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Abstract. In this paper ,  a numerical solution based on parametric   cubic spline is used for finding the 
solution of boundary  value    problems arising in the calculus of variations .  The present   approach has less 
computational coast and gives better   approximation .  This approximation reduce the problems to an   explicit 
system of algebraic equations .  Some numerical examples   are also given to illustrate the accuracy and 
applicability of the   presented method.  
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1. Introduction  
The calculus of variations and its extensions   are devoted to finding the optimum function that gives the 
best   value of the economic model and satisfies the constraints of a   system .  The need for an optimum 
function ,  rather than an optimal   point ,  arises in numerous problems from a wide range of fields 
in   engineering and physics ,  which include optimal 
control ,  transport   phenomena ,  optics ,  elasticity ,  vibrations ,  statics and dynamics of   solid bodies and 
navigation[1] .  In computer vision the calculus of   variations has been applied to such problems as estimating 
optical   flow [2] and shape from shading [3] .  Several numerical methods for   approximating the solution of 
problems in the calculus of   variations are known .  Galerkin method is used for solving   variational problems 
in [4] .  The Ritz method [5] ,  usually based on   the subspaces of kinematically admissible complete 
functions ,  is   the most commonly used approach in direct methods of solving   variational problems .  Chen and 
Hsiao [6] introduced the Walsh   series method to variational problems .  Due to the nature of the   Walsh 
functions ,  the solution obtained was piecewise constant.   Some orthogonal polynomials are applied on 
variational problems to   find the continuous solutions for these problems [7-9] .  A simple   algorithm for 
solving variational problems via Bernstein   orthonormal polynomials of degree six is proposed by Dixit et 
al.   [10] .  Razzaghi et al .  [11] applied a direct method for solving   variational problems using Legendre 
wavelets .  Adomian   decomposition method has been employed for solving some problems   in calculus of 
variations in [12]. 
       Spline functions are special functions in the space of which   approximate solutions of ordinary 
differential equations .  In other   words spline function is a piecewise polynomial satisfying certain   conditions 
of continuity of the function and its derivatives .  The   applications of spline as approximating ,  interpolating 
and curve   fitting functions have been very successful[13-16] .  In [17] ,  a  cubic non-polynomial spline 
technique has been developed for the   numerical solutions of a system of fourth order boundary 
value   problems associated with obstacle ,  unilateral and contact   problems .  Quadratic and cubic polynomial 
and non-polynomial spline   functions based methods have been presented to find approximate   solutions to 
second order boundary value problems[18] .  Parametric   spline method for a class of singular two-point 
boundary value   problems has been developed by Rashidinia et al .  [19] .  The main   purpose of the present 
paper is to use parametric cubic spline   method for numerical solution of boundary value problems 
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which   arise from problems of calculus of variations .  The method consists   of reducing the problem to a set of 
algebraic equations.  
      The outline of the paper is as follows .  First ,  in Section 2 we   introduce the problems in calculus of 
variations and explain their   relations with boundary value problems .  Section $3$ outlines   parametric cubic 
spline and basic equations that are necessary for   the formulation of the discrete system .  Also in this 
section ,  we   report our numerical results and demonstrate the efficiency and   accuracy of the proposed 
numerical scheme by considering two   numerical examples.  

2. Statement of the problem 
 The genaral form of a variational problem is finding extremum of   the functional  
 

1 2 1 2 1 2[ ( ), ( ), , ( )] , ( ), ( ), , ( ), ( ), ( ), , ( ) .( )b

n na nJ u t u t u t G t u t u t u t u t u t u t dt′ ′ ′… = … …∫              (1) 
  

To find the extreme value of J ,  the boundary conditions of the   admissible curves are known in the 
following  form: 

( ) ,       1,2, , ,i iu a i nγ= = …                                                           (2) 

 ( )       1,2 , ., ,i iu b i nδ= = …                                                            (3) 

 The necessary condition for ( ), 1,2, ,iu t i n= …  to   extremize 1 2[ ( ), ( ), , ( )]nJ u t u t u t…  is to satisfy 
the   Euler-Lagrange equations that is obtained by applying the well   known procedure in the calculus of 
variation [5],  

   0 ,        1 , 2 , , ,    ( )
i i

G d G i n
u d t u

∂ ∂− = = …
′∂ ∂

                                           (4)  

subject to the boundary conditions given by Eqs .  (2)-(3). 
       In this paper ,  we consider the spacial forms of the variational   problem (1) as  
 

