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Abstract. In this paper, we deal with the existence and multiplicity of positive weak solutions for a class of 
quasilinear elliptic p-Laplacian  problems with nonlinear boundary conditions. By extracting the Palais-
Smale sequences in the Nehari manifold and using the fibering maps, it is proved that there exists ߣ∗ such 
that for λ ∈ 	 (0, λ∗),	 the given boundary value problem has at least two positive solutions. 
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1. Introduction  
    We study the existence and multiplicity of positive solutions for the following quasilinear elliptic problem 

                                       ൝−Δ௣ݑ ݑ௣ିଶ|ݑ|(ݔ)݉+ = ,ݔ)݂	ߣ (ݑ − ௤ିଵݑ(ݔ)݃ ݔ		 ∈ 	Ω,	|∇	ݑ|௣ିଶ డ௨డ௡ = ℎ(ݔ, 																																															(ݑ ݔ ∈ ߲	Ω,                              (1)   

where ߣ > 0,  ∆௣  denotes the p-Laplacian operator defined by ∆௣= (ݑ∇௣ିଶ|ݑ∇|)ݒ݅݀ , 2 ≤ ݍ ≤ ݌ <  ∗݌
∗݌) = ௣ேேି௣ if ܰ > ∗ܲ ,݌ = ∞ if ܰ ≤  డడே is the outer normal derivative,  is a bounded region in ܴே  ,(݌

with the smooth boundary ߲Ω, ܰ > ,(ݔ)݉  and ݌ (ݔ)݃ ∈  are nonnegative functions. Also the basic (Ωഥ)ܥ
assumptions for the functions ݂(ݔ, ,ݔ)and ℎ (ݑ  :are the following	(ݑ
(f1) ݂(ݔ, (ݑ ∈ 	ଵ(Ωܥ × 	ܴ)  such that ݂(ݔ, 0) 	≥ 	0 ,ݔ)݂ , 0) 	≢ 	0  and there exists ܥଵ > 	0  such that | ௨݂(ݔ, |(ݑ ≤ ,ݔ) ௉ିଶ  for allݑଶܥ (ݑ ∈ Ω × ܴା. 
(f2) For ݑ	 ∈ 	 ׬ ௣(Ω), the integralܮ ௨݂(ݔ, 	ݔଶ݀ݑ(|ݑ|ݐ

Ω  has the same sign for every ݐ	 > 	0  
(h1) ℎ(ݔ, (ݑ ∈ ଵ(߲Ωܥ × ܴ) and for ݑ ∈ ׬ ,௣(߲Ω)ܮ ℎ௨(ݔ, பΩ	ݔଶ݀ݑ(|ݑ|ݐ  has the same sign for every ݐ > 0. 

(h2) ℎ(ݔ, 0) ≥ 	0,  lim௧→∞ ௛(௫,௧|௨|)|௨|௧ೝషభ = ,ݔ)ߟ ,ݔ) uniformly respect to (ݑ ,ݔ)ߟ where ,(ݑ (ݑ ∈ Ω߲)ܥ × ܴା) 
and |ݔ)ߟ, |(ݑ > ߠ > 0	, a.e. for all (ݔ, (ݑ ∈ ߲Ω × ܴା. 
 (h3) There exists ܥଶ > 	0 such that ݔ)ܪ, (ݑ ≤ ଵ௥ ℎ(ݔ, ݑ(ݑ ≤ ଵ௥(௥ିଵ) ℎ௨(ݔ, ଶݑ(ݑ ≤ ,ݔ) ௥ for allݑଶܥ (ݑ ∈ ߲Ω ×ܴା, where ݌ < ݎ <   and ∗݌
,ݔ)ܪ                                                       (ݑ = ׬ ℎ(ݔ, ௨଴.ݏ݀(ݏ                                                                         (2) 
The problem of existence of the positive solutions for the quasilinear elliptic equations (systems) with 
nonlinear boundary conditions of different types has received considerable attention, for example see [4, 8, 
10, 12, 17, 18, 19, 20, 21, 23, 24, 25] and the references cited therein. 
    When ݂(ݔ, (ݑ = ,ݔ)௞ or ℎݑ(ݔ)ܽ	 (ݑ =  ௞, the problem (1) has also been studied by some authorsݑ(ݔ)ܽ	
and the existence of multiple positive solutions has been established. For instance, Drabek and Schindler [14] 
showed the existence of positive, bounded and smooth solutions of the following p-Laplacian equation ൜−Δ௣ݑ + ݑ௣ିଶ|ݑ|ܾ = 	݂(. , (ݑ 		݅݊					Ω,ℜݑ = 0																																						  ,Ω߲			݊݋
where ℜݑ = ௣ିଶ|ݑ∇| డ௨డ௩ + ܾ଴|ݑ|௣ିଶݑ	, Ω ⊂ R୒ is a bounded domain and 1 < 	݌	 < 	ܰ. 
    In the regular case; with ݌ = 2, Szulkin and Weth in [22] considered Dirichlet boundary value problem 
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൜−∆ݑ − ݑߣ = ,ݔ)݂	 (ݑ ݔ			 ∈ Ω,(ݔ)ݑ = 0																				 ݔ ∈ ߲Ω, 
where ߣ < ,	ଵߣ ݂ ଵ denotes the first Dirichlet eigenvalue of −∆ in   andߣ ∈ Ω	)ܥ	 × 	ܴ, ܴ) satisfies some 
growth restrictions and proved the existence of a ground state solution under some appropriate conditions, by 
using the method of Nehari manifold. 
     In unbounded domain, the following semilinear elliptic problem ൜−∆ݑ + ݑߣ = ,ݔ)݃	 (ݑ + (ݔ)݂ ݔ			 ∈ R୒,(ݔ)ݑ > ݑ										0 ∈ 			,ଵ(ܴே)ܪ 	  

where ݃ satisfies some suitable conditions and ݂	 ∈  ଵ(ܴே)\{0} is nonnegative, has been the focus of aିܪ	
great deal of research by several authors [1, 11, 16] and the existence of at least two positive solutions was 
proved. 
     The main idea in our proofs lies in dividing the Nehari manifold associated with the Euler functional 
for problem (1) into two disjoint parts and then considering the infima of this functional on each part and 
by extracting Palais-Smale sequences we show that there exists at least one solution on each part. The main 
difficulty will be the nonlinearity of ݂(ݔ, ,ݔ)and ℎ (ݑ  in problem (1) and the lack of separability, but (ݑ
clearly, the problems in [2, 5, 6, 7, 11], possess this assumption. To overcome this difficulty, we need to 
restrict the problem (1) to assumptions (f2) and (h1). 
Here we present some examples for ݂(ݔ,  .satisfying the conditions (f1) and (f2) (ݑ

