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Abstract. In this paper, we apply homotopy perturbation transform method (HPTM) for solving nonlinear 
wave-like equations of variable coefficients. This method is the coupling of homotopy perturbation method 
and Laplace transform method. The nonlinear terms can be easily obtained by the use of He's polynomials. 
HPTM present an accurate methodology to solve many types of linear and nonlinear differential equations. 
The approximate solutions obtained by means of HPTM in a wide range of the problem's domain were 
compared with those results obtained from the actual solutions, the Variational iteration method (VIM) and 
the Adomain decomposition method (ADM). The fact that proposed technique solves nonlinear problems 
without using Adomain's polynomials can be considered as a clear advantage of this algorithm over the 
decomposition method. The comparison shows a precise agreement between the results. 

Keywords: Homotopy perturbation method, Laplace transform method, nonlinear wave-like equations, 
He's polynomials. 

1. Introduction  
    Nonlinear phenomena appear everywhere in our daily life and our scientific works, and today nonlinear 
science represents one of the most challenging promising, and romantic fields of research in science and 
technology [1-2]. It was very difficult to solve nonlinear problems effectively either numerically or 
analytically, an even more difficult to establish models for real world problems. In recent years, many 
authors have paid attention to studying the solutions of nonlinear partial differential equations by Adomain 
decomposition method [3-6], the tanh method [7], the sine-cosine method [8-9] the differential transform 
method [10-11], the variational iteration method [12-17] and the Laplace decomposition method [18-22]. In 
numer methods, computers codes and more powerful processors are required to achieve methods. The main 
advantage of semi-analytical methods, compared with others methods, is based on the fact that they can be 
conveniently applied to solve various complicated problems with accurate approximation, but this 
approximation is acceptable only for small range [23], because boundary conditions in one dimension are 
satisfied via these methods. Consequently, this shows that most of these semi-analytical methods encounter 
inbuilt deficiencies like he calculation of Adomain polynomials, huge computational works and divergent 
results. One of these semi-analytical methods is the homotopy perturbation method (HPM). He [24-32] 
developed the homotopy perturbation method for solving linear, nonlinear, initial and boundary value 
problems [33-38] by merging two techniques, the standard homotopy and the perturbation technique. The 
homotopy perturbation method was formulated by taking the full advantage of the standard homotopy and 
perturbation technique and has been modified by the some scientists to obtain more accurate results, rapid 
convergence, and to reduce the amount of computation [39-44]. Everyone familiar the term namely, Laplace 
transform [45], is a powerful technique for solving various linear partial differential equations having 
considerable significance in various fields of science and engineering. But it incapable of solving nonlinear 
system of equations because of the difficulties that are arises due to nonlinear terms. Various techniques have 
been proposed to handle these nonlinearities to produce a highly effective technique for solving the nonlinear 
problems [46-48]. 
 In this paper we use a new modification of HPM to overcome the difficulties of handling nonlinear 
terms. HPTM provides the solution in a rapid convergent series which may lead the solution in rapid 
convergent series which may lead the solution in closed form. The nonlinear terms can be easily handled by 
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the use of He's polynomials [49-50]. HPTM is applied without any discretization or restrictive assumptions 
and avoids round-off errors. Several examples are given to verify the reliability and efficiency of the 
homotopy perturbation transform method. In this paper, we consider the following nonlinear wave-like 
equations 
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with the initial conditions 
  

