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Abstract. In this paper, we deal with the existence and multiplicity of positive weak solutions for a class of
quasilinear elliptic p-Laplacian problems with nonlinear boundary conditions. By extracting the Palais-
Smale sequences in the Nehari manifold and using the fibering maps, it is proved that there exists A* such
that for A € (0,1"), the given boundary value problem has at least two positive solutions.
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1. Introduction

We study the existence and multiplicity of positive solutions for the following quasilinear elliptic problem
—Apu+m@|ulP?u =2 f(x,u) —gui™t  x€ Q,

1
IVulp‘za—u—h(x,u) XEOJQ, M

an
where 1 >0, A, denotes the p-Laplacian operator defined by A,= div(|[Vu|P™2Vu), 2<q<p<p*
p* = 15—1\; if N >p, P"=xif N < p), aizv is the outer normal derivative, € is a bounded region in RV

with the smooth boundary dQ, N > p and m(x), g(x) € C(Q) are nonnegative functions. Also the basic
assumptions for the functions f(x,u) and h(x, u) are the following:

(f1) f(x,u) € C1(Q X R) such that f(x,0) = 0, f(x,0) # 0 and there exists C; > 0 such that
|, (x,w)| < CuP~2 forall (x,u) € QX RY.

(f2) Foru € LP(Q), the integral [, f, (x, t|u|)u?dx has the same sign for every t > 0

(h1) h(x,u) € C*(0Q X R) and for u € LP(3Q), [, hy(x, tlul)u?dx has the same sign for every t > 0.
(h2) h(x,0) = 0, lim,_,, MCuhublu

tr-1

and [n(x,u)| > 0 > 0, a.e. forall (x,u) € Q0 x R*.
(h3) There exists C, > 0 such that H(x,u) < %h(x, wu <

= 1(x, u) uniformly respect to (x, u), where n(x,u) € C(dQ X R™)

1
r(r-

5 h, (x,w)u? < Cyu” for all (x,u) € 9Q x

R*, where p < r < p* and

H(x,u) = f(;l h(x,s)ds. )
The problem of existence of the positive solutions for the quasilinear elliptic equations (systems) with
nonlinear boundary conditions of different types has received considerable attention, for example see [4, 8,
10, 12, 17, 18, 19, 20, 21, 23, 24, 25] and the references cited therein.

When f(x,u) = a(x)u® or h(x,u) = a(x)u¥, the problem (1) has also been studied by some authors
and the existence of multiple positive solutions has been established. For instance, Drabek and Schindler [14]
showed the existence of positive, bounded and smooth solutions of the following p-Laplacian equation

{—Apu +blulP2u= f(,u) in Q
Ru=0 on 09,

ou | bolulP~?u, Q c RN is a bounded domainand 1 < p < N.

where Ru = |Vu|P~2 —
v

In the regular case; with p = 2, Szulkin and Weth in [22] considered Dirichlet boundary value problem
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—Au—u= f(x,u) x €EQ,
{u(x) =0 x € 0Q),
where 4 < 4;, A; denotes the first Dirichlet eigenvalue of —Ain @ and f € C(Q X R, R) satisfies some
growth restrictions and proved the existence of a ground state solution under some appropriate conditions, by
using the method of Nehari manifold.
In unbounded domain, the following semilinear elliptic problem
{—Au +Au= glku)+f(x) x€RY
u(x) >0 u € HY(RM),
where g satisfies some suitable conditions and f € H~1(RV)\{0} is nonnegative, has been the focus of a
great deal of research by several authors [1, 11, 16] and the existence of at least two positive solutions was
proved.
The main idea in our proofs lies in dividing the Nehari manifold associated with the Euler functional
for problem (1) into two disjoint parts and then considering the infima of this functional on each part and
by extracting Palais-Smale sequences we show that there exists at least one solution on each part. The main
difficulty will be the nonlinearity of f(x,u) and h(x,u) in problem (1) and the lack of separability, but
clearly, the problems in [2, 5, 6, 7, 11], possess this assumption. To overcome this difficulty, we need to
restrict the problem (1) to assumptions (f2) and (h1).
Here we present some examples for f(x, u) satisfying the conditions (f1) and (£2).
filx,u) = %+ as(x), a;(x) € C(2), a;(x) =0, az3(x) £0, max{2 —p,—-1}<r < 1.
fo(x,w) = by (x) tan™ (b, (x)uP+*)In (1 + u?*) + by (x), b;(x) € C(2), b;y(x) = 0, b3(x) Z 0, g <k
fz(x,u) = cl(x)V(l + ¢ (x)uzk)p-1, c;(x) €C), ¢;(x) =0, c;(x) #0, kEN, 0<2k <.