 ଵ݂(ݔ, (ݑ = ି௔భ(௫)௨೛శೝଵା௔మ(௫)௨మ + ܽଷ(ݔ), 	ܽ௜(ݔ) ∈ ,(തߗ)ܥ 	ܽ௜(ݔ) ≥ 0, 	ܽଷ(ݔ) ≢ 0, 2}	ݔܽ݉	 − ,݌ −1} ≤ ݎ ≤ 1.		 ଶ݂(ݔ, (ݑ = ܾଵ(ݔ) tanିଵ൫ܾଶ(ݔ)ݑ௣ା௞൯ln	(1 + (ଶ௞ݑ + ܾଷ(ݔ), ܾ௜(ݔ) ∈ ,(തߗ)ܥ 	ܾ௜(ݔ) ≥ 0, 	ܾଷ(ݔ) ≢ 0, ௣ଶ ≤ ݇.		 ଷ݂(ݔ, (ݑ = ܿଵ(ݔ)ඥ(1 + ܿଶ(ݔ)ݑଶ௞)௣ିଵ,ೝ 	 	ܿ௜(ݔ) ∈ ,(തߗ)ܥ 	ܿ௜(ݔ) ≥ 0, 	ܿଵ(ݔ) ≢ 0,			݇ ∈ ܰ,			0 ≤ 2݇ ≤ 		.ݎ ସ݂(ݔ, (ݑ = ି௘భ(௫)௨ುషభସାୡ୭୲షభ(௘మ(௫)௨ೖ) + ݁ଷ(ݔ), 	݁௜(ݔ) ∈ ,(തߗ)ܥ 	݁௜(ݔ) ≥ 0, 	݁ଷ(ݔ) ≢ 0, ݇ ≥ 0.	
 
   Also the following are the examples of functions that satisfy the conditions (h1)–(h3): 
      ℎଵ(ݔ, (ݑ = (ݔ)ܽ			,௥ିଵݑ(ݔ)ܽ ∈ (ݔ)ܽ			,(Ω∂)ܥ ≥ 0.								ℎଶ(ݔ, (ݑ = (ݔ)ܾ ௨೜శೝషభଵା௨೜ (ݔ)ܾ			, ∈ (ݔ)ܾ			,(Ω∂)ܥ ≥ ݍ			,0 ≥ 0.								ℎଷ(ݔ, (ݑ = ܿଵ(ݔ) ቆ−ܿଶ(ݔ) + ට൫ܿଶ(ݔ)൯௤ + ௤(௥ିଵ)೜ݑ ቇ,			ܿ௜(ݔ) ∈ (ݔ)௜ܿ			,(Ω∂)ܥ ≥ ݍ			,0 ∈ ܰ.	
    Before stating our main results, we mention the following remarks. 
Remark 1.1. Notice that using conditions (f1) and (f2), we conclude that there exists ܥଷ 	> 	0, ସܥ > 0 such 
that for all (ݔ, (ݑ ∈ (Ω ×	ܴା), ݂(ݔ, (ݑ ≤ ଷ(1ܥ + ,ݔ)ܨ										݀݊ܽ						(௣ିଵݑ (ݑ ≤ ସ(1ܥ +  ,(௣ݑ
where 
,ݔ)ܨ                                                                (ݑ = ׬ ,ݔ)݂ ௨଴.ݏ݀(ݏ                                                                (3) 
 
Remark 1.2. It should be mentioned that using condition (h2) we have |ℎ(ݔ, |ݓ(ݓݐ ≤ (1 + ,ݔ)ߟ|  ,௥ିଵݐ(|(ݓ
for ݐ	sufficiently large and (ݔ, (ݓ ∈ ߲Ω ×	ܴା, hence taking ݓ = 1 and ݐ =  sufficiently large we |ݑ| for	|ݑ|
arrive at |ℎ(ݔ, ≥|หݑ|(|ݑ| (1 + ,ݔ)ߟ| ห௥ݑ|(|(1 ≤  ,௥|ݑ|଴ܣ
where ܣ଴ = max	{1 = ,ݔ)ߟ| 1)| ∶ ݔ ∈ ߲Ω}. Furthermore from (h1), ℎ(ݔ, (ݑ ∈ ଵ(߲Ωܥ × 	ܴ), consequently 
there exists ܣଵ > 	0 such that	
                                             |ℎ(ݔ, |ݑ(ݑ ≤ ଵ(1ܣ + ,ݔ)									,(௥|ݑ| (ݑ ∈ ߲Ω ×	ܴା.                                     (4) 
Also using (h3) and (4) there exists ܣଶ > 0	such that 
                                           |ℎ௨(ݔ, ଶݑ|(ݑ ≤ ଶ(1ܣ + ,ݔ)									,(௥|ݑ| (ݑ ∈ ߲Ω ×	ܴା.                                   (5) 
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    This paper is organized as follows. In section 2 we point out some notations and preliminary results and 
give some properties of Nehari manifold and fibering maps. In section 3, a fairly complete description 
of the fibering maps associated with the problem is given. Finally in section 4, we will prove the existence 
of positive solutions of problem (1) by establishing the existence of local minimas for the Euler functional, associated 
with problem (1) on the Nehari manifold. 
  

2. Preliminaries and auxiliary results  
Problem (1) is posed in the framework of the Sobolev space  ܹଵ,௣(Ω)	 with the norm ‖ݑ‖ௐభ,೛ = ቆන ௣|ݑ∇|) + 	ݔ݀(௣|ݑ|(ݔ)݉

Ω
ቇଵ௣, 

which is equivalent to the standard one and we use the standard ܮ௣(Ω) spaces whose norms are denoted by ‖ݑ‖௣. Throughout this paper, we denote  ܵ௥ and  ܵ௥ഥ  the best Sobolev and the best Sobolev trace constants for 
the embedding of  ܹଵ,௣(Ω)	 into ܮ௥(Ω) and ܹଵ,௣(Ω)	into ܮ௥(߲Ω), respectively. So we have 

                                           
ቀ‖௨‖ೈభ,೛೛ ቁೝ൫׬ |௨|ೝௗ௫	
Ω ൯೛ ≥ ଵௌೝ೛ೝ		         and          

ቀ‖௨‖ೈభ,೛೛ ቁೝ൫׬ |௨|ೝௗ௫	ಢΩ ൯೛ ≥ ଵௌೝ̅೛ೝ	.	                                       (6) 

