direct problem (9)-(12), 
the approximated solution ( ),V x t  is obtained and with (2) and (7) we have: 

                                                            ( ) ( ) ( ),0 ,r x V x xϕ= −                                                                (13) 

so, for approximating ( )f x , we differentiate from (8) as: 

                                                     ( ) ( ) ( ) ( )
2

2 ,0 .Vf x r x x x
x

ϕ∂′′ ′′= = −
∂

                                                   (14) 

Now from (7) and (13) we conclude: 

                                                              ( ) ( ) ( ), , .U x t V x t r x= −                                                           (15) 

3. The method of fundamental solutions 
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Discretizing of the initial-boundary conditions (10)-(12) may be considered as: 

                                        ( ) ( ) ( ) ( ), ,0 ; 1,..., ,i iV x t V x h t x i nϕ∗ ∗ ∗− = − =                                        (16)    

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1, 1,0 1, 1,0 1 1 ; 1,..., ,i n i n i n
V Vt V t V g t i n n m
x x

β γ βϕ γϕ− − −

∂ ∂⎛ ⎞ ′− + − = − − = + +⎜ ⎟∂ ∂⎝ ⎠
(17) 

             ( ) ( ) ( ) ( ), ,0 ; 1,..., .i n m i n m i n m i n mV x T V x x x i n m n m lψ ϕ− − − − − − − −− = − = + + + +             (18) 

The fundamental solution of Eq. (9) is given as: 

                                                 ( ) ( )
2

41, ,
4

x
tK x t e H t

tπ
−

=                                                    

where ( )H t  is the Heaviside step function. Assume Tτ > is a constant. Then the following time shift 
function: 
                                                             ( ) ( ), , ,x t K x tφ τ= +                                                                (19) 

is also a solution of Eq.(9) [7]. The approximation to the solution of the problem (9)-(12) can be expressed as 
the following: 

                                                     ( ) ( )
1

, , ,
n m l

j j j
j

V x t x x t tλ φ
+ +

∗

=

= − −∑                                                     

where  φ  is given by (19) and jλ are unknown constants. Using conditions (16)-(18), the values of the 

jλ can be obtained by solving the following matrix equation: 

                                                                       ,A bλ =                                                                               (20) 
where 

( ) ( )

( ) ( )
( ) ( )

, ,0

,

, ,0

j i j j j

k j j k j j
n m l n m l

x x t t x x t

A L

x x T t x x t

φ φ

φ φ

∗ ∗

+ + × + +

⎛ ⎞− − − − −
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟− − − − −⎝ ⎠

 

( ) ( ) ( ) ( )( )1 , 1 ,0 1 , 1 ,0 ,j s j j j j s j j jL x t t x t x t t x t
x x
φ φβ γ φ φ∂ ∂⎛ ⎞= − − − − − + − − − − −⎜ ⎟∂ ∂⎝ ⎠

 

( )1 2, , , ,t
n m lλ λ λ λ + += K  

( ) ( ) ( )( ), 1 1 , ,
t

i s k kb h x gϕ βϕ γϕ ψ ϕ∗ ′= − − − −  

and 1,2, , , 1, 2, , , 1, 2, ,i n s n n n m k n m n m n m l= = + + + = + + + + + +K K K and 1,2, , .j n m l= + +K  

Since the IHCP is ill-posed, the matrix A  in Eq.(20) is ill-conditioned. We use the Tikhonov 
regularization method with the GCV criterion to solve Eq.(20). The Tikhonov regularized solution αλ  for 
Eq.(20) is defined to be the solution to the following least square problem: 

                                                    { }2 22min ,A b
λ

λ α λ− +                                                       

where .  denotes the usual Euclidean norm and α  is called the regularization  parameter. We use the GCV 
method to determine a suitable value of α  [1]. 

