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Abstract. In this paper, we describe fully parallelized architectures for one-to-one, one-to-many, and 
many-to-many sequence alignments using Smith-Waterman algorithm. The architectures utilize the 
principles of parallelism and pipelining to the greatest extent in order to take advantage of both intra-
sequence and inter-sequence parallelization and to achieve high speed and throughput. First, we describe a 
parallelized Smith-Waterman algorithm for general single instruction, multiple data (SIMD) computers. The 
algorithm has an execution time of O(m+n), where m and n are the  lengths of the two biological sequences 
to be aligned. Next, we propose a very-large-scale integration (VLSI) implementation of the parallel 
algorithm. Thirdly, we incorporate a pipelined architecture into the proposed VLSI circuit, producing a 
pipelined processor that can align a query sequence with a database of sequences at the speed of O(m+n+L), 
where m is the length of the query sequence and n and L are the maximum length and the number of 
sequences in the database, respectively. Finally, we make use of our pipeline architecture to perform all 
possible pairs of pair-wise alignments for a group of L sequences with a maximum sequence length of m in 
O(mL) time. Checking all pairs of pair-wise alignments is essential to the overlap-layout-consensus (OLC) 
approach for de novo assembly. 

Keywords: Sequence alignment, sequence database search, Smith-Waterman algorithm, parallel algorithm, 
VLSI circuit, pipelined architecture, de novo assembly, overlap-layout-consensus approach. 

1. Introduction  
A sequence alignment is a way of matching two biological sequences to identify regions of similarity 

that may indicate functional, structural or evolutionary relationships between the two sequences. Sequence 
alignment is a fundamental operation of many bioinformatics applications such as sequence assembly, 
sequence database search, and short read mapping. There are two different types of sequence alignments: 
global alignments and local alignments. Global alignment is to find the best alignment across the entire two 
sequences. Local alignment is to find regions of high similarity in parts of the sequences. Today, local 
alignments are often preferable. In this paper, we focus on local sequence alignments. 
     The Smith-Waterman algorithm [1] is the most sensitive algorithm for performing sequence alignment. 
Here sensitivity refers to the ability to find the optimal alignment. The Smith-Waterman algorithm uses a 
linear gap function which was later improved by Gotoh with affine gap penalties [2]. The Smith-Waterman 
algorithm requires O(mn) computational steps, where m and n are the lengths of the two sequences to be 
aligned. O(mn) is quite efficient for comparing a pair of sequences. However, it’s inadequate for performing 
multiple alignments, a common task for sequence database searches. A sequence database search is to 
compare a query sequence with a database of sequences and identify database sequences that resemble the 
query sequence above a certain threshold. To search a database of L sequences, L sequence alignments must 
be performed. Thus, without any parallelization, a time of O(mnL) is required to search a sequence database, 
where m is the length of the query sequence and n and L are the maximum sequence length and the number 
of sequences in the database, respectively. 
     Due to substantial improvements in multiprocessing systems and the rise of multi-core processors, 
parallel architectures such as Field Programmable Gate Arrays (FPGAs), Graphics Processing Units (GPUs) 
and Very-Large-Scale-Integration (VLSI) circuits have been used to accelerate the Smith-Waterman 
algorithm and sequence database searches [3-28]. However, most of these previously established 
enhancements can only speed up the algorithm by a constant factor. That is, most of these enhancements still 
require an execution time of O(mn) to align two biological sequences and thus require O(mnL) time for a 
sequence database search. 
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     In [6], Hurley claimed without giving details that using O(n) processing elements a sequence database 
search can be done in O(n+N) time, where n is length of the query sequence and N is the size of the database. 
This is theoretically impossible. In theory, using p processing elements, you can only speedup an algorithm’s 
execution time from T to T/p. Sequentially, the best execution time for a sequence database search is O(n2N), 
where N is the size of the database and n is the length of the query sequence and database sequences. Thus, 
the best can be achieved with O(n) processing elements is O(n2N)/O(n) which is O(nN) not O(n+N). 
     In [12], Rajko et al. showed that they can use p processors to cut the execution time of aligning two 
sequences from O(mn) down to O(mn/p) as long as p=O(n/log n), where m and n are lengths of the two 
sequences to be aligned.  Since p is limited by O(n/log n), in the extreme, their algorithm has an execution 
time of O(mlog n). 
     Besides parallel processing, heuristic methods are other commonly used approaches for speeding up 
sequence database searches. Heuristic methods are intended to gain computational performance, potentially 
at the cost of accuracy or precision. Popular alignment search tools in this category such as FASTA [29], 
BLAST [30] and BLAT [31] indeed gain some speed. However, the sensitivity is compromised. For 
sequence database searches, sensitivity refers to the ability to find all database sequences that resemble the 
query sequence above a threshold. 