_ —e(xuft _
falx,u) = +e3(x), ej(x) € C(ND), ei(x) =20, e5(x) £0,k > 0.

4+cot™1(ey(x)uk)

Also the following are the examples of functions that satisfy the conditions (h1)—(h3):
hi(e,u) = a(x)u™ 1, a(x) € C(0Q), a(x) = 0.

hy(x,1) = b)) b(x) € C(3Q), b(x) =0, q = 0.

1+ud ’
hy(x,u) = ¢;(x) <—cz(x) + q\/(cz(x))q + uQ(T‘1)>, c;(x) € C(0Q), c;(x) =0, q€E€N.

Before stating our main results, we mention the following remarks.
Remark 1.1. Notice that using conditions (f1) and (f2), we conclude that there exists C; > 0,C, > 0 such
that for all (x,u) € (Q X RY),
fle,u) < ;1 +uP™t) and F(x,u) < C,(1 + uP),

where

F(x,u) = f:f(x,s)ds. 3)

Remark 1.2. It should be mentioned that using condition (h2) we have
[h(x, tw)w| < (1 + |n(x, w)t" 1,
for t sufficiently large and (x,w) € 0Q X R*, hence takingw = 1 and t = |u| for |u| sufficiently large we
arrive at
IR, uDlull< (1 + InCe, DDIu|” < Aglul",
where Ay = max {1 = |n(x, 1)| : x € Q}. Furthermore from (h1), h(x,u) € C1(dQ X R), consequently
there exists A; > 0 such that

[hCx, w)u| < A;(1 + [u]"), (x,u) € 0Q x R*. 4
Also using (h3) and (4) there exists A, > 0 such that
|hy, (e, w)|u? < A,(1 + |ul™), (x,u) € 0Q x R™. %)
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This paper is organized as follows. In section 2 we point out some notations and preliminary results and
give some properties of Nehari manifold and fibering maps. In section 3, a fairly complete description

of the fibering maps associated with the problem is given. Finally in section 4, we will prove the existence
of positive solutions of problem (1) by establishing the existence of local minimas for the Euler functional, associated
with problem (1) on the Nehari manifold.

2. Preliminariesand auxiliary results

Problem (1) is posed in the framework of the Sobolev space WP (Q) with the norm
1

D
lllyor = ( fQ(IVuIP + m(x)|u|v>dx) ,

which is equivalent to the standard one and we use the standard L? (2) spaces whose norms are denoted by
llull,,. Throughout this paper, we denote S, and S, the best Sobolev and the best Sobolev trace constants for
the embedding of WP (Q) into L" () and WP (Q) into L™ (9Q), respectively. So we have