[ ( )] , ( ), ( ) ,( )b

a
J u t G t u t u t dt′= ∫                                                        (5) 

with boundary conditions  
( ) ,  ( ) ,u a u bγ δ= =                                                                      (6) 

 
 and  

1 2 1 2 1 2[ ( ), ( )] , ( ), ( ), ( ), ( ) ,( )b

a
J u t u t G t u t u t u t u t dt′ ′= ∫                                       (7) 

 
 subject to boundary conditions  

1 1 1 1,  ( ) ( ) ,u a u bγ δ= =                                                                     (8) 

2 2 2 2,  ( ) ( ) .u a u bγ δ= =                                                                    (9) 

 
Thus ,  for solving the variational problems (5) ,  we consider the   second-order differential equation 

 

0,( )G d G
u dt u

∂ ∂− =
′∂ ∂

                                                                   (10) 

 
 with the boundary condition (6) .  And also ,  for solving the   variational problems (7) ,  we find the solution of 
the system of   second-order differential equations  
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0,     1,2,( )
i i

G d G i
u dt u

∂ ∂− = =
′∂ ∂

                                                      (11) 

 
with the boundary conditions (8)-(9) .  Therefore ,  by applying   parametric cubic spline method for the Euler-
Lagrange equations   (10) and (11), we can obtain an approximate solution to the   variational problems (5) and 
(7).  

3. Parametric Cubic spline method 
Consider the partition  0 1 2{ , , , , }nt t t tΔ = … of [ , ] .a b R⊂  Let ( )kS Δ denote the set of piecewise polynomials 
of   degree k on subinterval 1[ , ]i i iI t t += of partition Δ .    In this work ,  we consider parametric cubic spline 
method   for finding approximate solution of variational problems. 

        Consider the grid points it  on the interval [ , ]a b  as   follows:  

0 1 2 1, ,n na t t t t t b−= < < < … < =                                                       (12) 

0 ,     0,1,2, , ,  it t ih i n= + = …                                                         (13) 

,b ah
n
−=                                                                     (14) 

 where n is a positive integer .  Let ( , )S t τΔ be   cubic spline function of class 2 [ , ]C a b that interpolates  ( )u t at 

the grid points 0{ }n
i it = .  Also,  ( , )S t τΔ depends on a parameter  0τ >  that is   called a parametric spline 

function also ,  ( , )S t τΔ  reduces to a cubic spline as 0τ → .  By considering   parametric cubic spline 
( , ) ( )S t S tτΔ Δ=  ,  the  spline function ( )S tΔ satisfies in the following   equation:  

1
1 1( ) ( ) ( ) ( ) ( ) ( ) ,[ ] ( ) [ ] ( )i i

i i i i
t t t tS t S t S t S t S t S t

h h
τ τ τ+

Δ Δ Δ Δ Δ + Δ +
− −′′ ′′ ′′+ = + + +         (15)   

 where 1[ , ],i it t t +∈ ( ) ( )i iS t u tΔ =  and  1 .i ih t t+= −   The Eq.(15) is a inhomogeneous ordinary  differential 
equation .  We solve the Eq.(15) and obtain the  constants of integration by using interpolation conditions at 
the  endpoints of the interval 1[ , ]i it t + ,  then we get the  result as follows:  
 
                          2

1
12

( ) ( )( ) sin sin
sin

[ ( ) ( )]i i
i i

w t t w t thS t M M
h hw w

+
Δ +

− −−= +  

                              2 2 21
1 1( ) [ ( )( ( ) ) ( )( ( ) )]i i

i i i i
t t t th w wM u M u

w h h h h
+

+ +
− −+ + + +              (16) 

 where  ( ) ( ) , ( )i i i i iS t u t u S t MΔ Δ′′= = =  and .w h τ=  We use the continuity of first derivative of   spline 
function at it ,  and obtain the following result:    
 

2
1 1 1 12 2 , 1,2   , , 1 ,( )i i i i i ih M M M u u u i nα β α+ − + −+ + = − + = … −                               (17) 

where  

2 2
1 1csc 1 ,    1 cot . ( ) ( )w w w w

w w
α β= − = −                                            (18) 

4. Numerical examples 

In this section,  in order to illustrate the performance of the parametric cubic   spline method ,  we present two 
examples.  