     Here, we describe a parallel Smith-Waterman algorithm for general Single Instruction Multiple Data 
(SIMD) computers which achieves a significant improvement in speed over previous algorithms without 
sacrificing any sensitivity. This parallel algorithm requires an execution time of O(m+n) to align two 
sequences with lengths of m and n, respectively. Second, we propose a Very Large Scale Integration (VLSI) 
implementation of the parallel algorithm. Thirdly, we use the pipeline technique to overlap the execution 
times of alignment checking of database sequences. The resulting pipeline has a throughput rate of O(1) 
execution time per database sequence. Consequently, the time complexity of the proposed pipeline processor 
is O(m+n+L), where m is the length of the query sequence and n and L are the maximum sequence length 
and the number of sequences in the database, respectively. Finally, we expand our pipelined architecture to 
perform all possible pair-wise alignments for a group of sequences. Checking all pairs of pair-wise 
alignments is essential to the overlap-layout-consensus (OLC) approach for de novo assembly [32-34]. 
Without any parallelization, O(m2L2) time is required to align all possible pairs of sequences for a group of L 
sequences with a maximum sequence length of m. For the same task, our pipeline processor boasts a running 
time of O(mL). 

2.   The Smith-Waterman Algorithm  
The Smith-Waterman algorithm is used to compute the optimal local-alignment score. Let A = a1 a2 ... am 
and B = b1 b2 ... bn be the two sequences to be aligned. A weight w(ai, bj) is defined for every pair of residues 
ai and bj. Usually w(ai, bj) <= 0 if ai ≠ bj, and w(ai, bj) > 0 if ai = bj. The penalties for starting a gap and 
continuing a gap are defined as ginit and gext respectively. The optimal local alignment score S can be 
computed by the following recursive relations: 

 
     Ei,j = max { Ei,j-1-gext, Hi,j-1-ginit }                                          (1) 
      Fi,j = max { Fi-1,j-gext, Hi-1,j-ginit }                                          (2) 
     Hi,j = max {0, Ei,j, Fi,j, Hi-1,j-1+w(ai,bj) }                                        (3) 
     S = max { Hi,j };                                                   (4) 

The values of Ei,j, Fi,j and Hi,j are 0 when i<1 and j<1. The Smith-Waterman algorithm is a dynamic 
programming algorithm requiring an m×n matrix, or so-called alignment matrix, to store and compute H, E, 
and F values column by column.

  
3. An Intra-sequence Parallelized Smith-Waterman Algorithm For SIMD 
Computers 
    Intra-sequence parallelization refers to parallelization within a single pair of sequences, in contrast to 
inter-sequence parallelization, where parallelization is carried out across multiple pairs of sequences. 
     Figure 1 shows the computational dependencies of the Smith-Waterman alignment matrix. This dependency 
structure illustrates the feature commonly exploited by existing parallelized Smith-Waterman algorithms in the 
literature. Our parallelization utilizes the following scheme: Since cells on a bottom-left to top-right diagonal have the 
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same sum of indices, we number those diagonals with their sums of indices. Noticeably, cells of a diagonal do not 
depend on other cells of the same diagonal and thus can be computed simultaneously. Furthermore, cells of a diagonal 
only depend on cells of the previous two diagonals. Thus, the basic idea of the parallelization algorithm is to fill the 
matrix diagonal by diagonal starting from the top-left corner. Moreover, cells of a diagonal are filled by multiple 
processors simultaneously. 

 
Fig. 1. Computational dependencies in the Smith-Waterman alignment matrix. 

