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Abstract. This paper involves the development of the Tau method with Bernstein multi-scaling (BMS) 
functions basis for the numerical solution of the Volterra-Fredholm Hammerstein integro-differential 
equations (VFHIDEs). For this purpose at the beginning we define BMS functions and express briefly some 
properties of BMS functions and after function approximation by using BMS functions, will be presented. 
Then, the operator matrix representation for the differential and integral parts seeming in the equation using 
the operational Tau method base on BMS functions basis, will be displaced. The operational Tau method 
transforms the differential and integration parts of the desired VFHIDEs to some operational matrices. In fact, 
this method reduces VFHIDEs to a system of algebraic equations.  Numerical examples demonstrate the 
validity and applicability of the proposed method with BMS functions basis. 

Keywords: Bernstein multi-scaling functions , Operational Tau method , Hammerstein integro-differential 
equation, Algebraic equation,  Fredholm, Volterra. 

1. Introduction  
Let us consider the general form of VFHIDE  
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where ,)(tf ),(1 stk and ),(2 stk  are given continuous functions. 1λ , 2λ  , (1)
jsc and (2)

jsc , are given constants 
and [0,1]., 21 ∈tt  u(t) is the unknown function to be determined and ))(,()),(,( 21 susGsusG  are analytic 
functions of the unknown function u(s). dn  is order of the differential operator D  with polynomial 
coefficients )(tpi   
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where iα  is the degree of )(tpi .  
In this section, some numerical methods that discuss about solutions of Volterra-Fredholm integro-

differential equations will be presented. Ordokhani [1]  has used walsh functions operational matrix with 
Newton-Cotes nodes for solving Fredholm-Hemmerstein integro-differential equations. Arikoglu et al. [2] 
by using differential transform method obtained numerical solution of integro-differential equations. 
Babolian in [3] , obtained solutions of nonlinear Volterra-Fredholm integro-differential equations by using 
direct computational method and triangular functions. With in [4] , hybrid Legendre polynomials and Block-
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Pulse functions are presented to approximate the solution of Volterra-Fredholm integro-differential equations. 
Saberi Nadjafi and Ghorbani in [5]  have used his homotopy perturbation method for solving integral and 
integro-differential equations. 

 Also, In 12][6 −  different numerical methods exist for resolving linear and nonlinear integro-
differential equations. 

Recently, the authors, have used the operational Tau method for the numerical solution of linear and 
nonlinear Fredholm and Volterra integral and integro-differential equations of second kind. Authors 

19][13 − , developed the Tau method to find numerical solutions of the Fredholm, Volterra and Fredholm-
Volterra integral and  integro-differential equations with arbitrary polynomial bases. 

In this work, we are interested in solving VFHIDEs with an operational approach of the Tau method 
based on BMS functions. Because in the Tau method, we obtain a system of algebraic equations wherein its 
solution is easy. The paper is organized as follows: In Section 2 , we define BMS functions and we give 
function approximation by using BMS functions. We drive matrix representation of differential, integral and 
supplementary conditions parts, in Section3 . Numerical examples are given in Section 4 to illustrate the 
accuracy of our method. Finally, concluding remarks are given in Section 5. 

2. Basic definitions  

2.1. Bernstein polynomials and their properties 
For 0,≥m  the Bernstein polynomials (B-polynomials) defined on the interval [0,1] as follows [20]   
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)i  0,=)(, tB mi  if  0<i  or  .mi >  

ii ) { }mitB mi 0,1,...,=),(,  in Hilbert space [0,1]2L , is a complete non orthogonal set [21].  

2.2. BMS functions and function approximation 
For 1≥m  and any positive integer 1>k , the BMS functions mini 0,1,...,=,,ψ  and 10,1,...,= −kn  are 
defined on the interval [0,1)  as [22]  
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In equation (3), m is the order of B-polynomials on the interval ],[0,1 n is the translation argument and t is 
the normalized time. 

If )(tφ  be a vector function of BMS functions on the interval ,[0,1) as 
,)](),(),...,(),(),...,(),(),...,(),([=)( 1,11,11,10,,01,01,00,0

T
kmkmkkmm ttttttttt −−−−−− ψψψψψψψψφ  then by 

taking integration of the cross product of two of these vector functions, a matrix of 1)(1)( +×+ mkmk  
dimensional will be resulted which will be indicated as follow  
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This matrix is known by dual operational matrix of )([22])(tφ . 
A function f(t) defined over [0,1] may be expanded in terms of BMS functions as  
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where )(tφ  is the vector function defined before and C is a 11)( ×+mk  vector given by 
,],,...,,,...,,,...,,[= 1,11,11,10,,01,01,00,0