(Ihall? o, p)r 1 (It 1p)r 1

5 = 7 and W > . 6

(Jolulmax)? = s7 (palulmax)? = $7 ©
Now we will show the existence and multiplicity results of nontrivial solutions of problem (1) by looking

for critical points of the associated Euler functional

L(w) = %M(u) — A, FCx, [uldx + 50@) — [, H(x, luldx, (7)

where
Mw):= [,(IVul? + m@)|ulP)dx = l[ull} ., , Gw):= [,g9(x)|ul%dx,
and the functions F(x,u) and H(x, u) are introduced in (3) and (2) respectively. Also from assumptions on
problem (1), we know that g(x) = 0, so
Gw) = [,9(x)|ul%dx = 0. ®)
The critical points of the functional I; are in fact weak solutions of problem (1). It is said that u €
WLP(Q) is a weak solution of problem (1), if for any ¢ € WP (Q)

f (IVulP~2Vu. Vo + m(x)|ulP2up)dx = Aff(x, lu)pdx — f g |ul92updx + | h(x, |ul)edx.
Q Q Q 00

If I; is bounded below and has a minimizer on WP (Q), then this minimizer is a critical point of I, so it
is a solution of the corresponding elliptic problem. However, the energy functional I, is not bounded below
on the whole space WP (Q), but is bounded on an appropriate subset of W1 (Q) and a minimizer on this
set gives rise to a solution of problem (1). In order to obtain the existence results, we introduce the Nehari
manifold

Ny(©Q) = {u € WHP(\{0} : ([;(w),u) = 0},
where (,) denotes the usual duality between WP (Q) and W~ (W ™1 is the dual of the sobolev space
W1P(Q)), hence u € N;(Q) if and only if
M) = 2 f,, G, luDluldx — G@) + [, h(x, [uDuldx. 9)

So we have the following theorem.

Theorem 2.1. There exists A, > 0 such that for 0 < A < A, the energy functional I; (u) is coercive and
bounded from below on N; (Q).
Proof. It follows from (6)—(9), (h3) and Remark 1.1

L) > (%—1>M(u) —z(f Fx, [ul)dx —lff(x, |u|)|u|dx> + G—l)a(u)

r—
2 TPl (€ 5634080+ 57Nl ) + St | gGotulvar,
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r—p
Sy (rCa+C3)’

The Nehari manifold is closely linked to the behavior of functions of the form ¢,, : t — I, (tu) (t > 0).
Such maps are known as fibering maps. They were introduced by Drabek and Pohozaev in [13] and also
were discussed in Brown and Zhang [9]. for u € WP (), we have

P q
(b (D) = I(tu) = %M(u) — A fy F(x, tlul)dx + %G(u) — [, H(x thul)dx,
¢u(t) = ([ (tw), u) = P Mw) — A [, f(x, tluDluldx + t971G (w) — [, h(x, tlul)|uldx, (10)

w () = (0 — DP2M W) — A [, fu(x, tluDu?dx + (g — D726 (W) — [ hu(x, tluDu?dx.

It is easy to see that ¢, (t) = 0 if and only if tu € N;(Q) and in particular u € N;(Q) if and only if ¢,,(1) =
0, i.e. elements in N; () correspond to stationary points of fibering maps. Thus, we consider the split of
N;(Q) in three parts corresponding to local minima, local maxima and points of inflection, so we define

Ny ={u € N;(Q): ¢/(1) > 0},

Ny ={u € N(Q): ¢;/(1) <0}, (11)

NP = {u € Ny(Q): ¢/ (1) = 0}.

The following lemma shows that minimizers for I; (w) on N;(Q) are usually critical points for I(u), as
proved by Brown and Zhang in [9] or in Aghajani et al. [3].

thus I; (u) is coercive and bounded from below on N; () for 0 < 1 < A, where 1y =

Lemma 2.2. Let ug be a local minimizer for I; (u) on N3 (Q), if ug & NP (Q), then uy is a critical point of

IA (u)
Motivated by Lemma 2.2, we give conditions for Ni = @.