Denote the regularized solution of Eq.(20) by αλ
∗

. The approximated solution V α
∗  for problems (9)-(12) 

may be given as: 
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                                                 ( ) ( )
1

, , .
n m l

j j j
j

V x t x x t tα
α λ φ

∗
+ +

∗

=

= − −∑                                                 (21) 

From (13) and (21), we have: 

                                            ( ) ( ) ( )
1

,0 .
n m l

j j j
j

r x x x t xαλ φ ϕ
∗

+ +
∗

=

= − − −∑                                             (22) 

The solution of problem (1)-(5) with considering relations (15), (21) and (22) is: 

                         ( ) ( ) ( ) ( )
1

, , ,0 ,
n m l

j j j j j
j

U x t x x t t x x t xα
α λ φ φ ϕ

∗
+ +

∗

=

⎡ ⎤= − − − − − +⎣ ⎦∑                           

and 

                                          ( ) ( ) ( )
2

2
1

,0 ,
n m l

j j j
j

f x x x t x
x

α φλ ϕ
∗

+ +
∗

=

∂ ′′= − − −
∂∑                                             

So we have 

                          ( ) ( ) ( ) ( )
1

0, 0 , 0 ,0 0 .
n m l

j j j j j
j

U t x t t x t
x x x

αα φ φλ ϕ
∗

∗ + +

=

∂ ∂ ∂⎡ ⎤ ′= − − − − − +⎢ ⎥∂ ∂ ∂⎣ ⎦
∑                         

The numerical results in section 4 indicate that the proposed scheme is stable and efficient. 

4. Numerical examples 
For simplicity, we set 1T = in all following examples. 

Example 1. Consider the following  IHCP: 

( ) ( ) ( )
2

2, , ; 0 1, 0 1,U Ux t x t f x x t
t x

∂ ∂
= + < < < <

∂ ∂
 

( )2( ,0) sin 2 ; 0 1,U x x x xπ= + ≤ ≤  

(1, ) 1 2 ; 0 1,U t t t= + ≤ ≤  

With the overspecified conditions: 

( ) ( )
( )

2

2

( , ) 2 sin 2 ; 0,1 , 0 1,

( ,1) 2 sin 2 ; 0 1.

U x t x x t x x t

U x x x x x

π

π

∗ ∗ ∗ ∗ ∗= + + ∈ ≤ ≤

= + + ≤ ≤
 

The exact solution of this problem is: 

( )2( , ) 2 sin 2 ; 0 1, 0 1,U x t x xt x x tπ= + + ≤ ≤ ≤ ≤  

( ) ( )22 2 4 sin 2 ; 0 1,f x x x xπ π= − + ≤ ≤  
and 

(0, ) 2 2 ; 0 1.U t t t
x

π∂
= + ≤ ≤

∂
 

We solve the above problem with noiseless data for various values of x ∗  and choice the values , [0,1]x t ∈  
for discretizing the initial-boundary conditions (16)-(18) with two methods. One is random and another is the 
roots of Chebyshev polynomial that can be obtained from following formula. If  nT  is a Chebyshev 
polynomial of degree 1n ≥ then it has n roots in interval [ ]1,1−  as: 

2 1cos ; 1,2, , ,
2j
jz j n
n

π−⎛ ⎞= =⎜ ⎟
⎝ ⎠

K  

and since [ ], 0,1 ,x t ∈  we put the discretizing points as: 
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1
; 1,2,..., .

2
j

j

z
x j n

+
= =  

The numerical results are shown in table 1. To test the accuracy of the approximated solution, we use 
the root mean square error (RMS) defined as: 

( )( ) ( )

( )( ) ( )

2. .

1

2. .

