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Abstract. This paper involves the development of the Tau method with Bernstein multi-scaling (BMS)
functions basis for the numerical solution of the Volterra-Fredholm Hammerstein integro-differential
equations (VFHIDES). For this purpose at the beginning we define BM S functions and express briefly some
properties of BMS functions and after function approximation by using BMS functions, will be presented.
Then, the operator matrix representation for the differential and integral parts seeming in the equation using
the operational Tau method base on BMS functions basis, will be displaced. The operational Tau method
transforms the differential and integration parts of the desired VFHIDESs to some operational matrices. In fact,
this method reduces VFHIDEs to a system of algebraic equations. Numerical examples demonstrate the
validity and applicability of the proposed method with BM S functions basis.

K eywor ds. Bernstein multi-scaling functions , Operational Tau method , Hammerstein integro-differential
equation, Algebraic equation, Fredholm, Volterra.

1. Introduction
Let us consider the general form of VFHIDE
Du(t) - 4, j;kl(t, S)G, (s, u(s))ds— 4, lez (t,5)G,(s,u(s))ds= f(t) 0<t<1, 1)
with n, independent boundary conditions

Ng
DlePur(t) +cPu ()] = d;,  j=1,23,...n, @
s=1

where f (t), k;(t,s) and k,(t,s) are given continuous functions. 4,, 4, , ¢{ and ¢{?, are given constants
and t;,t, €[0,1]. u(t) is the unknown function to be determined and G, (s,u(s)),G,(s,u(s)) are analytic
functions of the unknown function u(s). n, is order of the differential operator D with polynomial
coefficients p, (t)

g d l _
D:Zpi(t)ﬁ’ pi(t)zzpijtji
i=0 j=0

where ¢ isthedegreeof p.(t).

In this section, some numerical methods that discuss about solutions of Volterra-Fredholm integro-
differential equations will be presented. Ordokhani [1] has used walsh functions operational matrix with
Newton-Cotes nodes for solving Fredholm-Hemmerstein integro-differential equations. Arikoglu et a. [2]
by using differential transform method obtained numerical solution of integro-differential equations.
Babolian in [3], obtained solutions of nonlinear Volterra-Fredholm integro-differential equations by using

direct computational method and triangular functions. With in [4] , hybrid Legendre polynomials and Block-
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Pulse functions are presented to approximate the solution of Volterra-Fredholm integro-differential equations.
Saberi Nadjafi and Ghorbani in [5] have used his homotopy perturbation method for solving integral and
integro-differential equations.

Also, In [6-12] different numerical methods exist for resolving linear and nonlinear integro-
differential equations.

Recently, the authors, have used the operational Tau method for the numerical solution of linear and
nonlinear Fredholm and Volterra integral and integro-differential equations of second kind. Authors
[13—-19], developed the Tau method to find numerical solutions of the Fredholm, Volterra and Fredholm-
Volterraintegral and integro-differential equations with arbitrary polynomial bases.

In this work, we are interested in solving VFHIDES with an operational approach of the Tau method
based on BMS functions. Because in the Tau method, we obtain a system of algebraic equations wherein its
solution is easy. The paper is organized as follows: In Section 2, we define BMS functions and we give
function approximation by using BMS functions. We drive matrix representation of differential, integral and
supplementary conditions parts, in Section3. Numerical examples are given in Section 4 to illustrate the
accuracy of our method. Finally, concluding remarks are given in Section 5.

2. Basic definitions

2.1. Bernstein polynomialsand their properties
For m> 0, the Bernstein polynomials (B-polynomials) defined on the interval [0,1] asfollows [20]

m) . , m m
B,.t)=. t@-tu™, that | |=——,
‘ i i i'(m—i)!
where
i) B,(t)=0,if i<Oor i>m
i) \B ,(t),i= O,l,...,m} in Hilbert space L°[0,1] , is a complete non orthogonal set [21].

2.2. BMSfunctionsand function approximation
For m>1 and any positive integer kK >1, the BMS functions ¥, ,,i =0,1,....,mand n=0,1,....k-1 are
defined on theinterval [0,1) as [22]

n n+1
- <t —=

Wi a(t) = Bm(kt=1), k_t< ' ®3)
0 otherwise.