Lemma 2.3. There exists A; > 0 such that for 0 < A < 1;, we have Ny = @.
proof. Suppose otherwise, then for u € Nf , by (10) and (11) we have

¢u(1) = M) = 4 [, f(x, [uDluldx + G(w) — [, h(x, [uD)luldx =0, (12)
and
v (D) =@ —-DMW) — 2 [, fuCx luDu?dx + (¢ — DGE@W) — [y huCx, luDu?dx = 0. (13)
By (13) and (h3) we get

(p—DM@W) 2 A [, fulx, luDu?dx — (@ = DGw) — (r — 1) [, h(x, [uDluldx =0,
using (8), (12), (f1) and Remark 1.1 we obtain
(r=pMw) < (r = 1) [, f(x, [uDluldx = 2 [, £, (x, [uDu?dx — (r — )G ()

14
<2 - DC3+CA fﬂ(l + |ul?)dx. (14)
Thus, for any ueN,10 using (14) and (6) we get
=Dl oy < @0 = DCs + AT + SEllull?,, ),
which concludes
1
A2 -Dcs+c)Ial \p
llully2r < (r—p—;t(z(r - 1)c3+cl)s§> (15)

Moreover, (6) together with (h3) imply
Jaq hu o luDlul?dx = r(r = 1) [, Cslul"dx < r(r — DCSF Nlully e, (16)
hence using (16) in (13) and from (f1), (6) and (8) we get
(0 = DMW) < Lllullfp + AL ully, 10,
where L = r(r — 1)C,SF and L' = C;SE, so
(0 —1=2ull},p < Lilulljsp,
which concludes

—1-aL
lullyar = E—"). (17)

Now from (15) and (17) we infer that
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(P—l—AL’)p <( A0 - e +CpIA )r"’
L = \r-p-2Q2(r - 1)C3+C1)S}) ’

which is a contradiction for A sufficiently small, so there exists A; > 0 such that for 0 < 1 < 4, N,{) = Q.

Definition 2.4. A sequence {u,,} € W?(Q) is called a Palais-Smale sequence if I;(u,) is bounded and
L(u,) = 0asn—oo. If[h(u,) » ¢ and [;(u,) = 0, then u, is a (PS). — sequence. It is said that the
functional I satisfies the Palais-Smale condition (or (PS). — condition), if each Palais-Smale sequence ((PS).
— sequence) has a convergent subsequence.

Now we will prove the boundedness of Palais-Smale sequence.

Lemma 2.5. If {u, } is a (PS). — sequence for I, then {u, } is a bounded sequence in WP (Q) provided that
0 <A< 2.
Proof. Using Remark 1.1, (h3), (6), (8) and (10) we have

I)l(un) - %(Ii(un)r un) = % M(un) - )lfg (F (x: Iunl) _% f(x; |un|)|un| ) dx + rr;qG(un)

q
_ X M
> % e llpyrpqy = (Ca + 2Cx)A(0l + S lunll? 1),
sofor0 <A< ——2— = A, {u,} is bounded in WP (Q).

p(rCs+Cs)Sy

Lemma 2.6. There exists 1, > 0 such that if 0 < A < 4,, then [, by, (x, [u))udx< > 0, provided that
ue NA_'
Proof. Suppose otherwise, then fan hy (x, |[u)u?dx < <0, and by (11)

(D =@ - DMW) -2 [, fuw luhu?dx + (g = DGW) = [, hu(x, [uDu?dx< <0, (18)
so by (f1), (6), (8) and (18) we have

—-DMw) = (p—Dllully,., <<A[,fulx [uDu? dx <AC.Syllully,p. (19)
Therefore, we must have (p — 1) < ACng , which is a contradiction for A < 1, = g—;,.
1°p

3. Properties of fibering maps

In this section we shall describe the nature of the derivative of the fibering maps for all possible signs of
) g u(x lu])u?dx<. We begin by recalling that, ¢,,(t) = 0 if and only if tu € N,(Q). It will be useful to
consider the functions

(0=~ P llulllysp = oo HCx tlul) dx (£ > 0), (20)
£,(t):= A [ F(x tlul) dx —3,:qc;(u) (t > 0), 1)

hence using (10) we have ¢, (t) = k, (t) — £,,(t). Moreover, ¢,,(t) = 0 if and only if k;, (t) = £;,(t),
where

’ — - 14
{ku(t) = P lully,up — oo hCe tluDlul dx, o)

. = A [ fO tluDlul dx — tI716 (w).