Example 1. We first consider the following variational   problem with the exact solution 3( ) tu t e= in [12]: 
1 3 2

0
min ( ) ( ) 4 ,( )tJ u t u t e dt′= + −∫                                                  (19) 

subject to boundary conditions   
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         (20) 

       Considering the Eq .  (19) ,  the Euler-
Lagrange equation of this   problem can be written in the following  form:  

3( ) ( ) 8 0.tu t u t e′′ − − =                                             (21) 

    The solution of the second-order differential equation (21) with   boundary conditions (20) is approximated 
by the presented spline   method .  For our purpose ,  We consider the boundary value problem   (21) in general 
form as follows:  

( ) ( ) ( ) ( )'' , u t g t u t f t= +                                           (22) 
 
where ( ) 1g t =  and 3( ) 8 tf t e=  .  The exact solution of this   problem is 3( ) tu t e=  .  For a numerical 
solution of the   boundary-value problem (22) ,  the interval [ 0,1] is divided into   a set of grid points with step 
size h .   Setting 0it t t ih= = + ,   in Eq .  (22) ,  we obtain 

( ) ( ) ( ) ( )'' ,i i i iu t g t u t f t= +                                         (23) 
 by using the assumption ( )i iS t MΔ′′ =  in  (23), we   have  

( ) ( ) ( ) .i i i iM g t u t f t= +                                          (24) 

 Replacing iM  as Eq .  (24) in Eq. (17) ,  for 1,2, , 1,i n= … −  we get  

2
1 1 1 1 1 1 1 1  ( ( ) ( )) 2 ( ( ) ( )) ( ( ) ( )) 2 ,  ( )i i i i i i i i i i i ih g t u f t g t u f t g t u f t u u uα β α− − − + + + + −+ + + + + = − +            (25) 

or 

2 2 2 2
1 1 1 1 1 1( ) 1 2 ( ) 1 ( ) 1 ( ) 2 ( ) ( ) ,( ) ( ) ( ) ( )i i i i i i i i ih g t u h g t u h g t u h f t f t f tα β α α β α− − + + − +− + + + − = − + +            (26) 

 where 3
0 1, nu u e= =  .  The linear system (26) consists of  ( 1 )n − equations with ( 1)n −  unknowns  

1 2 1, , , nu u u −…  .  Solving this linear system ,  we obtain   the approximations 1 2 1, , , nu u u −…  of the solution  ( )u t at 
the grid points 1 2 1, , , nt t t −… .  Using   Taylor's series for Eq .  (26) ,  we can obtain truncation error as   follows:  

)(
4 6

2 ( 4 ) ( 6 )1 2( ) (1 12 ) (1 30 ) ,     1,2, , 1.
12 360i i i i
h ht h u u u i nα β α α′′= − + + − + − +… = … −         (27) 

       In Eq .  (27) ,  if 1
12

α =  and 5 ,
12

β =   the presented method is a fourth-order convergence method[20].  

        The errors are reported on the set of uniform grid points  0 1{ , , , , }nS a t t t b= = … … =  

0 ,    0,1,2, , , .i
b at t ih i n h

n
−= + = … =                                            (28) 

      The maximum error on the uniform grid points S  is  

0( ) max ( ) ( ) ,u j n j n jE h u t u t∞ ≤ ≤= −ǁ ǁ                                           (29) 

where ( )ju t  is the exact solution of the given example ,  and  ju  is the computed solution by the parametric 
cubic spline   method .  The maximum absolute errors in numerical solution of the   Example 1 are tabulated in 
table 1 .  These results show the   efficiency and applicability of the presented method.  

 

 

3(0 ) 1,   ( 1) .u u e= =
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n  h  ( )uE h ∞ǁ ǁ  

5  0.200  33.10326 10−×  

10  0.100  41.96017 10−×  

20 0.050 51.22896 10−×  

30 0.033 62.43458 10−×  

40 0.025 77.70612 10−×  

Table 1. Results  for example 1. 

Example 2. In this example ,  consider the   following problem of finding the extremals of the functional[11]:  

2 22
1 2 1 2 1 20

[ ( ), ( )] ' ( ) ' ( ) 2 ( ) ( ) ,( )J u t u t u t u t u t u t dt
π

= + +∫                             (30) 

 with boundary conditions  

1 1( 0 ) 0,  ( ) 1,
2

u u π= =                                                                 (31) 

2 2(0 ) 0,  ( ) 1,
2

u u π= = −                                                (32) 

 which has the exact solution given by   1 2( ), ( ) sin( ), sin( )( ) ( )u t u t t t= −  .  For this   problem ,  the 
corresponding Euler-Lagrange equations are  

( ) ( )
( ) ( )