    Now we will show the existence and multiplicity results of nontrivial solutions of problem (1) by looking 
for critical points of the associated Euler functional 
(ݑ)ఒܫ                                = ଵ௣(ݑ)ܯ − ߣ ׬ ,ݔ)ܨ ݔ݀(|ݑ| + ଵ௤ (ݑ)ܩ − ׬ ,ݔ)ܪ ஐ	பஐ	,ݔ݀(|ݑ|                               (7)		
where  
=:(ݑ)ܯ                            ׬ ௣|ݑ∇|) + ݔ݀(௣|ݑ|(ݔ)݉ = ௐభ,೛௣‖ݑ‖ :(ݑ)ܩ			,		 = ׬ 	ݔ௤݀|ݑ|(ݔ)݃

Ω ,	
Ω  

and the functions ݔ)ܨ, ,ݔ)ܪ and (ݑ  are introduced in (3) and (2) respectively. Also from assumptions on (ݑ
problem (1), we know that ݃(ݔ) ≥ 0, so 
(ݑ)ܩ                                                               = ׬ 	ݔ௤݀|ݑ|(ݔ)݃

Ω ≥ 0.                                                         (8) 
     The critical points of the functional ܫఒ   are in fact weak solutions of problem (1). It is said that ݑ ∈ܹଵ,௣(Ω) is a weak solution of problem (1), if for any ߮ ∈ ܹଵ,௣(Ω) න(|∇ݑ|௣ିଶ∇ݑ. ∇߮ 	߮ݑ௣ିଶ|ݑ|(ݔ)݉+

Ω
ݔ݀( = ,ݔ)න݂ߣ 	ݔ݀߮(|ݑ|

Ω
−න݃(ݔ)|ݑ|௤ିଶݔ݀߮ݑ	

Ω
+න ℎ(ݔ, 	.ݔ݀߮(|ݑ|

பΩ  

     If ܫఒ is bounded below and has a minimizer on ܹଵ,௣(Ω), then this minimizer is a critical point of ܫఒ, so it 
is a solution of the corresponding elliptic problem. However, the energy functional  ܫఒ, is not bounded below 
on the whole space  ܹଵ,௣(Ω), but is bounded on an appropriate subset of  ܹଵ,௣(Ω) and a minimizer on this 
set gives rise to a solution of problem (1). In order to obtain the existence results, we introduce the Nehari 
manifold ఒܰ(Ω) = ݑ} ∈ ܹଵ,௣(Ω)\{0} ∶ 		 ,(ݑ)ఒᇱܫ〉 〈ݑ = 0},	
where 〈, 〉  denotes the usual duality between ܹଵ,௣(Ω)  and ܹିଵ  (ܹିଵ  is the dual of the sobolev space 	ܹଵ,௣(Ω)), hence ݑ ∈ ఒܰ(Ω)	 if and only if 
(ݑ)ܯ                                     = ߣ ׬ ,ݔ)݂ ݔ݀|ݑ|(|ݑ| − (ݑ)ܩ + ׬ ℎ(ݔ, 	பΩ	.ݔ݀|ݑ|(|ݑ|

Ω 																																							(9)	
So we have the following theorem. 
 
Theorem 2.1. There exists  ߣ଴ > 0 such that for 0 < ߣ <  is coercive and (ݑ)ఒܫ ଴, the energy functionalߣ
bounded from below on ఒܰ(Ω). 
Proof. It follows from (6)–(9), (h3) and Remark 1.1 ܫఒ(ݑ) ≥ ൬1݌ − (ݑ)ܯ൰ݎ1 − ߣ ቆන ,ݔ)ܨ ݔ݀(|ݑ| − ݎ1 න ,ݔ)݂ 	ݔ݀|ݑ|(|ݑ|

ஐ
	
ஐ ቇ + ൬1ݍ − ≤											(ݑ)ܩ൰ݎ1 ݎ − ݌ݎ݌ ௐభ,೛௣‖ݑ‖ − ൬ܥସ + ݎ2 ଷ൰ܥ |൫|Ωഥߣ + ܵ௣௣‖ݑ‖ௐభ,೛௣ ൯ + ݎ − ݍݎݍ න݃(ݔ)|ݑ|௤݀ݔ	

Ω
, 
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thus ܫఒ(ݑ) is coercive and bounded from below on ఒܰ(Ω) for 0 < ߣ < ଴ߣ ଴ whereߣ = ௥ି௣௣ௌ೛೛(௥஼రା஼య). 					The Nehari manifold is closely linked to the behavior of functions of the form ߶௨ ∶ ݐ → ݐ)	(ݑݐ)ఒܫ > 0).  
Such maps are known as fibering maps. They were introduced by Drabek and Pohozaev in [13] and also 
were discussed in Brown and Zhang [9]. for ݑ ∈ ܹଵ,௣(Ω), we have 

۔ە
(ݐ)௨߶ۓ = (ݑݐ)ఒܫ = ௧೛௣ (ݑ)ܯ − ߣ ׬ ,ݔ)ܨ ݔ݀(|ݑ|ݐ + ௧೜௤ (ݑ)ܩ − ׬ ,ݔ)ܪ ஐ	பஐ	,ݔ݀(|ݑ|ݐ 																																߶௨ᇱ (ݐ) = ,(ݑݐ)ఒᇱܫ〉 〈ݑ = (ݑ)ܯ௣ିଵݐ − ߣ ׬ ,ݔ)݂ ݔ݀|ݑ|(|ݑ|ݐ + (ݑ)ܩ௤ିଵݐ − ׬ ℎ(ݔ, ஐ	பஐ	,ݔ݀|ݑ|(|ݑ|ݐ 						߶௨ᇱᇱ(ݐ) = ݌) − (ݑ)ܯ௣ିଶݐ(1 − ߣ ׬ ௨݂(ݔ, ݔଶ݀ݑ(|ݑ|ݐ + ݍ) − (ݑ)ܩ௤ିଶݐ(1 − ׬ ℎ௨(ݔ, ஐ	பஐ	.ݔଶ݀ݑ(|ݑ|ݐ

						(10)		
 It is easy to see that ߶௨ᇱ (ݐ) = 0 if and only if ݑݐ ∈ ఒܰ(Ω) and in particular ݑ ∈ ఒܰ(Ω) if and only if ߶௨ᇱ (1) =0, i.e. elements in ఒܰ(Ω) correspond to stationary points of fibering maps. Thus, we consider the split of ఒܰ(Ω)	 in three parts corresponding to local minima, local maxima and points of inflection, so we define 

                                                 ቐ ఒܰା = ݑ} ∈ ఒܰ(Ω):		߶௨ᇱᇱ(1) > 0},ఒܰି = ݑ} ∈ ఒܰ(Ω):		߶௨ᇱᇱ(1) < 0},ఒܰ଴ = ݑ} ∈ ఒܰ(Ω):		߶௨ᇱᇱ(1) = 0}.                                                          (11) 

    The following lemma shows that minimizers for ܫఒ(ݑ) on ఒܰ(Ω) are usually critical points for  ܫఒ(ݑ), as 
proved by Brown and Zhang in [9] or in Aghajani et al. [3]. 
 