T
kmkmkkmm ffffffffF −−−−−−  and can be obtained by [22]  
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We can write ,=)( t
T XFtf Φ  where Φ  is a non-singular matrix given by tXt Φ=)(φ  with a standard 

basic vector .],,,[1,= 1)(2 Tkkm
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 and 1,
0=0,=, }{ −km
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 where using Eq. (5) , 1,
0=0,=, }{ −km

niniK  can be obtained from Eq. (7) . 
 ),( stk can be expressed as: 

                     ,=)()(),( s
TT

t
T XKXsKtstk ΦΦ≅ φφ  

where 1)(
0=,, ][= −+ΦΦ kkm

jiji  is a non-singular matrix given by tXt Φ=)(φ  with a standard basic vector 
,...,,[1,= 2ttX t .]1)( Tkkmt −+  If we take ΦΦ KK T=~

 , we can write  

                           .~=~),( ,

1)(

0=

1)(

0=

ji
ji

kkm

j

kkm

i
s

T
t stKXKXstk ∑∑

−+−+

≅

  3. Matrix representation of 1 and 2 

In this section we drive formulas for numerical solvability of integro-differential equation (1)  with 
conditions (2)  based on BMS functions of the operational Tau method. we can assume that in ,(1)  the 
nonlinear analytic functions can be expanded as  
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)(),(= 1 sstk pγ and )(),(=),( 22 sstkstk pp δ For )1,...,=( mp ,where )(spγ , ),(spδ )1,...,=( mp  are 
continuous functions. Therefore, equation (8)  transform to following equation  
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Now we convert equations (9)  and (2)  to the corresponding algebraic equations in the following three 
steps 3.1, 3.2 and 3.3.  

3.1. Matrix representation of differential part 
Let us ,)](),(),...,(),(),...,(),(),...,(),([=)( 1,11,11,10,,01,01,00,0

T
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polynomial basis vector given by ,=)( tXt Φφ  where Φ  is a non-singular matrix. Also for any matrix P , 
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We recall the following properties from [17].  

Lemma 1. Let )(tum  be a polynomial as  
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Theorem 1. For any linear differential operator D defined by (1)  and any series ),()( ttu Tφu≅ that 
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3.2. Matrix representation of integral part 
Equation (9)  shows that the using of the Tau method requires that )(tu p  must be written as the product of a 
matrix and a vector. The following result is concerned with approximation of the nonlinear functions.  
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where B is an upper triangular Toeplitz matrix having the following structure 
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which states the lemma hold for p=2. So we assume the validity of the proposition for k  and transit to 1+k  
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Following the structure of matrix B in Lemma 2, we can write 
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Now, we present the operational Tau representation of the integration terms of (9)  in Theorems 2 and 

3  . Using Theorems 2 and ,3  we obtain operational Tau matrix for Volterra and Fredholm integration terms 
of (9) . We give the following theorems whose proof  is based mainly on Lemma 2.  
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and B has been given in Lemma 2. 
Proof.  using Lemma 2 , we have:  
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the integration term can be written as:  
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On the other hand, we have  
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Theorem 3. Let  the analytic functions u(s) and mpstk p ,...,2,1,),(2 =   be expressed as:  
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where 1)(
0=,,1,11,10,,01,00,0 ][=,],...,,,...,,...,,[= −+

−−− ΦΦ kkm
jiji

T
kmkkm uuuuuuu  is a non-singular matrix and 

Tkkm
s sssX ],...,,[1,= 1)(2 −+ , then we have 

 ,)(),( 2
1

2

1

0 tp
pTp

p XMBdssustk −Φ≅∫ u  

such that 2pM  for mp ,...,2,1=  is a matrix having the following form  
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and B has been given in Lemma 2.  
Proof. According to Lemma 2 :  

 ,)( 1
s

pTp XBsu −Φ≅ u  

also 
 .)],(),...,,(),,([)(),( 2

1)(
22

1
2

T
p

kkm
pp

pTp
p stksstskstkBsustk −+−Φ≅ u  

We can write:  

 ,~=),(
),(2

1)(

0=

1)(

0=
2

jni
jip

kkm

j

kkm

i

n
p stKsstk +

−+−+

∑∑  

the integration term can be written as:  
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on the other hand, we will have 
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so that 2pM For mp ,...,2,1=  having has the following form: 
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3.3. Matrix representation for the supplementary conditions 
Replacing t

T
nini

k

n

m

i
Xutu Φ≅ ∑∑ − u=)( ,,

1

0=0=
ψ  on the left hand side of (2) , it can be written as  

 ].[)]()([
2

1(2)