 
   In parallel, all processor i, 1<= i <=m do  
        E[i][0] = F[i][0] = H[i][0] = maxH[i] =  0; 
   In parallel, all processor i, 1<= i <=n do  
        E[0][i] = F[0][i] = H[0][j] = 0; 
   for (diag=2; diag<=m+n; ++diag) { 
        if (diag<=m+1) first = diag-1; 
        else first = m; 
        if (diag-n<=1) last = 1; 
        else last = diag-n; 
        In parallel, all processor i, first>= i >= last do  { 
             ji = diag – i; 
              E[i][ji]  = max {E[i][ji-1]-gext, H[i][ji-1]-ginit}; 
             F[i][ji]  = max {F[i-1][ji]-gext, H[i-1][ji]-ginit}; 
             H[i][ji]  = max {0,E[i][ji], F[i][ji], H[i-1][ji-1]+w(ai,bji)}; 
             if (H[i][ji]>maxH[i]) maxH[i] = H[i][ji]; 
        } 
   } 
   S = max { maxH[1], maxH[2], …max H[m]}; 
 

Fig. 2. The pseudo code. 
The pseudo code of the parallel algorithm is given in Figure 2. Note that in the pseudo code, we use the in-
parallel statement to indicate things to be done by processors simultaneously. The in-parallel statement has 
the following syntax: 
     In parallel, all processor i, lo<=i<=hi do { 
 … 
     } 
Only processors with processor numbers between lo and hi are activated. Also note that in the pseudo code, ji 
is a variable for processor i only. In other words, different processors have different j’s. Furthermore, array 
maxH is used for processors to keep track of the largest Hi,j. Since there are m+n-1 diagonals, the loop 
repeats m+n-1 times and thus the parallel algorithm has an execution time of O(m+n). 
4.  A VLSI Implementation 
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    First we design a small processing element according to the recursive relations (1), (2) and (3). Processing 
elements will be used to implement cells of Smith-Waterman’s alignment matrix. Thus, each processing 
element will be numbered with the indices of its corresponding cell in Smith-Waterman’s alignment matrix. 
As follows, processing element PEi,j will be used to compute values Ei,j, Fi,j and Hi,j.  As shown in Figure 3,  
processing element PEi,j consists of 3 registers Ei,j, Fi,j and Hi,j and several simple combinational circuits such 
as adders and comparators (for finding maximum of two or three values). Since Hi,j depends on Ei,j and Fi,j, 
processing element PEi,j has two computational states and thus requires two clock signals to complete its 
computation of values Ei,j, Fi,j and Hi,j. Since the longest data path in the processing element consists of an 
adder and a comparator, the clock period, i.e. time between each clock signal, only needs to be set to the time 
delay caused by an adder and a comparator. 
     Each processing element PEi,j  has 5 input ports and 3 output ports. Input ports A and B are for inputting 
residues ai and bj from the two sequences to be aligned. Input ports Ein, Fin and Hin are for inputting 
corresponding values from cells on which PEi,j  depends. Output ports Eout, Fout and Hout are for exporting 
values to cells depending on PEi,j. Additionally, in order to keep track of the largest hi,j value, register Hi,j of 
processing element PEi,j is connected to register maxHi as shown in Figures 3. 

 
Fig. 3. Processing element PEi,j and register maxHi. 

Next, we map our algorithm into a VLSI circuit. Figure 4 depicts our VLSI circuit at the register level for 
m=4 and n=6. Processing elements and registers maxHi are connected together according to recursive 
relations (1), (2), (3) and (4). As shown in Figure 4, processing elements are arranged into levels such that 
processing elements corresponding to cells of a diagonal are placed on the same level and thus will compute 
their values at the same time. For clarity of the logic of the VLSI circuit, levels are numbered with their 
corresponding diagonal numbers. Since the size of Smith-Waterman’s alignment matrix is mn, the number of 
processing elements used in our VLSI circuit is mn. 

5.   A Pipeline Architecture for Sequence Database Searches 
     Since sequence database search is different from sequence alignment, first, we modify our processing 
element PEi,j as shown in Figure 5. Instead of keeping track of the largest hi,j, the new processing element 
PEi,j will generate a SELECT signal when its Hi,j value is above a threshold. 