Lemma 2.2. Let ݑ଴ be a local minimizer for ܫఒ(ݑ) on ఒܰ(Ω), if ݑ଴ ∉ ఒܰ଴(Ω), then ݑ଴ is a critical point of  ܫఒ(ݑ). 
     Motivated by Lemma 2.2, we give conditions for  ఒܰ଴ = ∅. 
Lemma 2.3. There exists  ߣଵ > 0 such that for 0 < ߣ < ଵ, we have ఒܰ଴ߣ = ∅. 
proof. Suppose otherwise, then for ݑ ∈ ఒܰ଴, by (10) and (11) we have 
                         ߶௨ᇱ (1) = (ݑ)ܯ − ߣ ׬ ,ݔ)݂ ݔ݀|ݑ|(|ݑ| + (ݑ)ܩ − ׬ ℎ(ݔ, ݔ݀|ݑ|(|ݑ| = 0,	பஐ	ஐ                       (12) 
and 
         ߶௨ᇱᇱ(1) = ݌) − (ݑ)ܯ(1 − ߣ ׬ ௨݂(ݔ, ݔଶ݀ݑ(|ݑ| + ݍ) − (ݑ)ܩ(1 − ׬ ℎ௨(ݔ, ݔଶ݀ݑ(|ݑ| = 0.	பஐ	ஐ           (13) 
By (13) and (h3) we get 
݌)            − (ݑ)ܯ(1 ≥ ߣ ׬ ௨݂(ݔ, ݔଶ݀ݑ(|ݑ| − ݍ) − (ݑ)ܩ(1 − ݎ) − 1) ׬ ℎ(ݔ, ݔ݀|ݑ|(|ݑ| = 0,	பஐ	ஐ  
using (8), (12), (f1) and Remark 1.1 we obtain 

               
ݎ) − (ݑ)ܯ(݌ ≤ ݎ) − 1) ׬ ,ݔ)݂ ݔ݀|ݑ|(|ݑ| − ߣ ׬ ௨݂(ݔ, ஐ	ݔଶ݀ݑ(|ݑ| − ݎ) − ≥ஐ	(ݑ)ܩ(ݍ 	ݎ)2) − ଷܥ(1	 + ߣ(ଵܥ ׬ (1 + ஐ	.ݔ݀(௣|ݑ| 																					                    (14) 

Thus, for any  ߳ݑ ఒܰ଴ using (14) and (6) we get 
ݎ)                                    − ௪ଵ,௣(ஐ)௣‖ݑ‖(݌ ≤ 	ݎ)2) − ଷܥ(1	 + |Ωഥ|ߣ(ଵܥ + ܵ௣௣‖ݑ‖௪ଵ,௣௣ ), 
which concludes 

	ௐభ,೛‖ݑ‖                                                    ≤ ൬ ఒ(ଶ(௥	ି	ଵ)஼యା஼భ)|ஐഥ|௥ି௣ିఒ(ଶ(௥	ି	ଵ)஼యା஼భ)ௌ೛೛൰భ೛.                                                   (15) 

Moreover, (6) together with (h3) imply 
׬                            ℎ௨(ݔ, ݔଶ݀|ݑ|(|ݑ| = ݎ)ݎ − 1) ׬ ݔ௥݀|ݑ|ଷܥ ≤ ݎ)ݎ − பஐ	ଷܵ௥̅௥ܥ(1 డஐ	ௐభ,೛௥‖ݑ‖ ,                 (16)  
hence using (16) in (13) and from (f1), (6) and (8) we get 
݌)                                                    − (ݑ)ܯ(1 ≤ ௐభ,೛௥‖ݑ‖ܮ + ௐభ,೛௣‖ݑ‖ᇱܮߣ	 , 
where ܮ	 = 	ݎ)ݎ	 − ᇱܮ ଶܵ௥̅௥ andܥ(1	 =  ଵܵ௉௉, soܥ
݌)                                                      − 1 − ௐభ,೛௣‖ݑ‖(ᇱܮߣ 	≤ ௐభ,೛௥‖ݑ‖ܮ , 
which concludes 

	ௐభ,೛‖ݑ‖                                                              ≥ (௣ିଵିఒ௅ᇲ௅ ) భೝష೛.                                                            (17) 
Now from (15) and (17) we infer that 
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                                                ቀ௣ିଵିఒ௅ᇲ௅ ቁ௣ ≤ ൬ ఒ(ଶ(௥	ି	ଵ)஼యା஼భ)|ஐഥ|௥ି௣ିఒ(ଶ(௥	ି	ଵ)஼యା஼భ)ௌ೛೛൰௥ି௣, 
which is a contradiction for ߣ sufficiently small, so there exists ߣଵ > 0 such that for 0 < ߣ < ,ଵߣ ఒܰ଴ = ∅. 
 
Definition 2.4. A sequence {ݑ௡} ⊂ ܹଵ,௣(Ω) is called a Palais-Smale sequence if  ܫఒ(ݑ௡) is bounded and ܫఒᇱ(ݑ௡) → 0 as ݊ → ∞. If ܫఒ(ݑ௡) → ܿ   and ܫఒᇱ(ݑ௡) → 0, then ݑ௡  is a (PS)c − sequence. It is said that the 
functional ܫఒ satisfies the Palais-Smale condition (or (PS)c − condition), if each Palais-Smale sequence ((PS)c 
− sequence) has a convergent subsequence. 
     Now we will prove the boundedness of Palais-Smale sequence. 
 