In equation (3), m is the order of B-polynomials on the interval [0,1], n is the trandation argument and t is
the normalized time.
If ¢(t) be a vector function of BMS functions on the interva [0,1), as

P(t) = ['//0,0 (t)"/ll,o (t)’---7Wm—1,o (t)’l//m,o (t)""’l/jo,k—l (t)"//l,k—l (t)""il//m—l,k—l (t)!l//m,k—l (t)]T , then by
taking integration of the cross product of two of these vector functions, a matrix of k(m+21)xk(m+1)
dimensional will be resulted which will be indicated as follow

1
D =<¢,4>=[4(t)¢" (t)ct. @
This matrix is known by dual operational matrix of @(t)([22]).
A function f(t) defined over [0,1] may be expanded in terms of BMS functions as

k-1 m

f (t) = szi,nWi,n (t) = FT¢(t)’

n=0i=0
where @(t) is the vector function defined before and C is a k(m+1)x1 vector given by
F =[fo0, frorr Fnsor Fmoreor foxas Fkcasor Traxets fmia] » @nd can be obtained by [22]
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FT = ([ f (e ®c)D™. 5)

We can write f(t) = F'®X,, where ® is a non-singular matrix given by @(t) = ®X, with a standard
basic vector X, =[1,t,t?,--- t“™ DT,
We can also approximate the function Kk(t,s) asfollows

k(t,s) = 4" ()K4(9),

where K isa k(m+1)xk(m+1) matrix and can be calculated as

K= o (6)

and {Ki,n}{‘;'gglzo are k(m+1)x1 in order to caculate them firstly, k(t,s) is approximated in terms of

V(oo 8 Kk(t,9)=&T(1)g(s), where &(t) =[E0(0), &0 Emo®eens Eopa (), Sria (B),-
oa®]', and by using Eq. (5), the elements of vector £(t) can be obtained for i =0,1,...,m and
n=0,1,.... k—1. Now, al functions are approximated {¢, , (t)} 2o, in terms of , (t) for i =0,1,...,m,
n=01,..,k-1as

k-1 m

&a) =Dk Wi () = K a(t), 7)

n=0i=0
where using Eq. (5) , {K; ,} s o Can be obtained from Eq. (7) .
k(t, s) can be expressed as:

K(t,s) = ¢ (t)Kg(s) = X/ DP'KDX_,

where @ =[®, ]V is a non-singular matrix given by ¢(t) = ®X, with a standard basic vector
t

] y
X, =[L,t,t%,..., DT i wetake K = ®TK® |, we can write
ki (kL) kv (k-1) _

kt,9= X KX, = Y > K sl

i=0 i=0

3. Matrix representation of 1 and 2

In this section we drive formulas for numerical solvability of integro-differential equation (1) with
conditions (2) based on BMS functions of the operational Tau method. we can assume that in (1), the
nonlinear analytic functions can be expanded as

G(sU(S)= D7, (9UP(), Gu(su(9) = D 6,(u°(s)
thus we can write (1) the following ch))rrOn "~
Du(t)—ﬂli_l ﬁh(t,s)y,,(s)up(s)d(s)—ﬂi; [k, (6. 95,(UP(A(9) = T 1)+ 4 [k, (1. 975(d(9)
p_ 4 j;k2<t:>6o(s)d(s>,te [0, ®)
Let  F(t)=ft)+ j;kpl(t,s)yo(s)d(sn jjkpz(t,s)ao(s)d(s) and  consider  k(t,9)
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=k (t,9)7,(s) and Kk,(t,s) =k,(t,9)d,(s) For (p=1,...,m) where y,(s), J,(s), (p=1,...m) are
continuous functions. Therefore, equation (8) transform to following equation

DU®) - 4 [Ka(t (DA - 43 [Ket I (A =FO, telol]. @

Now we convert equations (9) and (2) to the corresponding algebraic equations in the following three
steps 3.1, 3.2 and 3.3.

3.1. Matrix representation of differential part

Let us ¢(t) = [l//O,O(t)ll//l,o(t)i"'iWm—l,O(U’Wm,O(O!""WO,k—l(t)ll/jl,k—l(t)""’l//m—l,k—l(t)il//m,k—l(t)]T1 be a
polynomial basis vector given by ¢(t) = ®X,, where ® is a non-singular matrix. Also for any matrix P,
P, = ®Pd . Now we convert the operational approach to the Tau method proposed by Ortiz and samara
[23] is based on three simple matrices

01 0 0 | [0 ] 01 8 0
01 0 10 030
U= 0 1: | =020 , L= o 1
0 00 30 g
We recall the following properties from [17]. ) )
Lemmal. Let u,(t) beapolynomia as
Un(t) = Zaiti =a,X,,
i=0
where & =[a,,8,,..,a,,0,...], X, =[1,t,t?...]", then we have
d —u,(t)=a7n" X, r=212,..
tum(t) au'X,, r=>12,..

j;um(t)dt =4 LX, -4 LX,, X,=[100,..].