1

1(1)

=1
2

1(2)
1

1(1)

=1
t

s
jst

s
js

dn

s

Ts
js

s
js
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s
XcXctuctuc −−−− +Φ≅+ ∑∑ ηηu  

Let ][=
2

1(2)

1

1(1)
=1 t

s
jst

s
js

dn

sj XcXcA −− +∑ ηη  where Tkkm
t tttX ],...,,[1,= 1)(

1
2

111

−+  and ,..,[1,= 2
222

ttX t  

.], 1)(
2

Tkkmt −+  Thus if we take ,=~ uu TΦ  the (jth) condition of (2)  is converted to ,1,2=,=~ jdA jj
Tu  

...., dn  Now by setting A as the matrix with columns jA , dnj ...,,1,2=  and by setting .],...,,[= 21
T

dndddd  

as the vector that contains right-hand side of supplementary conditions, they take the form .=~ dATu  
Also in the righthand side of (9) , we assume that  

 ,=)( ,,
0=

1

0=
t

T
nini

m

i

k

n

XFFtF Φ≅ ∑∑
−

ψ  

that .],...,,,...,,...,,[= 1,11,10,,01,00,0
T

kmkkm FFFFFFF −−−  We take ,=~ FF TΦ  thus .~)( t
T XFtF ≅  

 Consequently, using Theorem (1)  and the results of 3.1, 3.2  and 3.3  parts, we obtain equations (9)  
and (2)  as following : 
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Now setting  
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p
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and 
 ],~,...,~,~,,...,,[= 1)(1021 dnkkmdn FFFdddg −−+  

where iΠ  denotes the (ith) column of Π , system of (10)  can be written as gGT =~u  which must be solved 
for the unknown coefficients, .~,...,~,~,...,~,...,~,~

1,11,10,,01,00,0 −−− kmkkm uuuuuu  

4. Illustrative Examples 
We apply the present method in this section and solve some examples  given in different papers. The 
computations associated with the examples were performed using Mathematica. 
Example 4.1. Consider the following VFHIDE [24] 

 ,10,
12
17

6
13

2612
=)()()()()(2)()(

2341

00

'' ≤≤+−−−+−−−+− ∫∫′ tttttdssustdssusttuttuttu
t

  

with the initial condition 1=(0)2(1)2(0)1,=(0) uuuu +−′ . 
In this example we have )(=),(1,==,=)(,=)(2,=)(2,= 121210 ststkttpttptpnd −− λλ  

=),(, 2 stk ),())(,(=))(,(, 21 sususGsusGst =− and the exact solution is 21=)( tttu −+ . For 
computational details and numerical implementation of the proposed Tau method, we take 1=2,= km , so 
the following simple matrices in the case of BMS functions will be obtained  
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and using the given relations, we obtain the system of equations follows 
 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧
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=−−
=

,
12
17~

4
1~

3
1~

2
3

,1~2~
,1~

0,20,10,0

0,20,1

0,0

uuu

uu
u

 

 
with the exact solution, 1=~1,=~1,=~

0,20,10,0 −uuu . 
Thus we have .1][1,1,=~ T−u  Using the computation ,~)(= 1uu −ΦT  we can be given the approximate 

solution as )(tTφu  that it is ,1 2tt −+  which is the exact solution of this example.  

Example 4.2. Consider the first-order nonlinear VFHIDE [3] 

 10,1=2)()(
2)(2

0
≤≤−+−′ −−∫ ttedstsetutu tsut

  

 with the initial condition 0)0( =u . 
In  this  example  we   have   ,1=)(1,=)(1,= 10 tptpnd − =))(,(,=),(0,=,2= 1121 susGtsstkλλ   

)(2 sue− and the exact solution is ttu =)( . By applying the Tau method for 1=1,= km , will be obtained  
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Thus, we can obtain the approximate solution as ,)( ttT =φu  which is the exact solution of this example. 

Example 4.3. Consider the second-order nonlinear VFHIDE [13]  

 1,0),(sin=)()(sin)()()( 221

0
≤≤−−−′+′′ −∫ ttedssuetttututtu ts   

with the initial conditions 1=(0)=(0) uu ′ . The exact solution of this example is tetu =)( . 
We solve this example by using the Tau method. The comparison between the present method and 

method of [13] is shown in Table 2 . As we see in this table, it is clear that the result obtained by the present 
method is very superior to that by the method of [13]. Also, the result for 2=7,= km , in this table will be 
presented. As we observed in this table with increasing the value of km, , particular m , the resultant 
accuracy increased as well. Figure 3 .  
Example 4.4. Consider the first-order nonlinear problem[25]  

 1,0,
10

(1)cos1=))((cos)(
5
1)(

11

0

' ≤≤−−
+

+∫ tedssusuetu
t

st  

with the initial condition 0.=(0)u  The exact solution of this example is .=)( ttu  
The absolute difference errors for 2=2,3,4,= km  in Table 1 are being observed. In addition the last 

columns of this table indicates the existed result in [25]. As you can observe in the presented method  the 
less basic function the more accuracy with respective method [25], can be seen. Figure 1 shows a plot of the 
exact and approximate solutions of this example for 2=2,= km  in (c) and display a plot of the absolute 
difference errors of this example for the variant value of m, k, in (d).  