1

1 ,

1 ,

k

t

n
Exa Num

i i
ik

n
Exa Num
i i

it

RMS f x f f
n

RMS q t q q
n

=

=

= −

= −

∑

∑
 

where tn  and kn  are total number of testing points in the domain [ ] [ ] .0,1 0,1 , Exa
iq×  and .Num

iq are the exact 
and approximated values at this point, respectively, and also is hold for ( ).f x Tables 1 and 2 show the 

values of ( )( )RMS q t and ( )( )RMS f x , respectively, with noiseless data for the roots of Chebyshev 

polynomial and random choosing of [ ], 0,1 .x t ∈  From tables 1 and 2 we conclude that the numerical results 
are more accurate when we choose discretization points as roots of Chebyshev polynomial. Table 3 shows 
the values of regularization parameter, ( )( )RMS q t  and ( )( )RMS f x with three methods of choosing 
regularization parameter, GCV criterion, quasi optimality method [14]  and the L-curve scheme [14]. From 
table 3 we conclude that the result of GCV method is the most accurate. We put 11n m l= = =  and 1.2τ =  
in tables 1, 2 and 3 and 0.01x ∗ = in table3. Table 4 shows the values of ( )q t and ( )f x  with discrete noisy 

data, ( ) ( ). 1 , . 1i i i ig g rand h h randσ σ= + = +%% and ( ). 1i i randψ ψ σ= +%  where ,i ig h and iψ are the exact 
data and ( )1rand  is a random number between ( )1,1−  and the magnitude σ  indicates the error level. We put 

0.01, 20, 1%x n m l σ∗ = = = = =  and 5τ =  in table 4. Figure 1 and figure 2 show the values of ( )f x  and 

( )q t  with noisy and noiseless data, respectively. 

x ∗  ( )( ) :RMS q t random  ( )( ) :RMS q t Chebyshev  

0.01 
0.1 
0.2 
0.9 

-51.2051602 10×  
-52.1281652 10×  
-51.3410111 10×  
-58.2734550 10×  

-77.9688800 10×  
-61.9156389 10×  
-63.6316214 10×  
-55.7529302 10×  

Table 1. The values of ( )( )RMS q t   for various values of x ∗ and random choice of x  and [ ]0,1t ∈  and choosing 

the roots of Chebyshev polynomial for x  and t  with noiseless data when 11n m l= = =  and 1.2τ = . 
x ∗  ( )( ) :RMS f x random  ( )( ) :RMS f x Chebyshev  

0.01 
0.1 
0.2 
0.9 

-41.2887351 10×  
-41.6510818 10×  
-41.3640647 10×  
-48.9909328 10×  

-68.3219848 10×  
-52.6536207 10×  
-53.7394973 10×  
-41.5510584 10×  

Table 2. The values of ( )( )RMS f x   for various values of x ∗  and random choice of x  and [ ]0,1t ∈  

and choosing the roots of Chebyshev polynomial for x  and t with noiseless data when 11n m l= = =  and 1.2τ = . 
 GCV  Quasi optimality  L Curve−  

.RP  
( )( )RMS q t  

( )( )RMS f x  

-141.6087857 10×  
-77.9688800 10×  
-68.3219848 10×  

0.9469968  
2.8604627  
0.2730006  

-131.5225606 10×  
-65.2256551 10×  
-55.6483463 10×  

Table 3. The values of ( )( )RMS q t  and ( )( )RMS f x  for various values of choosing regularization parameter (RP.) 

when 11n m l= = = , 1.2τ =  and 0.01x ∗ =  with noiseless data. 
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t  ( ) .Exa

q t  ( ) .Num
q t  x  ( ) .Exa

f x  ( ) .Num
f x  

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

6.2831855 
6.6831851 
7.0831852 
7.4831853 
7.8831854 
8.2831850 

6.2831855 
6.6805987 
7.0892920 
7.4870520 
7.8820233 
8.2898026 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

-2.0000000 
35.9462051 
22.0048313 
-24.0048313
-37.9462051
-0.0000000 

-1.9729112 
35.9454727 
21.9941330 
-24.0013065 
-37.9098396 
0.0716840 

Table 4.  The values of exact and numeric ( )q t  and ( )f x   with discrete noisy data, 