Theorem 1. For any linear differentiadl operator D defined by (1) and any seriesu(t) = u' ¢(t), that
U =[Ugg, Uy gyeees Ungreees Ug 1y Un g aees Uniea] s Werhave  Du(t) = uT®IIX, = u'I1,¢(t) where

g %
1= Zn p(u) =2 pma,
i=0j=0
and
I, = OO

3.2. Matrix representation of integral part
Equation (9) shows that the using of the Tau method requires that u” (t) must be written as the product of a
matrix and a vector. The following result is concerned with approximation of the nonlinear functions.

Lemma2. Let u(t) = Z Z .n‘//.n(t) u'g(t) =u'dX, be a polynomial with u =[Uyo, Uy g,
UnoseeerUg et U gyees Uny o] @ [(I),J],'“]‘*(()k P and X, —[1,t,t t“" D17 then for any natural
number pe N, we have

uP(t) =u'®B"'X,,
where B is an upper triangular Toeplitz matrix having the following structure
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U, ue, u'd, - UTD ]

0 u®, ud - UD .,
B = O O UTQO UT(I)km+(k_3) 1
0 0 0 - ud, |

with @, =[@ |, @, |, D, ., Pyrpy; ] - J =01, km+(k-1).

1,1

Proof. The validity of the lemma for p=1 is obvious. Let U’(t)=(u'®X,)x(u'®X,)=
u'd(X, x(u'®X,)) . Now, itisshown that X, x (u'®X,) = BX,.
If U =[Ug0, Uy greves Upyreves Ug gy Urjegseees Ul = [Ug, Uy, Up ey Uy ey ]
km+(k—-1)km+(k-1)

T, wecan set

T —
X x(u ®X,) = X, x( 3 ud, 1)
s=0 r=0
km+(k—1) km+ (k1) _ ke (k=) T
= Z urq)r,sts+l ’
s=0 r=0 i=0
and
e DT P G ke T
th: z B”-t] Z urq)r,jfitj ’
j=0 i=0 j=0 r=0 =0
concerning B, =0, for i > j, it followsthat
kv (K—1) km+ (—1) N k- (k1)
ox =SS e, 0|
i=0 r=0 =0

which states the lemma hold for p=2. So we assume the validity of the proposition for k and transit to K+1

are asfollows:
u () = u  ()u(t) = (UTPBX,) x (UTDX,) = u B (X,) x (U ®X,))

=u'®B“*(BX,) =u'®B*X,.
Following the structure of matrix B in Lemma 2, we can write

u"de, u'de, u'de, - u'de, .y

0 u'de u'de, - UDE.
B= 0 0 uTq)el UT(I)ek(m)+(k—2) '
0 0 o - u'de

where @, , = de,, & and ® are unit and non-singular matrices r%pectlvely and i =1,2,...,k(m+1) .If we
teke U =®"u that U =[Uyg,U gy Upygrees Ug 1 Up g_grees Upa] » the matrix B can be represented as an

upper triangular Toeplitz form
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u0,0 uO,l u0,2 um,k—l
0 u0,0 uO,l um,k—2
B = 0 O GO,O Gm,k—3 .
0 0 0 -

Now, we present the operational Tau representation of the integration terms of (9) in Theorems 2 and
3 . Using Theorems 2and 3, we obtain operational Tau matrix for Volterra and Fredholm integration terms
of (9) . We give the following theorems whose proof is based mainly on Lemma2.

Theorem 2. Let the analytic functions u(s) and kpl(t,s), p=212,...,m beexpressed as:

k-1 m

U(S) = Zzui,nl//i,n(s) = UT¢(S) = uT(I)Xs1

n=0i=

ke (k—1)km+(k—1) _

(.92 0T OKp0(8) = XTOTKL@X, = 30 3 Ky st
i= j=
where U =[Ug o, Uy oo Unygreees Ugg 1 Up g goeees U a] @ = [@ TS s a non-singular matrix  and