To speed up sequence database searches, a pipelined architecture is incorporated into the VLSI circuit. 
Pipelining is a natural concept for increasing the throughput of a system when processing a stream of data, 
even though pipelining cannot speed up the process of a single datum. The space-time diagram in Figure 6 
reveals the advantages of the pipelined architecture in processing database sequences. The diagram shows 
the succession of the levels in the pipeline with respect to time. From the diagram one can observe how 
independent sequences are processed concurrently in the pipeline. 
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Fig. 4. The VLSI circuit, m=4, n=6. 

 
Fig. 5. Modified processing element PEi,j. 

 
Fig. 6. Pipeline space-time diagram 

With m+n-1 levels in the VLSI circuit, we naturally employ a linear pipeline architecture with m+n-1 stages 
(shown in detail in Figure 7). To do so, we add m+n-1 registers to the VLSI circuit such that each register 
stores the database sequence of the corresponding stage (i.e. level). Additionally, each of these registers has 
an “S” flag which will be used to indicate whether the database sequence is selected or not. As shown in 
Figure 7, processing elements’ select signals are connected to S flags of the corresponding database 
sequence registers. Furthermore, according to recursive relation (3), Hi,j depends on Hi-1,j-1 which is not in the 
immediate previous level of Hi,j. Thus, for the purposes of buffering and synchronization, hi,j buffer registers 
are added to the circuit to hold Hi,j values. Since a processing element PEi,j needs two clock signals to 
compute its values, our pipeline takes 2 clock signals to shift a database sequence from one pipeline stage to 
the next. 

     After the first database sequence completes its alignment checking, an additional database sequence checking will 
complete with each subsequent stage time. Consequently, the pipeline processor has a throughput rate of one database 
sequence per two clock signals. In other words, the pipeline has a time complexity of O(1) time per database sequence. 
Moreover, because the first sequence requires O(m+n) time to complete its alignment checking, where m is the length 
of the query sequence and n is the maximum length of the sequences in the database, the total time complexity of the 
pipeline processor is O(m+n+L), where L is the number of sequences in the database. 
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Fig. 7. The single-chip pipeline processor, m=4, n=6. 

 

6.  All pairs of pair-wise alignments 
    In bioinformatics, sequence assembly refers to aligning and merging fragments of a much longer DNA 
sequence in order to reconstruct the original sequence. Sequence assembly is needed as DNA sequencing 
technology cannot read whole genomes in one continuous string, but rather in small pieces of between 20 
and 1000 bases, depending on the technology used. Typically, the short fragments, called reads, result from 
shotgun sequencing of genomic DNA [35, 36]. 
     Sequence assembly can be categorized into two major types: 

1. Comparative: assembling reads against an existing reference sequence, resulting in a sequence that is 
similar but not necessarily identical to the reference sequence. [37, 38] 

2. De novo: assembling reads to create a full-length sequence in the absence of a reference genome 
sequence.[37-39] 

     The fundamental idea of comparative assembly utilizes Smith-Waterman’s algorithm to map reads into 
locations in the reference sequence. Using a pipeline similar to that which we have described previously for 
sequence database searches, we can find locations of reads in the reference sequence simultaneously and thus 
vastly speed up sequence assembly. 
     In contrast, de novo assembly offers more challenges. De novo assembly algorithms were first developed 
in the 1980’s and based on the overlap-layout-consensus (OLC) approach [32-34]. An essential and 
extremely time-consuming step of the OLC approach involves constructing a so-called overlap graph from 
reads. Constructing the graph requires performing a pair-wise alignment for each and every pair of reads and 
thus O(m2L2) time, where L is the number of reads and m is the maximum length of reads. Replacing 
sequential alignments with our proposed pipeline architecture  reduces the execution time significantly to 
O(mL). 
 