( ) ( ) ( ). 1 , . 1 , . 1i i i i i ig g rand h h rand randσ σ ψ ψ σ= + = + = +%% %  and 1%σ =  when 20, 5n m l τ= = = =  and 
0.01.x ∗ =  
 

 
Figure 1. The values of  ( )f x  and ( )q t  with noiseless data when 11,n m l= = = 1.2τ =  and 0.01.x ∗ =  

 

 
 

Figure 2. The values of  ( )f x  and ( )q t  with noisy data when 20,n m l= = = 5τ =  and 0.01x ∗ =  

( )1% .σ =  
Example 2. let us consider the following  problem: 

( ) ( ) ( )
2

2, , ; 0 1, 0 1,U Ux t x t f x x t
t x

∂ ∂
= + < < < <

∂ ∂
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( ,0) 0; 0 1,U x x= ≤ ≤  

( ) ( )2

1, 3 (1, ) 1 ; 0 1,tU t U t e t
x

ππ −∂
+ = − ≤ ≤

∂
 

With the overspecified conditions: 

( ) ( ) ( )
( )

2

( , ) 1 sin ; 0,1 , 0 1,

( ,1) 0.9999sin ; 0 1.

tU x t e x x t

U x x x

π π

π

∗ − ∗ ∗= − ∈ ≤ ≤

= ≤ ≤
 

The exact solution of this problem is: 

( ) ( )2

( , ) 1 sin ; 0 1, 0 1,tU x t e x x tπ π−= − ≤ ≤ ≤ ≤  

( ) ( )2 sin ; 0 1,f x x xπ π= ≤ ≤  
and 

( )2

(0, ) 1 ; 0 1.tU t e t
x

ππ −∂
= − ≤ ≤

∂
 

Tables 5 and 6 show the values of ( )( )RMS q t and ( )( )RMS f x , respectively, with noiseless data for the 

roots of Chebyshev polynomial and random choosing of [ ], 0,1 .x t ∈  From table 5 and 6 we conclude that the 
numerical results are more accurate when we choose discretization points as roots of Chebyshev polynomial. 
Table 7 shows the values of regularization parameter, ( )( )RMS q t  and ( )( )RMS f x  with three methods of 
choosing regularization parameter. From table 7 we conclude that the result of GCV method is the most 
accurate. We put 11n m l= = =  and 1.2τ =  in table 5, 6 and 7 and 0.01x ∗ =  in table 7. Table 8 shows the 
values of ( )q t  and ( )f x  with discrete noisy data as in example1 when 0.1%σ =  . We put 

0.01, 20x n m l∗ = = = =  and 5τ =  in table 4. Figure 3 and figure 4 show the values of ( )f x  and ( )q t  
with noisy and noiseless data, respectively. 
 

x ∗  ( )( ) :RMS q t random  ( )( ) :RMS q t Chebyshev  

0.01 
0.1 
0.2 
0.9 

-63.2516816 10×  
-52.6673742 10×  
-52.6992220 10×  
-52.7580350 10×  

-75.0948250 10×  
-79.4214829 10×  
-61.4025782 10×  
-51.4095266 10×  

Table 5. The values of ( )( )RMS q t   for various values of x ∗ and random choice of x  and [ ]0,1t ∈  and 
choosing the roots of Chebyshev polynomial for x  and t  with noiseless data when 11n m l= = =  and 

1.2τ =  
 
 

x ∗  ( )( ) :RMS f x random  ( )( ) :RMS f x Chebyshev  

0.01 
0.1 
0.2 
0.9 

-51.4873355 10×  
-41.3452856 10×  
-41.3899122 10×  
-42.6992612 10×  

-64.0674022 10×  
-62.6702419 10×  
-62.5899801 10×  
-52.4934692 10×  

Table 6. The values of ( )( )RMS f x   for various values of x ∗  and random choice of x  and [ ]0,1t ∈  
and choosing the roots of Chebyshev polynomial for x  and t with noiseless data when 11n m l= = =  and 