Lemma 2.5. If {ݑ௡} is a (PS)c − sequence for ܫఒ, then {ݑ௡} is a bounded sequence in ܹଵ,௣(Ω) provided that 0 < ߣ <  .଴ߣ
Proof. Using Remark 1.1, (h3), (6), (8) and (10) we have 

       
(௡ݑ)ఒܫ − ଵ௥ ,(௡ݑ)ఒᇱܫ〉 〈௡ݑ ≥ 	 ௥ି௣௥௣ (௡ݑ)ܯ	 − ߣ	 ׬ ቀܨ	ݔ), (|௡ݑ| − ଵ௥ ,ݔ)݂	 ቁ	௡|ݑ|(|௡ݑ| ஐ	ݔ݀ +	௥ି௤௥௤ ≤														(௡ݑ)ܩ ௥ି௣௥௣ ௡‖ௐభ,೛(ஐ)௉ݑ‖ 	ସܥ)	− + ଶ௥ |Ωഥ|)ߣ(ଷܥ + ܵ௣௣‖ݑ௡‖ௐభ,೛௉ )	, 		 

 
so for 0 < ߣ < ௥ି௣௣(௥஼రା஼య)ௌ೛೛ = 	  .଴, {un} is bounded in ܹଵ,௣(Ω)ߣ
 
Lemma 2.6. There exists ߣଶ > 	0 such that if 0 < ߣ < ଶߣ , then ׬ ℎ௨(ݔ, ˂ݔଶ݀ݑ(|ݑ| > 0,	பஐ  provided that ݑ ∈ ఒܰି . 
Proof. Suppose otherwise, then ׬ ℎ௨(ݔ, ݔଶ݀ݑ(|ݑ| ≤ ˂0,	பஐ  and by (11) 
          ߶௨ᇱᇱ(1) = ݌) − (ݑ)ܯ(1 − ߣ ׬ ௨݂(ݑ, ݔଶ݀ݑ(|ݑ| + ݍ) − (ݑ)ܩ(1 − ׬ ℎ௨(ݔ, ˂ݔଶ݀ݑ(|ݑ| < 0,	பஐ	ஐ          (18) 
so by (f1), (6), (8) and (18) we have 
݌)                     − (ݑ)ܯ	(1 	= 	 ݌) − ௐభ,೛௣‖ݑ‖(1 	 < ߣ˂ ׬ ௨݂(ݔ, ஐ	ଶݑ(|ݑ| 	ݔ݀	 ≤ ௐభ,೛௣‖ݑ‖ଵܵ௣௣ܥ	ߣ .                (19) 

Therefore, we must have (݌	 − 	1) < ߣ ଵܵ௣௣ , which is a contradiction forܥߣ < ଶߣ 	= ௣ିଵ஼భௌ೛೛.
        

 

3. Properties of fibering maps  
In this section we shall describe the nature of the derivative of the fibering maps for all possible signs of ׬ ℎ௨(ݔ, பஐ	.˂ݔଶ݀ݑ(|ݑ|  We begin by recalling that, ߶௨ᇱ (ݐ) = 0 if and only if  ݑݐ ∈ ఒܰ	 (Ω). It will be useful to 

consider the functions 
                                           ݇௨	 :(ݐ) = 	 ଵ௣ ௐభ,೛௣‖ݑ‖௣ݐ − ׬ ,ݔ)ܪ డஐ	(|ݑ|ݐ ݐ)		ݔ݀	 > 0),                                    (20) 

                                             ℓ௨	 :(ݐ) = ߣ	 ׬ ,ݔ)ܨ ஐ	(|ݑ|ݐ ݔ݀	 − ଵ௤ ݐ)		(ݑ)ܩ௤ݐ > 0),                                      (21) 

hence using (10) we have ߶௨(ݐ) = ݇௨	 (ݐ) − ℓ௨	 Moreover, ߶௨ᇱ .(ݐ) (ݐ) = 0 if and only if  ݇௨ᇱ	(ݐ) = ℓ௨ᇱ	  ,(ݐ)
where 

                                            ቊ݇௨ᇱ (ݐ) = 	 ௐభ,೛௣‖ݑ‖௣ିଵݐ − ׬ ℎ(ݔ, డஐ	|ݑ|(|ݑ|ݐ ℓ௨ᇱ,ݔ݀	 (ݐ) = ߣ	 ׬ ,ݔ)݂ ஐ	|ݑ|(|ݑ|ݐ ݔ݀	      (22)                                          				.(ݑ)ܩ௤ିଵݐ	−

                                         
In the next result we see that ߶௨ has positive values for all nonzero ݑ	߳	ܹଵ,௣(ߗ) whenever, ߣ is sufficiently 
small. 
 
Lemma 3.1. There exists 0 <3ߣ such that ߶௨(t) takes on positive values for all non-zero ݑ	߳ ܹଵ,௣(Ω), 
whenever 0	 < ߣ <  .ଷߣ
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Proof. Using (20) and condition (h3) we obtain that 
                                              ݇௨	 (ݐ) ≥ ଵ௣ (ݑ)ܯ௣ݐ ௥ݐଶܥ	− ׬ డஐ	|ݑ| ௥  .ݔ݀

Define  
                                        ത݇௨(ݐ): = ଵ௣ (ݑ)ܯ௣ݐ ௥ݐଶܥ	− ׬ డஐ	|ݑ| ௥ ݐ)								ݔ݀ > 0),                                         (23) 

we obtain  ݇௨(ݐ) ≥ ത݇௨(ݐ), and by elementary calculus, we see that ത݇௨(ݐ) takes a maximum value at 

௠௔௫ݐ                                                             = 	ቆ ‖௨‖ೈభ,೛೛௥஼మ ׬ |௨|	ങಈ ೝௗ௫ቇ భೝష೛,                                                            (24) 

then follow by (20), (24) and (6) that 

              ݇௨(ݐ௠௔௫) ≥ ത݇௨(ݐ௠௔௫) = 	 ௥ି௣௥௣ ൭ ൬‖௨‖ೈభ,೛೛ (ஐ)൰ೝ൫௥஼మ ׬ |௨|	ങಈ ೝௗ௫൯೛൱
భೝష೛ ≥ ௥ି௣௥௣ ൬ ଵ(௥஼మ)೛ௌೝ̅೛ೝ൰ భೝష೛ = 	 ଵߜ > 0,               (25) 

Where ߜଵ is independent of ݑ. Now, we will prove that there exists ߣଷ > 0 such that for all ݑ	߳	ܹଵ,௣\{0}, 	߶௨(ݐ௠௔௫) > 0   provided that 	ߣ <   ଷ. To do this, first note that from (24), (25) and (6)ߣ

                                                      

ఊ(௠௔௫ݐ) ׬ ஐ	ݔఊ݀|ݑ| 																																							
≤ ܵఊఊ ቆ ‖௨‖ೈభ,೛೛ (ஐ)௥஼మ ׬ |௨|	ങಈ ೝௗ௫ቇ ംೝష೛ ቀ‖ݑ‖ௐభ,೛௣ (Ω)ቁം೛ 																																	
= ܵఊఊ ൝ ൬‖௨‖ೈభ,೛೛ (ஐ)൰ೝ൫௥஼మ ׬ |௨|	ങಈ ೝௗ௫൯೛ൡ

ം೛(ೝష೛)																																																							
≤ ܵఊఊ ቀ ௥௣௥ି௣ቁೝ೛ (݇௨(ݐ௠௔௫))ം೛ = 																						,ം೛((௠௔௫ݐ)௨݇)ଵߙ