)()0,( 0 XaXu = ,  ).()0,( 1 XaXut =  
Here ),,,( 21 nxxxX K= and iij GF 11 , are nonlinear function of tX , and .u iij GF 2,2 are nonlinear 

function of derivatives of ., ji xx While SH , are nonlinear functions and ,k ,m p are integers. These types 
of equations are of considerable significance in various fields of applied sciences, mathematical physics, 
nonlinear hydrodynamics, engineering physics, biophysics, human movement sciences, astrophysics and 
plasma physics. These equations describe the evolution of stochastic systems. For example, they describe the 
erratic motions of small particles that are immersed in fluids, fluctuations of the intensity of laser light, 
velocity distributions of fluid particles in turbulent flows and the stochastic behavior of exchange rates. M. 
Ghoreishi [51] has been solved this type of equation by Adomain Decomposition method (ADM) to avoid 
unrealistic assumptions in calculating the Adomain polynomials. ADM is the most transparent method for 
solutions of the nonlinear problems; however, this method is involved in the calculation of complicated 
Adomain polynomials which narrows down its applications. To overcome this disadvantage of the Adomain 
decomposition method, we consider the homotopy perturbation transform method to solve various nonlinear 
wave-like equations of variable coefficients. 

2. Homotopy perturbation transform Method  
This method has been introduced by Y.Khan and Q.Wu [52] by combining the Homotopy perturbation 

method and Laplace transform method for solving various types of linear and nonlinear systems of partial 
differential equations. To illustrate the basic idea of HPTM, we consider a general nonlinear partial 
differential equation with the initial conditions of the form [52]. 
  ),,(),(),(),( txgtxuNtxuRtxuD =++                  (2)  
              )()0,( xhxu = ,        )()0,( xfxut = . 

where  D is the second order linear differential operator 22 tD ∂∂= , R is the linear differential operator of 
less order than D; N represents the general nonlinear differential operator and ),( txg is the source term. 
Taking the Laplace transform (denoted in this paper by L ) on both sides of Eq. (2): 

 )],([)],([)],([)],([ txgLtxuNLtxuRLtxuDL =++            (3)  
Using the differentiation property of the Laplace transform, we have 

 )],([1)],([1)],([1)()()],([ 2222 txuNL
s

txgL
s

txuRL
ss

xf
s
xhtxuL −+−+=         (4) 

Operating with the Laplace inverse on both sides of Eq. (4) gives 
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1 txuNtxuRL
s

LtxGtxu                   (5)    

where ),( txG  represents the term arising from the source term and the prescribed initial conditions. Now we 
apply the homotopy perturbation method    
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and the nonlinear term can be decomposed as  
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for some He's polynomials )(uH n (see [49-50]) that are given by 
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Substituting Eq. (8), Eq. (7) and Eq. (6) in Eq. (5) we get 
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which is the coupling of the Laplace transform and the homotopy perturbation method using He's 
polynomials. Comparing the coefficient of like powers of p, the following approximations are obtained. 

),(),(: 0
0 txGtxup =  

 [ ])(),(1),(: 0021
1 uHtxuRL

s
txup +−= , 

 [ ])(),(1),(: 1122
2 uHtxuRL

s
txup +−= ,                     (10) 

 [ ])(),(1),(: 2223
3 uHtxuRL

s
txup +−= , 

 M  
and so on

         

 

3. Applications 
In this section, we apply the homotopy perturbation transform method (HPTM) for solving various types of 
nonlinear wave-like equations with variable coefficients. 
 
Example 3.1 Consider the following two dimensional nonlinear wave-like equations with variable 
coefficients [51]. 
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with the initial conditions 
xyeyxu =)0,,( ,            xy

t eyxu =)0,,(  

The exact solution is given by ( )ttetyxu xy sincos),,( += ; by means of homotopy perturbation transform 
method, 
Taking Laplace transform both of sides, subject to the initial condition, we get 
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Taking inverse Laplace transform, we get 
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by homotopy perturbation method, we get 
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using equation (14) in equation (13), we get 
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Where )(uH n  and )(uKn  are the He's polynomials having the value ( )yyxxn uu
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Comparing the coefficients of various powers of ,p we get 
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Therefore the approximate solution is given by 
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which converges to the exact solution and is same as obtained by M.Ghoreishi [51] 
 
Example 3.2 Consider the following nonlinear wave-like equation with variable coefficients [51]. 
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with the initial conditions 
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By applying above said method, we get 