1.2τ = . 
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 GCV  Quasi optimality  L Curve−  

.RP  
( )( )RMS q t  

( )( )RMS f x  

-141.6846206 10×  
-62.6702419 10×  
-79.4214829 10×  

2.0245921  
5.7369061 
2.5436726  

-143.5406765 10×  
-63.1985928 10×  
-79.4762476 10×  

Table 7. The values of ( )( )RMS q t  and ( )( )RMS f x  for various values of choosing regularization 

parameter (RP.) when 11n m l= = = , 1.2τ =  and 0.01x ∗ =  with noiseless data. 
 

t  ( ) .Exa
q t  ( ) .Num

q t  x  ( ) .Exa
f x  ( ) .Num

f x  
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0000000 
2.7051904 
3.0809715 
3.1331718 
3.1404228 
3.1414301 

0.0000000 
2.7060506 
3.0846586 
3.1355097 
3.1421163 
3.1440303 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0000000 
5.8012080 
9.3865519 
9.3865519 
5.8012080 
0.0000000 

0.0148435 
5.8022895 
9.3881464 
9.3915215 
5.8042960 
-0.0011152 

Table 8.  The values of exact and numeric ( )q t  and ( )f x   with discrete noisy data, 

( ) ( ) ( ). 1 , . 1 , . 1i i i i i ig g rand h h rand randσ σ ψ ψ σ= + = + = +%% %  and 0.1%σ =  when 20, 5n m l τ= = = =  
and 0.01.x ∗ =  

 

 
Figure 3. The values of  ( )f x  and ( )q t  with noiseless data when 11,n m l= = = 1.2τ =  and 0.01.x ∗ =  
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Figure 4. The values of  ( )f x  and ( )q t  with noisy data when 20,n m l= = = 5τ =  and 0.01x ∗ =  

( )0.1% .σ =  
 

Example 3. In this example let us consider the following problem: 

( ) ( ) ( )
2

2, , ; 0 1, 0 1,U Ux t x t f x x t
t x

∂ ∂
= + < < < <

∂ ∂
 

( ) 4( ,0) 2 sin 2 cos 2 0.25 ; 0 1,U x x x x x= + + ≤ ≤  

( ) 41, 5.3018 6 1; 0 1,tU t e t t
x

−∂
= − + + ≤ ≤

∂
 

With the overspecified conditions: 

( ) ( ) ( )

( ) ( )

44 2

4

( , ) 2 sin 2 cos2 3 0.0833 ; 0,1 , 0 1,

( ,1) 0.0366 sin 2 cos2 3 1 0.0833 ; 0 1.

tU x t e x x t tx x x t

U x x x x x x

∗ − ∗ ∗ ∗ ∗ ∗= + + + + ∈ ≤ ≤

= + + + + ≤ ≤
 

The exact solution of this problem is: 

( ) ( )4 2 4( , ) 2 sin 2 cos2 3 0.0833 ; 0 1, 0 1,tU x t e x x t tx x x t−= + + + + ≤ ≤ ≤ ≤  

( ) 0; 0 1,f x x= ≤ ≤  
and 

4(0, ) 4 3 ; 0 1.tU t e t t
x

−∂
= + ≤ ≤

∂
 

Tables 9 and 10 show the values of ( )( )RMS q t  and ( )( )RMS f x , respectively, with noiseless data 

for the roots of Chebyshev polynomial and random choosing of [ ], 0,1 .x t ∈  From table 9 and 10 we 
conclude that the numerical results are more accurate when we choose discretization points as roots of 
Chebyshev polynomial. Table 11 shows the values of regularization parameter, ( )( )RMS q t  and 