                (26) 

for 1	 ≤ ߛ < ݌	 ∗. Then by Remark 1.1, (8), (21) and (26) we find  

                                
ℓ௨(ݐ௠௔௫) 	≤ ߣ ׬ ସ(1ܥ +	 ஐ	௣)|ݑ(௠௔௫ݐ)| ݔ݀	 − ଵ௤ ≥	(ݑ)ܩ௤(௠௔௫ݐ) |ସ(|Ωഥܥߣ + 																				,(	(௠௔௫ݐ)ଵ݇௨ߙ 				                             (27) 

hence using (25) and (27) we observe that 

                          

߶௨(ݐ௠௔௫) = ݇௨(ݐ௠௔௫) −	ℓ௨(ݐ௠௔௫)																																																																			≥ 	݇௨(ݐ௠௔௫)	ቀ1 − ସܥߣ ቄ(|Ωഥ|൫݇௨(ݐ௠௔௫)൯ିଵ + ≤								ቅቁ	ଵߙ ଵߜ ቀ1 − ଵିଵߜ|ସ൫|Ωഥܥ	ߣ ଵ൯ቁߙ	+ = ଵ(1ߜ	 − .(ߙߣ 	                              (28) 

So we conclude that ߶௨(ݐ௠௔௫) > 0 for all nonzero u, if ߣ < ଷߣ = ଵଶఈ and this completes the proof. 
 
Corollary 3.2. If 0 < ߣ < min	{ߣଶ, ߝ ଷ}, then there existsߣ > 0 such that ܫఒ(ݑ) ≥ ݑ  for all  ߝ ∈ ఒܰି . 
Proof. If ݑ ∈ ఒܰି , then by lemma 2.6,  ׬ ℎ௨	(ݔ, ݔଶ݀ݑ(|ݑ| > 0	డஐ . Also due to (f2) and (h1),  ܫఒ(ݑݐ) has a 
positive global maximum at t = 1 and so by using (28) ܫఒ(ݑ) = 	߶௨(1) ≥ 	߶௨(ݐ௠௔௫) ≥ ଵ(1ߜ	 − (ߙߣ ≥ ଵ(1ߜ − (ଷߣߙ = ߝ > 0. 
     To state our main results, we now present some important properties of  ఒܰି  and  ఒܰା. 
 
Lemma 3.3. There exists ߣସ > 0 such that ߶௨ᇱ ݑ takes on positive values for all non-zero (ݐ) ∈ ܹଵ,௣(Ω) 
whenever ߣ	 <  .ସߣ	
Proof. By elementary calculus and using (23), we can show that ݇ݐ௨ᇱ  achieves its maximum at  (ݐ)

                                                       ߬௠௔௫ = 	ቆ ௣‖௨‖ೈభ,೛(ಈ)೛஼మ௥మ ׬ |௨|	ങಈ ೝௗ௫ቇ భೝష೛.                                                               (29) 

Therefore, by (6), (22), (23) and (29) we obtain that 
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߬௠௔௫݇௨ᇱ (߬௠௔௫) ≥ 	 ߬௠௔௫ ത݇௨ᇱ (߬௠௔௫) = ( ௣஼మ௥మ) ೛ೝష೛ ቀ௥ି௣௥ ቁ ቆቀห|௨|หೈభ,೛೛ 	ቁೝ൫׬ |௨|ೝௗ௫	ಈ ൯೛ቇ భೝష೛

	≥ ( ௣஼మ௥మ) ೛ೝష೛ ቀ௥ି௣௥ ቁ ൬ ଵௌೝ̅೛ೝ൰ భೝష೛ = ଶߜ	 > 0	, 	                         (30) 

 
Where ߜଶ is independent of  ݑ. Now from (6), (29) and (30), and by some calculation very similar to (26) we 
get 

                                          (߬௠௔௫)ఊ ׬ డஐ	ఊ|ݑ| 		ݔ݀	 ≤ ଶ൫߬௠௔௫݇௨ᇱߙ (߬௠௔௫)൯ം೛,                                               (31) 
for 1	 ≤ ߛ <  Then using (8), (22), (31) and Remark 1.1 we conclude that .∗݌

                     

߬௠௔௫ℓ௨ᇱ (߬௠௔௫) ≤ ଷܥߣ ׬ 	(|߬௠௔௫ݑ| + |߬௠௔௫ݑ|௣)	ஐ ݔ݀ − (߬௠௔௫)௤(ݑ)ܩ																									≤ ߣ ൭ߚଵ൫߬௠௔௫݇௨ᇱ (߬௠௔௫)൯భ೛ + ଶ߬௠௔௫݇௨ᇱߚ (߬௠௔௫)൱ ,	           (32)                

where ߚଵ and ߚଶ are independent of  ݑ, so from (30) and (32) we get 

                                  

߬௠௔௫߶௨ᇱ (߬௠௔௫) = 	 ߬௠௔௫݇௨ᇱ (߬௠௔௫) − ߬௠௔௫ℓ௨ᇱ (߬௠௔௫)										≥ ߬௠௔௫݇௨ᇱ (߬௠௔௫) ൬1 − ߣ	 ൜ߚଵ൫߬௠௔௫݇௨ᇱ (߬௠௔௫)൯భష೛೛ ≤ଵൠ൰ߚ	+ ଶߜ	 ൬1 − ଶభష೛೛ߜଵߚ)	ߣ	 ଶ)൰ߚ	+ ≥ ଶ(1ߜ	 −                                       																		.(ߚߣ	
Clearly for all nonzero ݐ ,ݑ௠௔௫߶௨ᇱ (௠௔௫ݐ)	 	> 	0 provided that ߣ	 < 	 ସߣ ସ, whereߣ =  and this completes ߚ1/2	
the proof. 
 
Corollary 3.4. If ׬ ℎ௨	(ݔ, డஐ	ݔଶ݀ݑ(|ݑ|	ݐ ≤0 for ݑ	 ∈ 	ܹଵ,௣(ߗ)	\	{0}, then there exists ݐଵ  such that ݐଵݑ	 ∈	 ఒܰା and ߶௨(ݐଵ) 	< 	0. 
Proof. By (10), (f1) and (h2), we know that ߶௨ᇱ (0) < 0	and lim௧→ஶ߶௨ᇱ (ݐ) = ∞, so by the intermediate value 

theorem, there exists ݐଵ > 	0 such that ߶௨ᇱ (ଵݐ) = 0. Now using (f2) and (h1), for 0 < ݐ	 < 	 ଵ, ߶௨ᇱݐ (ݐ) < 0 and 
for ݐଵ < ௨ᇱ߶ ,ݐ	 (ݐ) > 0, hence ݐଵݑ	 ∈ 	 ఒܰା	 and  ߶௨(ݐଵ) < ߶௨(0) = 0. 
 