X, =[1,5,8%,...,5™ D" then we have
j;kpl(t, SUP(s)ds= u"®B*M X,

where Mplfor p=12,...,misinthefollowing form

- _ 1- _ 1- _ _
0 K PL(0,0) K PL(0,1) + E K Pl(1,0) K PL(0,2) + E K Pl(1,1) + 5 K PL(2,0)
1~ 1~ 1-
0 0 E K Pl0.0) E K Moy + é K Moy
1~
M,=|0 0 0 §Kp1(1,0) ’
0 0 0 0
1 %
mk) +(k-1) P40
0 0 0 0 0 |

and B has been given in Lemma 2.
Proof. using Lemma2, we have:
uP(s) =u'®B" X,

Ao K, (t, 9UP(S) = UTDBP K, (t,9), S,y (t, )., S Pk, (t,9)]. We can write:
km (k=1 km(k—1) _ .

Kat,9S"= D > Ky, ™,

i=0 j=0
the integration term can be written as:

t ¢ km+(k-1) T

[kt 9uP(9d(5) = uTq>Bp-1[ [kt s)s“d(s)}

n=0
. [ e ki (k=) T
=u ®B° Kpll(i’j)tj —
i=0 i=0 n+1+ 0

On the other hand, we have
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km+(k-1)km+(k-1) __ tn+ j+i+1 1 km+(k-1)
. — = ; k_.(n)X,,
_ S 4 Pin+i+l {n+|+1l:0 (X,
such that Kk, (n) isamatrix having the following entries
- -~ . > -
Ko . (n)= Ko jiamy 1Z0FD
P 0, j<n+i.
Therefore, we can write
1 km+ (k-1) km+ (k1) T
t T -1 e
J'Okpl(t,s)up(s)d(s) = u'®B® H”“ +J kpl(n)xt}
i=0 n=0

1 ki (k—1) km+(k-1)
= u'oBF? [ _ } K 1(n) X,
N+i+1]_, o
. uT®BP M X,.
Theorem 3. Let the analytic functions u(s) and kpz(t,s), p=212,...,m beexpressed as.
k-1 m
us) = DU Wi.(9)=u'g(s) =u'dX,,
n=0i=0
kme(K—1) km+(k—1) _
_ AT —_ THAT — ia]
K,o(t,9) = 9" (S)K ,0(t) = X]D'K DX, = zo 3 o2 1S
i= j=
where U =[Ug o, Uy ooy Unygseees Yo 1 Up g goeees U a] @ = [@ T s a non-singular matrix  and

X, =[1,5,8%,...,s™ D" then we have
[k (t,9U (ds= UGB M, X,

suchthat M, for p=12,...,m isamatrix having the following form

k(m)+ (k1) Kp2(o,j) k(m)+(k-1)m
S+l = j+1
M,, = - a
men K O Koz,
S j+k(m+l) = i+k(m+1)

and B has been given in Lemma 2.
Proof. According to Lemma 2:

uf(s)=u'®B" X,

aso
K, (t, SUP(S) = UTDBP K, (t, S), K,y (1, )., S™ Pk, (1, 9]
We can write:
K+ (k—1) kme (K—1) _ o
Kpa(t,5)S" = Kpzq ) t's™
i=0 i=0

the integration term can be written as:
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km+(k-1) T

Ja(t. 90 (9d(9) = @B | [k, (. 9sd(s)|

km+(K-1) km+(k-1) __ 1 km+(k—-1) T
T 1 i
=u ®B° :
[ ; ,Z::‘; n+ | +1l_0
on the other hand, we will have
km+ (k-1 km+(k-1) _ _ kmi+(k—1) T

. tl — = M X ,
|: = = P2(i, ) N+ j +1:|n:0 p2/™Mt

so that M 02 FOr p=212,...,m having has the following form:

k(m)+(k-1) sz(o )

E j+1
p2 — L

Kmeted Kooy

= j+k(m+1)

k k— <
ML Kp?(k(mmk—l),i)

i=0

j+1

k(m)+(k-1) |Z

P2(k(m)+(k-1), )

) j+k(m+1)

3.3. Matrix repreﬁentation for the supplementary conditions
Replacing u(t) = Z. Ozn U v, =u'®X, ontheleft hand side of (2), it can be written as

Z[c}i’us‘l(tl)+c}2)uS Y(t,)]=u CIDZ[C(l) SlX +ci? S‘1Xt2].