6.1  A pipeline architecture for all pairs of pair-wise alignments 
    Figure 8 is a schematic diagram of our pipelined architecture for performing all pairs of pair-wise 
alignments. Here, reads are shifted across the pipeline and compared with each other. As used in our 
database search pipeline, there are stage registers and a fixed register in the pipeline. At every step, reads in 
each of the stage registers will be simultaneously compared with fixed register reads. Each stage register 
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holds a single read at a time while the fixed register will initially hold a single read and accumulate an 
additional read with each step.  
     Each read will initially be inserted into the first stage register and passed along to the next stage register 
with each time step. After a read has shifted through all stage registers, i.e. completed alignment with reads 
in the fixed register, it will be added to the fixed register. Thus, all subsequent reads traveling through the 
stage registers will be compared with this newly added fixed register read. When the last read has shifted 
through all stage registers, all pairs of pair-wise alignment are complete. 
     Let L be the number of reads and m is the maximum length of reads. Since only L-1 reads need to be in the fixed 
register, the size of the fixed register is no greater than m(L-1). Since the length of the pipeline is the size of the fixed 
register, the processing time of the pipeline is O(mL). 

 
Fig. 8. Pipeline architecture for performing all pairs of pair-wise alignments. 

6.2  A circular pipeline architecture 
     Given that there are L reads, at any instant, at most L stages of the pipeline are actually used. In order to save on 
hardware cost, we can arrange our pipeline as a ring with a size of L and shift reads around the ring (Figure 9). To 
complete all pairs of pair-wise alignments, reads need to go around the ring about m times. The total processing time 
remains the same. However, the number of processing elements of the pipeline is reduced from m2L to mL and the 
number of shift registers is reduced from mL to L. 

7.  Parallel Efficiency 
Parallel efficiency is an important performance metric for parallel processing. Parallel efficiency, E, defined as 

previously by others [40] is E = Tseq/(p×Tpar), where Tpar is the runtime of the parallel algorithm, Tseq is the runtime of 
the best sequential algorithm and p is the number of processors used. This value, typically between zero and one, 
quantifies how well processors are utilized in solving the problem. An efficiency of 1 is ideal, indicating that 100% of 
the time processors are used. Table 1 summarizes the efficiencies of our parallel algorithm and pipelines. Clearly, our 
pipelines use processing elements efficiently. Note that, to be exact, parallel efficiency E for our sequence database 
search pipeline is O(mnL)/O(mn×(m+n+L)) which is O(L/(m+n+L). However, in reality, L is much bigger than m+n. 
Thus, E for our sequence database search pipeline is O(1). 
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Fig.9. A circular pipeline architecture. 
 

Table 1. Algorithm Runtimes and Corresponding Parallel Efficiencies. 
 

 
 

VLSI circuit for parallelized 
Smith-Waterman Algorithm 

Pipeline for sequence 
database search 

Circular pipeline for all pairs 
of pair-wise alignment 

P:Number of PE’s used  mn mn mL 
Tseq O(mn) O(mnL) O(m2L2) 
Tpar O(m+n) O(m+n+L) O(mL) 
E= Tseq/(p×Tpar) O(1/(m+n)) O(1) O(1) 

 
8. Practical Considerations 
    For de novo assembly, L is in billions and m is in hundreds. Since our circular pipeline requires O(mL) 
processing elements, our circular pipeline needs an enormous hundred billions of processing elements. 
However, as of today’s technology, 100 trillion transistors could fit on a single chip [41]. Since a register or 
a simple combinational circuit such as adder or comparator doesn’t need thousands of transistors, 100 trillion 
of transistors should be enough for hundred billions of processing elements. As a result, it’s possible to 
implement our pipeline processor in a single VLSI microchip. 
9.  Conclusion 

In this paper, we have described an O(m+n) time intra-sequence parallelized Smith-Water algorithm for general 
SIMD computers, where m and n are lengths of the two sequences to be aligned. We have shown a VLSI 
implementation of the parallel algorithm. We have illustrated that by incorporating a pipelined architecture into the 
VLSI circuit, we can speed up sequence database searches without sacrificing sensitivity. The resulting pipeline 
processor can do sequence database searches at the speed of O(m+n+L), where m is the length of the query sequence 
and n and L are the maximum sequence length and the number of the sequences in the database, respectively. Moreover, 
we have demonstrated that our pipelined processor can do all pairs of pair-wise alignments in O(mL) time for a group of 
L sequences with a maximum sequence length of m. Our novel architecture may greatly change the course of the 
sequencing industry, particularly in next-generation technology development, and accelerate the pace of biological 
analyses and discoveries. 
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