In the next result we see that ¢, has positive values for all nonzero u € WP (2) whenever, 1 is sufficiently
small.

Lemma 3.1. There exists 23> 0 such that ¢, (t) takes on positive values for all non-zero u e WP (Q),
whenever 0 < 4 < 43.
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Proof. Using (20) and condition (h3) we obtain that
1 r
k,(t) = ;tpM(u) — Got™ [ lul dx.
Define
- 1
ku(D:=tPM@W) = Gyt Joglul dx (£ >0), (23)

we obtain k, (t) > k,(t), and by elementary calculus, we see that k,, (t) takes a maximum value at
1

llull? r-p
Emax = <M> , (24)

1Cy faﬂlulrdx
then follow by (20), (24) and (6) that

1

_ o (@) N7
k. (t > k. (t _r-r (W— > _p( _ r) =65 0 o)
u( max) = u( max) D ((TCZ faﬂlulrdx)p - p (rcz)psf 1 > P} ( 5)

Where 8; is independent of u. Now, we will prove that there exists A3 > 0 such that for all u e WP\{0},
Gy (tmax) >0 provided that A < A3. To do this, first note that from (24), (25) and (6)

(tmax)” fQIuP’dx
Y

lull? 1@ \TP r
<s) <uw—1p> (Ilullﬁ’vl,p(ﬂ))”

-
rCy faﬂlul dx

o | (@)
Y (rczfaﬂlulrdx)lJ

y (2 Y z z
<Y (E2) (eultma))? = s (u(tmax))?,
for1 <y < p *. Then by Remark 1.1, (8), (21) and (26) we find
Lu(tmax) <4 fQ Co(1+ |(Emax)ul?) dx _i(tmax)qG(u)

< 26, (19] + arky (tmax) ),
hence using (25) and (27) we observe that
¢u(tmax) = ku(tmax) - ‘Bu(tmax)

= ku(tmax) (1 - AC4 {(lﬁl(ku(tmax))_l +a }) (28)
> 5, (1 —1c, (1018, + 0(1)) = §,(1 - Aa).

}ﬁ (26)

@27

So we conclude that ¢, (t;;,4,) > 0 for all nonzero u, if A < 13 = % and this completes the proof.

Corollary 3.2.If 0 < A < min {4,, 13}, then there exists € > 0 such that [ (u) = ¢ forall u € N; .
Proof. If u € N;, then by lemma 2.6, fan hy, (x, luDu?dx > 0. Also due to (f2) and (h1), I;(tu) has a
positive global maximum at t = 1 and so by using (28)
Lw) = ¢, (1) = ¢y(tmax) = 6:(1 —Aa) = 6;(1 —aiz) =e>0.
To state our main results, we now present some important properties of N; and Nj .

Lemma 3.3. There exists A, > 0 such that ¢, (t) takes on positive values for all non-zero u € WP (Q)
whenever 1 < A,.

Proof. By elementary calculus and using (23), we can show that tk;,(t) achieves its maximum at
1

plull? ;. r-p
Tomax = <ﬂ> _ (29)

C,r2 faﬂlulrdx

Therefore, by (6), (22), (23) and (29) we obtain that
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1

_ P re ||u||p n )T r—p
maxku(Tmax) 2 Tmaxku(Tmax) = L yrp (=2 <(L>
‘ (@ ) t (z ) (Czrz) p( T ) (fnlulrdx)p 30)

1

> (2 )%(ﬂ)(s_},r)ﬁ: §,>0,

Where §, is independent of u. Now from (6), (29) and (30), and by some calculation very similar to (26) we
get

Y
(Tmax)y faﬂluly dx < a, (Tmaxk{z(fmax));a 31
for1 <y < p*. Then using (8), (22), (31) and Remark 1.1 we conclude that
Trnaxtu(Tmax) < AC3 fQ (ITmaxtl + [Tmaxul?) dx — (Trax) G (W)
1 (32)
<1 (.81 (Tmaxk& (Tmax))p + .BZTmaxktlL(Tmax)> ,

where 8; and 3, are independent of u, so from (30) and (32) we get

TnaxPuTmax) = Tmaxku(Tmax) — TmaxfuTmax)

2 nackima) (1= A8 (ki ma)) » + 1))

1i-p

> 6, (1= 2887 + £2)) 2 80— ).