( )
⎢
⎢
⎣

⎡

⎢
⎢
⎣

⎡
+++= ∑∑∑

∞

=

∞

=

−
∞

= 00
2

1

0
)()(11),(

n
n

n

n
n

nx

n
n

n uKpuHpL
s

pLtetxup  

         
⎥
⎥
⎦

⎤

⎥
⎥
⎦

⎤
+− ∑∑

∞

=

∞

= 00
),()(18

n
n

n

n
n

n txupuJp         (19) 

Where )(),( uKuH nn and )(uJ n are He's polynomials. First few components of He's polynomials are given 
by 
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Comparing the coefficients of various powers of ,p we get 
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which converges to the exact solution and is same as obtained by M.Ghoreishi [51] 
 
Example 3.3 Consider the following nonlinear wave-like equation with variable coefficients [51]. 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
+= ∑∑∑∑

∞

=

∞

=

∞

=

−
∞

= 00

2

0

2
2

12

0
),()()(1),(

n
n

n

n
n

n

n
n

n

n
n

n txupuKpxuHpxL
s

pLtxtxup  

                (22) 
Where )(uH n and )(uKn are He's polynomials. First few components of He's polynomials are given by 
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Comparing the coefficients of various powers of ,p we get 
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Therefore the approximate solution is given by 
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which converges to the exact solution and is same as obtained by M.Ghoreishi [51] 
 
Table 1 
The following table shows absolute error 7ϕ  for variables yx, and t  varies from 0.2 to 1.0 for example 1 at 

1=y  
 

yxt ,        0.2        0.4     0.6        0.8 
 

0.2  2.42264E-11  1.36112E-11  3.69856E-11 6.389545E-11 
0.4  9.23565E-10  2.59866E-10  2.32656E-10 9.156321E-10 
0.6  1.15323E-08  3.86656E-08  2.36589E-08 5.231012E-08 
0.8  1.23895E-07  8.65454E-07  4.59863E-07 3.234450E-07 
1.0  2.26586E-06  5.39616E-06  2.00826E-06 3.245223E-06 

 
Table 2 
The following table shows absolute error 8ϕ  for variable yx, and t  varies from 0.2 to 1.0 for example 2 
 
 xt        0.2        0.4     0.6        0.8 
   
  0.2  3.26654E-12  6.88851E-12  9.86552E-12 3.029856E-12 
  0.4  2.10764E-10  5.52562E-10  8.64789E-10 9.135860E-10  
  0.6  3.63457E-08  8.66413E-08  5.36589E-08 8.231012E-08 
  0.8  1.65893E-07  8.36565E-07  5.69863E-07 4.569844E-07 
  1.0  3.98545E-06  9.56874E-06  2.01196E-06 6.896547E-06    
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Table 3 
The following table shows absolute error 10ϕ  for variable yx, and t  varies from 0.2 to 1.0 for example 3 
 
 xt        0.2        0.4     0.6        0.8 
   
  0.2  0.000000000  0.000000000  0.000000000 0.000000000 
  0.4  0.000000000  0.000000000  0.000000000 0.000000000  
  0.6  0.000000000  0.000000000  0.000000000 0.000000000 
  0.8  2.86954E-17  8.69872E-17  5.92313E-17 8.50096E-17 
  1.0  1.89658E-15  2.56856E-15  5.96845E-15 1.00236E-17    
 

4. Conclusion 
In this paper, we applied the homotopy perturbation transform method (HPTM) for solving nonlinear 

wave-like equations with variable coefficients. The proposed method is applied successfully without any 
discretization, linearization or restrictive assumptions. It may be concluding that the HPTM by using He's 
polynomials is simple, but the calculation of Adomain's polynomials is complex. Its small size of 
computation in comparison with the computational size required in other numerical methods and its rapid 
convergence show that the method is reliable and introduces a significant improvement in solving nonlinear 
differential equations over existing methods. 
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