Let A =D 9[cOn™ X, +cPn*'X, ] where X, =[L,t,t",.., ;T and X, =[Lt,,t,",..

km+(k-1)1T
L ]

--»Ny. Now by setting A as the matrix with columns A, , ]

. Thus if we take U =®"u, the (jth) condition of (2) is converted toU" A =d;,j=12

=1,2,...,n, and by setting d =[dl,d2,...,dnd I".

as the vector that contains right-hand side of supplementary conditions, they taketheform U' A=d.
Also in the righthand side of (9), we assume that

k-1 m

F(t) = ZZEnl//ln = FT(I)xt’

n=0i=0
that F =[Fyg, Fgres Frgrens Foxets Frxenree Fmyal - Wetake F = ®'F, thus F(t) = F' X,.
Consequently, using Theorem (1) and the results of 3.1, 3.2 and 3.3 parts, we obtain equations (9)
and (2) asfollowing:

UT[I-4)B"*M, —4,>B"'M ,]=F",
p=1 p=1
UTA=d".

(10)

Now setting
n=I- 4D B -4, Y BPM,
p=1 p=1

G=[AA,. A LI,

IMk(mez)-ny 1,
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and
g= [dl’dZ""’dnd For Froey ka+(k—1)—nd]1

where IT; denotes the (ith) column of T, system of (10) can bewrittenas U'G = g which must be solved
for the unknown coefficients, U g, Uy gy-+s Upygseees Ug 1o Uy ggreees Upy 10

4. lllustrative Examples

We apply the present method in this section and solve some examples given in different papers. The
computations associated with the examples were performed using Mathematica.
Example 4.1. Consider the following VFHIDE [24]

tu’(t) —tu'(t) + 2u(t) - jo(t —s)u(s)ds— jo(t +U(S)ds= - - -+, 0St<l,

with theinitial condition u(0) =1,u’(0) —2u(1) + 2u(0) = 1.

In this example we have n,=2,p,(t)=2 p(t)=-t,p,t)=t,4, =4, =1LKk(t,s)=(t-9)
K (t,8) = t—5,G,(s,u(s)) =G,(s,u(s)) =u(s), and the exact solution is u(t)=1+t—t> . For
computational details and numerical implementation of the proposed Tau method, we take m=2,k =1, so
the following simple matrices in the case of BM S functions will be obtained

1o
1 2
1 -2 1 5 1 0 2 00
&= |0 2 -2| M,= O,Mlz—%%OB=O—1 Mm= |0 1 0}
0O 0 1 0 0O 0 -2 020
11,
(4 3 ]
~ _ [z = =1_[17 -13 -1]
FT=|F, F =|=— — —| d'=[d, d,]=[1 1]
A I AR

and using the given relations, we abtain the system of equations follows

ljo,o =1
_GO,l_ZGO,Z =1
1- _1~ 17

3~
Euo,o _éuo,l Zuo,z = E

with the exact solution, Uy, = 1,0y, =1,0,, = —1.
Thus we have U =[1,1,-1]". Using the computation u = (®")™U, we can be given the approximate
solution as u'@(t) that itis 1+t —t?, which isthe exact solution of this example.
Example 4.2. Consider the first-order nonlinear VFHIDE [ 3]
'(t) —u(t) + 2 J:tse*”z(s)ds =1-te*’, 0<t<1
with theinitial condition u(0) =0.
In this example we have n, =1,p,(t) =-1,p,(t) =1 4, =2,4, =0,k (t,s) =ts,G,(S,u(s)) =

&*(9 and the exact solution is u(t) =t . By applying the Tau method for m=1,k =1, will be obtained
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1 -1 00 1
®lo 1Mo /B0
Ugo =0,
—Ug o+ Uy, =1.

and
Thus, we can obtain the approximate solution as uT¢(t) =1, which isthe exact solution of this example.

o 3] R fl e -la )

Example 4.3. Consider the second-order nonlinear VFHIDE [13]
u”(t) +tu’(t) — tu(t) — J'Olsi n(t)e *u’(s)ds=¢€ —sin(t), 0<t<1,

with theinitial conditions u(0) = u’(0) = 1. The exact solution of this exampleis u(t) = €.
We solve this example by using the Tau method. The comparison between the present method and
method of [13] isshownin Table 2. Aswe seein thistable, it is clear that the result obtained by the present

method is very superior to that by the method of [13]. Also, the result for m=7,k = 2, in this table will be
presented. As we observed in this table with increasing the value of m,k, particular m, the resultant
accuracy increased aswell. Figure 3.