Clearly for all nonzero u, t;qx®y (tmax) > 0 provided that A < A4, where 4, = 1/2p and this completes
the proof.

Corollary 3.4. If [, by, (x,t luu?dx <0 foru € W'P(2)\ {0}, then there exists t; such that t;u €
N;f and ¢, (t;) < 0.
Proof. By (10), (f1) and (h2), we know that ¢}, (0) < 0 and tlim ¢,,(t) = o, so by the intermediate value

theorem, there exists t; > 0 such that ¢,,(t;) = 0. Now using (f2) and (h1), for 0 < t < t;, ¢,,(t) < 0 and
for t; < t, ¢, (t) > 0, hence tyu € N; and ¢, (t;) < ¢, (0) = 0.

Corollary 3.5.1f [, hy (x,t [ul)u?dx = 0 foru € WP(2)\ {0} and 2 < A; then there exist 0 < t; <
t, such that t;u; € N; ,t,u, € Ny and ¢, (¢;) < 0.

Proof. From the definition of ¢,,(t) together with (f1) and (h2) we have ¢,,(0) < 0, tlim ¢, (t) = —o0 and
by Lemma 3.3, ¢;,(t) > 0 for suitable 7, so using again the intermediate value theorem concludes that there

exist ty, t, such that 0 < t; < t, and ¢,,(t;) = ¢, (t,) = 0. Also using the same argument as in the proof
of the Corollary 3.4 and using (f2) and (h1) we have t;u; € N, ,t,u, € N; and ¢,, (¢;) < 0.

4. Existence of multiple Solutions

In this section, we will show the existence and multiplicity of solutions of problem (1), for this, we need
the following remark:
Remark 4.1. Using the compactness of the embeddings WP (Q) & L™(Q) and WP (Q) & L™(9Q) for
1 < m < p* (the Rellich-Kondrachov Theorem [7]) together with (4), (5), (f1) and (f2) we conclude that
the functionals /3 (u) = [, F(x,u)dx and J,(w) = [, , H(x, u)dx are weakly continuous, i.e. if u,, — u, then
Jituy) = Ji(w) (i=12) . Moreouer The operators Jiw) = o f (x, wudx,
J W) = [, b wuldx, J;(w) = [;, h(x,w)udx and J;'(w) = [;, hy,(x,u)u’dx are weak to strong

continuous, i.e. if u, — u, then Jj (u,) - J;(w) and J;' (u,) = J;'(w) (i = 1,2).
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Theorem 4.2. For 0 < A < min{A,, A3, A4}, there exists a minimizer of I; on N, (12).
Proof. As in Theorem 2.1, I, is bounded from below on N; (2), and so on N, (2). Let {u,,} be a minimizing
sequence for I on N; () , i.e.

lim [y(tn) = inf et 1),
and by Ekeland’s variational principle [15] we may assume that;

(I 1), ) = 0.