Corollary 3.5. If  ׬ ℎ௨	(ݔ, డஐ	ݔଶ݀ݑ(|ݑ|	ݐ ≥ 0 for ݑ	 ∈ 	ܹଵ,௣(ߗ)	\	{0} and ߣ < ଷ then there exist 0ߣ	 < ଵݐ 	߳	ଵݑଵݐ  ଶ  such thatݐ> ఒܰା	, 	߳	ଶݑଶݐ ఒܰି 	and	߶௨	(ݐଵ) < 0. 
Proof. From the definition of ߶௨ᇱ together with (f1) and (h2) we have ߶௨ᇱ (ݐ) (0) < 0, lim௧→ஶ߶௨ᇱ (ݐ) = −∞ and 

by Lemma 3.3, ߶௨ᇱ (߬) > 0 for suitable ߬, so using again the intermediate value theorem concludes that there 
exist ݐଵ, ଶ such that 0ݐ	 < 	 ଵݐ < 	 ଶ and ߶௨ᇱݐ (ଵݐ) = ߶௨ᇱ (ଶݐ) = 0. Also using the same argument as in the proof 
of the Corollary 3.4 and using (f2) and (h1) we have ݐଵݑଵ	߳	 ఒܰା	, 	߳	ଶݑଶݐ ఒܰି 	and	߶௨	(ݐଵ) < 0. 

4. Existence of multiple Solutions 
In this section, we will show the existence and multiplicity of solutions of problem (1), for this, we need 

the following remark: 
Remark 4.1. Using the compactness of the embeddings ܹଵ,௣(Ω) ↪ ௠(Ω) and ܹଵ,௣(Ω)ܮ ↪ ௠(∂Ω) for 1ܮ ≤ 	݉	 <  together with (4), (5), (f1) and (f2) we conclude that (the Rellich-Kondrachov Theorem [7]) ∗݌	
the functionals ܬଵ(ݑ) = ׬ ,ݔ)ܨ ఆ		ݔ݀(ݑ  and ܬଶ(ݑ) = ׬ ,ݔ)ܪ డఆ		ݔ݀(ݑ are weakly continuous, i.e. if ݑ௡ ⇀ (௡ݑ)௜ܬ then ,ݑ → ݅)	(ݑ)௜ܬ = 1,2) . Moreouer The operators ܬଵᇱ(ݑ) = ׬ ,ݔ)݂ ఆ	,ݔ݀ݑ(ݑ (ݑ)ଵᇱᇱܬ  = ׬ ௨݂(ݔ, ఆ	,ݔଶ݀ݑ(ݑ ଶᇱܬ	 (ݑ) = ׬ ℎ(ݔ, డఆ		ݔ݀ݑ(ݑ and ܬଶᇱᇱ(ݑ) = ׬ ℎ௨(ݔ, డఆ		ݔଶ݀ݑ(ݑ are weak to strong 
continuous, i.e. if  ݑ௡ ⇀ (௡ݑ)௜ᇱܬ then ,ݑ → (௡ݑ)௜ᇱᇱܬ	and	(ݑ)௜ᇱܬ → ݅)	(ݑ)௜ᇱᇱܬ = 1,2). 
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Theorem 4.2. For 0 < 	ߣ	 < ,଴ߣ}݊݅݉ ,ଷߣ	  .(ߗ)ఒ on ఒܰାܫ ସ}, there exists a minimizer ofߣ
Proof. As in Theorem 2.1, ܫఒ is bounded from below on ఒܰ	  be a minimizing {௡ݑ} Let .(ߗ)and so on ఒܰା ,(ߗ)
sequence for ܫఒ on ఒܰା(ߗ) , i.e. lim௡→ஶ (௡ݑ)ఒܫ = ݂݅݊௨∈	ேഊశܫఒ(ݑ), 
and by Ekeland’s variational principle [15] we may assume that;  〈ܫఒᇱ(ݑ௡), 〈௡ݑ → 0.  
Then by Lemma 2.5 {ݑ௡} is bounded in ܹଵ,௣(ߗ) and we may assume, without loss of generality, that ݑ௡ ⇀ ௡ݑ and (ߗ)଴  in ܹଵ,௣ݑ → for  1 (ߗ)௠ܮ ଴ inݑ ≤ ݉	 < (ݔ)௡ݑ and ∗݌  .a.e ,(ݔ)଴ݑ	
By Corollaries 3.4 and 3.5 for ݑ଴ ∈ ܹଵ,௣\{0}, there exists ݐ଴ such that ݐ଴ݑ଴ ∈ ఒܰା and so ߶௨బᇱ (଴ݐ) = 0. Now 
we show that ݑ௡ →  Suppose that this is false, then .(ߗ)଴ in  ܹଵ,௣ݑ
(଴ݑ)ܯ                                                             < lim௡→ஶ infܯ(ݑ௡).                                                        (33) 
Also by (10) we have  
           ߶௨೙ᇱ (ݐ) = (௡ݑ)ܯ௣ିଵݐ − ߣ ׬ ,ݔ)݂ ݔ݀|௡ݑ|(|௡ݑ|ݐ + (௡ݑ)ܩ௤ିଵݐ − ׬ ℎ	(ݔ, ஐ	பஐ	,ݔ݀|௡ݑ|(|௡ݑ|ݐ            (34) 
and 
           ߶௨బᇱ (ݐ) = (଴ݑ)ܯ௣ିଵݐ − ߣ ׬ ,ݔ)݂ ݔ݀|଴ݑ|(|଴ݑ|ݐ + (଴ݑ)ܩ௤ିଵݐ − ׬ ℎ	(ݔ, ஐ	பஐ	.ݔ݀|଴ݑ|(|଴ݑ|ݐ            (35) So 
from (33)–(35) and Remark 4.1, ߶௨೙ᇱ (଴ݐ) > ߶௨బᇱ (଴ݐ) = 0 for n sufficiently large. Since {ݑ௡} 	⊆ ఒܰା(Ω), by 
considering the possible fibering maps it is easy to see that ߶௨೙ᇱ (ݐ) < 0 for 0 < ݐ < 1 and ߶௨೙ᇱ (1) = 0 for all 
n. Hence we must have ݐ଴ > 1, but ݐ଴ݑ଴ ∈ ఒܰା and so by (10) ܫఒ(ݐ଴ݑ଴) = 	߶௨బ(ݐ଴) < ߶௨బ(1) < lim௡→ஶ߶௨೙(1) = lim௡→ஶ (௡ݑ)ఒܫ =	 ݂݅݊௨∈	ேഊశܫఒ(ݑ௡), 
which is a contradiction. Therefore, ݑ௡ → (଴ݑ)ఒܫ and so (ߗ)଴ in ܹଵ,௣ݑ = 	 lim௡→ஶ (௡ݑ)ఒܫ =	 ݂݅݊௨∈	ேഊశܫఒ(ݑ) 
thus, ݑ଴ is a minimizer for ܫఒ on ఒܰା(ߗ). 
     In the next theorem, we will establish the existence of a local minimum for ܫఒ on ఒܰି  .(ߗ)
 