 
                                        Table 1. Absolute errors of  Example 4.4 

t                            Present method Method of [25] 
 

 m=2 m=3 m=4 j=9 j=17 
  k=2    

0.0 0 0 0 0 0 
0.1 6.51 710−×  1.74 810−×  9.47 1110−× 1.38 510−×  2.99 610−×  

0.2 2.75 610−×  7.32 810−×  3.99 1010−× 2.52 510−×  5.59 610−×  

0.3 6.52 610−×  1.73 710−×  9.46 1010−× 3.59 510−×  9.77 610−×  

0.4 1.21 510−×  3.25 710−×  1.77 910−×  4.86 510−×  1.29 510−×  

0.5 2.03 510−×  5.36 710−×  2.92 910−×  6.82 510−×  1.73 510−×  

0.6 3.06 510−×  8.16 710−×  4.44 910−×  9.06 510−×  2.23 510−×  

0.7 4.39 510−×  1.17 610−×  6.39 910−×  1.09 410−×  2.66 510−×  

0.8 6.08 510−×  1.62 610−×  8.83 910−×  1.26 410−×  3.34 510−×  

0.9 8.15 510−×  2.17 610−×  1.18 810−×  1.47 410−×  3.87 510−×  
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Table 2. Absolute errors of Example 4.3 
t Present method Method of [13] Present method 
                 m=4     m=5

 

m=5 m=7 
 k=2 k=3       k=3

 

k=5 k=2 
0.0 0 0 0 0 0 
0.2 7.03 810−×  4.80 1010−×  1.41 1010−×  4.00 710−×  6.20 1310−×  
0.4 3.05 710−×  6.99 810−×  2.12 1010−×  8.10 610−×  7.41 1210−×  
0.6 3.89 610−×  2.46 710−×  8.67 910−×  7.73 510−×  2.54 1110−×  
0.8 8.98 610−×  2.14 810−×  8.24 1010−×  4.24 410−×  7.34 1110−×  
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Figure 1: (a ,c) The exact and the approximate solution of  Example 4.4 and 4.5, respectively; (b, d) The absolute 

difference errors of Example 4.4 and 4.5 for variant value of m, k, respectively; 

                 
                             Table 3.  Exact solutions and approximate solutions of Example 4.5 

 
Example 4.5. Consider the first-order nonlinear VFHIDE [4] 

              1,0,
3

)(2cos2
3

)(cos)(sin2=)()(cos)( 2

0
≤≤−−−−−′ ∫ ttttdssusttu

t
 

with the initial condition 1.=(0)u  The exact solution is ).()(=)( tsintcostu −  
Table 3  shows the approximate solutions and exact solutions of the present method and the methods of 

t Exact solution Present method Method of [4] 
  m=3 m=4 m=8 
  k=2 k=4 k=8 

 

0.1 0.895170 0.895170 0.895170 0.894912 0.895186 
0.3 0.659816 0.659818 0.659816 0.659114 0.659732 
0.5 0.398157 0.398172 0.398152 0.397870 0.398169 
0.7 0.120624 0.120621 0.120624 0.120360 0.120671 
0.9 -0.161716 -0.161723 -0.161716 -0.161466 -0.161638 
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[4].We display a plot of the approximate and exact solutions of this example for ,2=3,= km in Figure 1(c) 
and a plot of absolute difference errors of this example for the variant value of m, k in Figure 1(d). 
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 Figure 2: The comparison between absolute errors of Example 4.3 for some m and k; 
 

5. Conclusion 
Our results indicate that the Tau method with BMS basis functions can be regarded as a structurally simple 
algorithm that is conventionally applicable to the numerical solution of VFHIDEs. In fact in this method, by 
using the Tau operational matrices the mentioned equations was converted to a system of nonlinear algebraic 
equations. The advantages of this method are as (1) It solves nonlinear VFHIDEs without linearizing the 
nonlinear terms. (2) It improves accuracy by increasing m, k,( particular m) reasonably. (3) the time of 
calculations is short. 
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