1 2

2 1

'' 0 ,   

   '' 0 ,

u t u t

u t u t

⎧ − =⎪
⎨

− =⎪⎩
                                                       (33) 

with boundary conditions (31) and (32) .  In a similar manner and   applying (15) and (16) ,  we assume that 
functions ( )1u t and  ( )2u t  defined over the interval [ 0, ]

2
π   are   approximated by  

             2
1

1 1 1 , 1 1 ,2
( ) ( ) ( ) ( ) sin sin

sin
[ ( ) ( )]i i

i i
w t t w t thu t S t M M

h hw w
+

Δ +
− −−≅ = +  

                   2 2 21
1 , 1 1 , 1 1 , 1 , ,( ) [ ( ) ( ( ) ) ( ) ( ( ) ) ]i i

i i i i
t t t th w wM u M u

w h h h h
+

+ +
− −+ + + +           (34) 

             2
1

2 2 2, 1 2,2
( ) ( )( ) ( ) sin sin

sin
[ ( ) ( )]i i

i i
w t t w t thu t S t M M

h hw w
+

Δ +
− −−≅ = +  

                 2 2 21
2 , 1 2 , 1 2 , 2 ,( ) [ ( ) ( ( ) ) ( ) ( ( ) ) ]i i

i i i i
t t t th w wM u M u

w h h h h
+

+ +
− −+ + + +             (35) 

where w h τ=  and 

, ,( ) ( ) ,  ,  ( )   1,2.j i j i j i j i j iS t u t u S t M jΔ Δ′′= = = =                                  (36) 

 Having used the continuity of first derivatives of the spline   functions 1 ( )S tΔ  and 2 ( )S tΔ ,  and substituted  
it t=  for 1,2, , 1i n= … − ,  where it are uniform grid   points and also ,  we can obtain the following results:  

2
1, 1 1, 1, 1 1, 1 1, 1, 12 2 , 1,2, , 1,  ( )i i i i i ih M M M u u u i nα β α+ − + −+ + = − + = … −                 (37) 
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2
2, 1 2, 2, 1 2, 1 2, 2, 12 2 , 1,2, , 1,  ( )i i i i i ih M M M u u u i nα β α+ − + −+ + = − + = … −                (38) 

 where α and β   are defined as (18) .  Now ,  consider the   system (33) and substitute it t= ,  then we get: 

1, 2, 2, 1,'' ,     '' .i i i iu u u u= =                                                  (39) 

      By considering Eq .  (39) and assumption (36) ,  we have:  

1, 2, 2 , 1,,     .i i i iM u M u= =                                                (40) 

       Now ,  by using relations (37)-(40)  ,  for 1,2, , 1 i n= … −  , we can write  

2
2 , 1 2 , 2 , 1 1 , 1 1 , 1 , 1

2
1 , 1 1 , 1 , 1 2 , 1 2 , 2 , 1

 2 2 ,

2 2 ,

( )
( )

i i i i i i

i i i i i i

h u u u u u u

h u u u u u u

α β α

α β α

+ − + −

+ − + −

⎧ + + = − +⎪
⎨
⎪ + + = − +⎩

                  (41) 

 The above linear system contains 2( 1)n − equations with  2( 1)n −  unknown coefficients 
, , 1,2, 1, , 1.j iu j i n= = … −    Solving this linear system ,  we can obtain the   approximate solution of the system 

of second-order boundary value   problems (33). 
      Suppose 

1
( )uE h ∞ǁ ǁ and 

2
( )uE h ∞ǁ ǁ  be   the maximum absolute errors .  We solved example 2 for 

different   values of n . The maximum of absolute errors on the uniform grid   points (28) are tabulated in Table 
2.  
 

n  h  
1
( )uE h ∞ǁ ǁ  

2
( )uE h ∞ǁ ǁ  

5  0.314159 51.12874 10−× 51.12874 10−×  

10  0.157080 77.05084$ 10−× 77.05084$ 10−×  

20 0.078540 84.44889 10−× 84.44889$ 10−×  

30 0.052360 98.77860 10−× 98.77860 10−×  

40 0.039270 92.78005 10−× 92.78005 10−×  
Table 2. Results  for example 1 

5. Conclusion 
 In this paper parametric cubic spline method employed for finding   the extremum of a functional over the 
specified domain .  The main   purpose is to find the solution of boundary value problems which   arise from the 
variational problems .  The parametric cubic spline   method reduce the computation of boundary value 
problems to some   algebraic equations .  The proposed scheme is simple and   computationally 
attractive .  Applications are demonstrated through   illustrative examples 
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