Theorem 4.3. If  0 < 	ߣ	 < ,଴ߣ}݊݅݉ ,ଶߣ ,ଷߣ	 ఒ on ఒܰିܫ  ସ}, then there exists a minimizer ofߣ	  .(ߗ)
Proof. By Corollary 3.2, there exists  ߝ > 0 such that  ܫఒ(ݑ) ≥ ߝ > 0 for all ݑ ∈ ఒܰି ݊݅ .i.e ,(ߗ) ௨݂∈	ேഊషܫఒ(ݑ) > 0, 
hence there exists a minimizing sequence {ݑ௡} ⊂ ఒܰି  such that (ߗ)
                                                         lim௡→ஶ (௡ݑ)ఒܫ = ݅݊ ௨݂∈	ேഊషܫఒ(ݑ) > 0.                                              (36) 
Similary as in the proof of the Theorem 4.2 we find that, {ݑ௡} is bounded in ܹଵ,௣(ߗ) and so  

                                                 ൜ݑ௡ ⇀ ௡ݑ																,୛భ,౦(ஐ)	௜௡	௪௘௔௞௟௬																								଴ݑ	 →  ଵஸఈழ௉∗.                                         (37)						୐ಉ(ஐ),	௜௡	௦௧௥௢௡௚௟௬																								଴ݑ	

Since ݑ௡߳ ఒܰି  so by (11) ߶௨೚ᇱᇱ (1) < 0, letting ݊ → ∞, by (10) , (37) and Remark 4.1 we see that 
      ߶௨೚ᇱᇱ (1) = ݌) − (଴ݑ)ܯ(1 − ߣ ׬ ௨݂(ݔ, ݔ଴ଶ݀ݑ(|଴ݑ| + ݍ) − (଴ݑ)ܩ(1 − ׬ ℎ௨(ݔ, ݔ଴ଶ݀ݑ(|଴ݑ| ≤ 0.	பஐ	ஐ      (38) 
On the other hand for ݑ௡߳ ఒܰି , by lemma 2.6 we have ׬ ℎ௨(ݔ, ݔ௡ଶ݀ݑ(|௡ݑ| > 0	,	பஐ  letting ݊ → ∞, we see that  ׬ ℎ௨(ݔ, ݔ଴ଶ݀ݑ(|଴ݑ| ≥ 0,	பஐ  if ׬ ℎ௨(ݔ, ݔ଴ଶ݀ݑ(|଴ݑ| = 0,	பஐ  then by (f2), (6), (8) and (38) we have  (݌ − (଴ݑ)ܯ(1 	≤ න	ߣ	 ௨݂	(ݔ, ݔ଴ଶ݀ݑ|଴ݑ| ≤ 	ଶܥߣ	

ஐ ܵଶଶܯ(ݑ଴), 
which is a contradiction for ߣ	 < 	 ׬ ଶ. Soߣ ℎ௨(ݔ, ˃ݔ଴ଶ݀ݑ(|଴ݑ| > 0			பஐ  and by Corollary 3.5 there exists ݐ଴ > 0 
such that ݐ଴ݑ଴ ∈ ఒܰି (Ω). We claim that ݑ௡ →  Suppose that this is false, so ,(ߗ)଴ in ܹଵ,௣ݑ
(଴ݑ)ܯ                                                          < lim௡→ஶ infܯ(ݑ௡).                                                           (39) 
But ݑ௡ ∈ ఒܰି  and so ܫఒ(ݑ௡) ≥ ݐ for all (௡ݑݐ)ఒܫ ≥ 0, now by using (36)–(39) and Remark 4.1, we can write 
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(଴ݑ଴ݐ)ఒܫ	 =
݌1 (଴ݑ)ܯ଴௉ݐ − නߣ	 ,	ݔ)ܨ ݔ݀(|଴ݑ|଴ݐ + ݍ1 (଴ݑ)ܩ଴௤ݐ − න ,ݔ)	ܪ 																																		ݔ݀(|଴ݑ|଴ݐ

பஐ
	
ஐ< lim	௡→ஶቆ1݌ (௡ݑ)ܯ	଴௉ݐ − නߣ	 ,	ݔ)ܨ ݔ݀(|௡ݑ|଴ݐ + ݍ1 (௡ݑ)ܩ଴௤ݐ − න ,ݔ)	ܪ 	ݔ݀(|௡ݑ|଴ݐ

பஐ
	
ஐ ቇ= lim௡→ஶ (௡ݑ଴ݐ)ఒܫ ≤ lim௡→ஶ (௡ݑ)ఒܫ = ݅݊ ௨݂ఢேഊష	 																																																														,(ݑ)ఒܫ  

which is a contradiction. Therefore, ݑ௡ →  .and so the proof is complete (ߗ)଴ in ܹଵ,௣ݑ
 
Corollary 4.4. For 0 < ߣ < ,଴ߣ}݊݅݉ ,ଵߣ ,ଶߣ	 ,ଷߣ  .ସ}, equation (1) has at least two positive solutionsߣ

Proof. By Theorems 4.2 and 4.3 there exist two solutions ݑ଴ା߳	 ఒܰା(Ω)	  and ݑ଴ି ߳	 ఒܰି (Ω)	 such that ܫఒ(ݑ଴ା) = ݂݅݊௨ఢேഊశܫఒ(ݑ)	, ଴ିݑ)ఒܫ ) = ݅݊	 ௨݂ఢேഊషܫఒ(ݑ)	, ±ݑ	 ≠ 0		 and by Lemmas 2.2 and 2.3 ݑ଴ା  and ݑ଴ି  are 
critical points of ܫఒ  on ܹଵ,௣  and hence are weak solutions of problem (1). On the other hand ܫఒ	(ݑ) ଴ାݑ so we may assume  ,(|ݑ|)	ఒܫ	=  and ݑ଴ି  are positive solution. It remains to show that this solutions are 
distinct. Since ఒܰା ∩ ఒܰି = ∅, this implies that ݑ଴ା and ݑ଴ି  are distinct and the proof is complete.  
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