Example 4.4. Consider the first-order nonlinear problem[25]

0<t<1,

i@~ % e *u(s) cos(u(s))ds = 1_%85(1)’

with the initia condition u(0) = 0. The exact solution of this exampleis u(t) =t.
The absolute difference errors for m=2,3,4,k =2 in Table 1 are being observed. In addition the last

columns of this table indicates the existed result in [25]. As you can observe in the presented method the
less basic function the more accuracy with respective method [25], can be seen. Figure 1 shows a plot of the
exact and approximate solutions of this example for m= 2,k = 2 in (c) and display a plot of the absolute
difference errors of this example for the variant value of m, k, in (d).

Table 1. Absolute errors of Example 4.4

t Present method Method of [25]
m=2 m=3 m=4 j=9 =17
k=2
0.0 0 0 0 0 0
01 | 651x107 | 1.74x10° | 9.47x10™ | 1.38x107 2.99 x10°°
02 | 275x10° | 7.32x10° | 399 x10™ | 252 %107 5.59 x107°
03 | 652x10° | 1.73x107" | 9.46 x10™ | 3.59 x10™ 9.77 x10°®
04 | 1.21x10° | 325x107 | 1.77x10° | 4.86x10™° 1.29 x10™°
05 | 203x10° | 53610 | 292x10° | 6.82x107 1.73 x10™°
06 | 306x107° | 816x10" | 4.44x10° | 9.06 x10™ 2.23 x10™°
0.7 | 439x10° | 117 x10° | 639x10° | 1.09x10™ 2.66 x10°°
08 | 6.08x10° | 1.62x10° | 883x10° | 1.26x10™" 334 x10°
09 | 815x10° | 217x10° | 1.18x10° | 1.47x10™ 3.87 x10°°
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Table 2. Absolute errors of Example 4.3

t Present method Method of [13] Present method
m=4 m=5 m=5 m=7
k=2 k=3 k=3 k=5 k=2
0.0 0 0 0 0 0
02 | 7.03x10°® | 4.80x10%° | 1.41x10™ 4.00x107~7 6.20x107™"
04 | 305x107 | 6.99x10°% | 2.12x10™% 8.10x10°® 7.41x10712
06 | 380x10° | 246x107 8.67x107° 7.73x10°° 254x107 1
08 | 898x10° | 214x10° | 824x107™ 4.24x10™ 7.34x10™1

101

08 & appr

06

041

02

0.0

I I
0.2 04

I I
0.6 0.8

Figure 1: (a,c) The exact and the approximate solution of Example 4.4 and 4.5, respectively; (b, d) The absolute

1t

difference errors of Example 4.4 and 4.5 for variant value of m, k, respectively;

Table 3. Exact solutions and approximate solutions of Example 4.5

t | Exact solution Present method Method of [4]
m=3 | m=4 m=8
k=2 k=4 k=8
0.1 0.895170 0.895170 0.895170 0.894912 0.895186
0.3 0.659816 0.659818 0.659816 0.659114 0.659732
0.5 0.398157 0.398172 0.398152 0.397870 0.398169
0.7 0.120624 0.120621 0.120624 0.120360 0.120671
0.9 -0.161716 -0.161723 -0.161716 -0.161466 -0.161638
Example 4.5. Consider the first-order nonlinear VFHIDE [4]
(t) [\ cos(t - u*(s)ds = ~2sin(t) — 22 2‘:0;'(3) . o<t<l,

with theinitia condition u(0) =1. The exact solutionis u(t) = cos(t) — sin(t).

Table 3 shows the approximate solutions and exact solutions of the present method and the methods of
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[4] .We display aplot of the approximate and exact solutions of this example for m= 3,k = 2, in Figure 1(c)
and a plot of absolute difference errors of this example for the variant value of m, k in Figure 1(d).

x107° %1076

[ 250
[ 20t

151

15F

101
L 10

05 s

P e et A S TS SR
0.0 0.2 04 0.6 0.8 10 0.0

A I S I
0.0 0.2 0.4 0.6 0.8 10

Figure 2: The comparison between absolute errors of Example 4.3 for some m and k;

5. Conclusion

Our results indicate that the Tau method with BM S basis functions can be regarded as a structurally simple
algorithm that is conventionally applicable to the numerical solution of VFHIDESs. In fact in this method, by
using the Tau operational matrices the mentioned equations was converted to a system of nonlinear algebraic
equations. The advantages of this method are as (1) It solves nonlinear VFHIDES without linearizing the
nonlinear terms. (2) It improves accuracy by increasing m, k,( particular m) reasonably. (3) the time of
calculationsis short.
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