( )( )RMS f x  with three methods of choosing regularization parameter. From table 11 we conclude that the 
result of GCV method is the most accurate. We put 11n m l= = =  and 5τ =  in tables 9, 10 and 11 and 

0.2x ∗ = in table 11. Table 12 shows the values of ( )q t  and ( )f x  with discrete noisy data as in example1 
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where 1%σ =  . We put 0.2, 11x n m l∗ = = = =  and 5τ =  in table 12. Figures 5 and 6 show the values of 
( )f x  and ( )q t  with noisy and noiseless data, respectively. 

 
x ∗  ( )( ) :RMS q t random  ( )( ) :RMS q t Chebyshev  

0.01 
0.1 
0.2 
0.9 

-41.9100628 10×  
-42.0902304 10×  
-41.8386828 10×  

0.0013397  

-41.6098575 10×  
-41.5256544 10×  
-41.3861558 10×  

0.0010482  

Table 9. The values of ( )( )RMS q t   for various values of x ∗ and random choice of x  and [ ]0,1t ∈  and 
choosing the roots of Chebyshev polynomial for x  and t  with noiseless data when 11n m l= = =  and 

5.τ =  
 

x ∗  ( )( ) :RMS f x random  ( )( ) :RMS f x Chebyshev  

0.01 
0.1 
0.2 
0.9 

-45.3691405 10×  
-44.4680462 10×  
-43.7652593 10×  

0.0040282  

-44.1352982 10×  
-43.2773466 10×  
-42.6523585 10×  

0.0026973  

Table 10. The values of ( )( )RMS f x   for various values of x ∗  and random choice of x  and [ ]0,1t ∈  
and choosing the roots of Chebyshev polynomial for x  and t with noiseless data when 11n m l= = =  and 

5τ = . 
 

 GCV  Quasi optimality  L Curve−  
.RP  
( )( )RMS q t  

( )( )RMS f x  

-151.1154973 10×  
-41.3861558 10×  
-42.6523585 10×  

0.2935133  
3.2266636  
8.9432737  

-126.0636541 10×  
0.0050862  
0.0241315  

Table 11. The values of ( )( )RMS q t  and ( )( )RMS f x  for various values of choosing regularization 

parameter (RP.) when 11n m l= = = , 5τ =  and 0.2x ∗ =  with noiseless data. 
 
 
 

t  ( ) .Exa
q t  ( ) .Num

q t  x  ( ) .Exa
f x  ( ) .Num

f x  
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

4.0000000 
1.7973158 
0.8075861 
0.3628718 
0.1630488 
0.0732626 

4.0000005 
1.8208135 
0.8245509 
0.3829993 
0.1978113 
0.0710324 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0553125 
0.0644821 
0.0350606 
-0.0033705 
-0.0219372 
-0.0057789 

Table 12.  The values of exact and numeric ( )q t  and ( )f x   with discrete noisy data, 

( ) ( ) ( ). 1 , . 1 , . 1i i i i i ig g rand h h rand randσ σ ψ ψ σ= + = + = +%% %  and 1%σ =  when 11, 5n m l τ= = = =  and 
0.2x ∗ = . 
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Figure 5. The values of  ( )f x  and ( )q t  with noiseless data when 11,n m l= = = 5τ =  and 0.2x ∗ = . 

 
 

 
Figure 6. The values of  ( )f x  and ( )q t  with noisy data when 11,n m l= = = 5τ =  and 0.2x ∗ =   

( )1% .σ =  

5. CONCLUSION  

In this paper the method of fundamental solution with the Tikhonov regularization technique has been 
developed for obtaining stable space-wise dependent heat source and heat flux at x=0. Numerical results 
were presented for three inverse problems. We take two approaches for choosing the discretizing points, 
random and the roots of Chebyshev polynomial. The obtained results show that: 

1. Using roots of Chebyshev polynomial is more accurate than random choice. 
2. When data contaminated by noise, the numerical solution are stable. 
3. The method is accurate and reliable. 
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