Then by Lemma 2.5 {u,} is bounded in WP (Q) and we may assume, without loss of generality, that
U, = Uy in WHP(0) and u,, - ug in L™(2) for 1 <m < p* and u, (x) 2 uy(x), a.e.
By Corollaries 3.4 and 3.5 for uy € W'P\{0}, there exists t, such that tyu, € N; and so ¢y, (t,) = 0. Now
we show that u,, = ug in WP (£2). Suppose that this is false, then

M (ug) < lim,_,q inf M (u,). (33)
Also by (10) we have
b, () = P M (up) — 4 [, £ (%, tlup Dlup ldx + 9716 (wy) — [, b (x, tlug D lugldx, (34)
and
buy (6) = tP7 M (ug) — A [, f (x, tlugDlugldx + 971G (wo) — [ h (x, tlug D luoldx. (35) So

from (33)~(35) and Remark 4.1, ¢, (to) > ¢y, (to) = O for n sufficiently large. Since {u,} S N; (Q), by
considering the possible fibering maps it is easy to see that ¢, () < 0 for 0 <t < 1 and ¢, (1) = 0 for all
n. Hence we must have t, > 1, but tyuy € N; and so by (10)
B(toto) = uy(t0) < Gy (1) < im by, (1) = lim [1utn) = inf eyt T i),
which is a contradiction. Therefore, u,, = uy in WP (£2) and so
L) = lim [ (up) = inf eyt (W)
thus, u, is a minimizer for I; on N; ().
In the next theorem, we will establish the existence of a local minimum for I; on N; (£2).

Theorem 4.3.1f 0 < 2 < min{dy, A, A3, A4}, then there exists a minimizer of I; on N; ({2).

Proof. By Corollary 3.2, there exists &€ > 0 such that I[;(u) > &> 0 forallu € N; (22), i.e.
infue N;I/’L(u) >0,

hence there exists a minimizing sequence {u,} € N; ({2) such that

limy o I3 (Uy) = infye vy (W) > 0. (36)
Similary as in the proof of the Theorem 4.2 we find that, {u,,} is bounded in W (£2) and so
{un - Uy weakly in WHP(Q), (37)
Up = Ug strongly in L%(Q), 1=<a<P*.

Since uneN; so by (11) ¢, (1) < 0, letting n — oo, by (10) , (37) and Remark 4.1 we see that

bu, (1) = (p — DM () — 4 [, fu(x, lugDugdx + (g — 16 (o) — [, hu(x, lugDugdx < 0. (38)
On the other hand for u,€eN; , by lemma 2.6 we have |, aq M (x lu,Du2dx > 0, letting n — oo, we see that
S P, lugDugdx = 0,if [ by (x, [ug)ugdx = 0, then by (£2), (6), (8) and (38) we have

(- DM(ug) < A f fu G luoliddx < AC, S3M(up),
Q

which is a contradiction for A < 2. So [, by, (x, [ue|)ugdx> > 0 and by Corollary 3.5 there exists t, > 0
such that tyuy € N; (). We claim that u,, - u, in WP (), Suppose that this is false, so

M(uy) < lim,,_, inf M (uy,). (39)
But u, € Ny and so I (u,) = I;(tu,) for all t > 0, now by using (36)—(39) and Remark 4.1, we can write
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1 1
Itote) = > M) = 4 f PG, toluoldx + e us) - f H (x, toluol) dx
Q a0

1 1
< lim <—t§ M(u,) — Af F(x, tolu,dx + =t G(uy) —f H (x, tolunl)dx>
n-co \p Q q a0

= 111_13}0 I/l(toun) < 111_{120 I/l(un) = infueN,{I/l(u):

which is a contradiction. Therefore, u,, = uy in WP () and so the proof is complete.

Corollary 4.4. For 0 < 2 < min{Agy, A1, A, 13,14}, equation (1) has at least two positive solutions.

Proof. By Theorems 4.2 and 4.3 there exist two solutions ude N; (Q) and uge N; (Q) such that
L) = infueNIIA(u), L(ug) = in fuen; LW, ut #0 and by Lemmas 2.2 and 2.3 ul and uj are
critical points of I; on WP and hence are weak solutions of problem (1). On the other hand I; (u) =
I (Ju]), so we may assume ug and ug are positive solution. It remains to show that this solutions are
distinct. Since N;f N N; = @, this implies that ug and ug are distinct and the proof is complete.
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