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1. Introduction  
    A function f analytic in the unit disc :{ :| | 1}U z z < , is said to be of finite Nevanlinna order [7] (Juneja and 
Kapoor 1985) if there exists a number μ  such that Nevanlinna characteristic function ( , )T r f of f  defined by 

( )
2

0

1( , ) log
2

iT r f f re d
π

θ θ
π

+= ∫  

  satisfies 
μ−−= )1(),( rfrT  

for all r  in .1)(0 0 <<< rr μ        

  The greatest lower bound of all such numbers μ  is called Nevanlinna order of f . Thus the Nevanlinna order )( fρ  
of f  is given by 

.
)1log(
),(logsuplim)(

1 r
frTf

r −−
=

→
ρ  

      
     In [1] Banerjee and Dutta introduced the idea of relative order of an entire function which as follows: 
 
Definition 1.1. If f  be analytic in U and g  be entire, then the relative order of f  with respect to g, denoted 

by )( fgρ  is defined by            

( ) 0
1( ) in f{ 0 : fo r a ll 0 ( ) 1 }

1g f gf T r T r r
r

μ

ρ μ μ
⎡ ⎤⎛ ⎞= > < < < <⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥⎣ ⎦

. 

 
Note 1.2. When ( ) expg z z=  then the Definition 1.1 coincides with the definition of Nevanlinna order of f . 
 
    Also in [2] Banerjee and Dutta introduced the idea of relative order of an entire function of two complex variables 
which as follows: 
 
Definition 1.3. Let 1 2( , )f z z be a non-constant analytic function of two complex variables 1z  and 2z  holomorphic in 

the closed unit poly disc 1 2:{( , ):| | 1; 1, 2}jP z z z j≤ = and 1 2( , )g z z be an entire function then relative order of f  

with respect to g denoted by ( )g fρ  and is defined by  
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( )1 2 0 1 2
1 2

1 1( ) inf{ 0 : , , for all 0 ( ) , 1}
(1 ) (1 )g f F r r G r r r

r rμ μρ μ μ
⎛ ⎞

= > < < < <⎜ ⎟− −⎝ ⎠
. 

 
    In a resent paper [3] Dutta introduced the following definition. 
 
Definition 1.4. Let 1 2( , ..... )nf z z z  and 1 2( , ..... )ng z z z be two entire functions of n  complex variables 

1, .....n nz z z  with maximum modulus functions 1 2( , ..... )nF r r r  and 1 2( , ..... )nG r r r respectively then relative order of 

f with respective to g , denoted by ( )g fρ and is defined by  

  ( ) ( )1 2 1 2( ) inf{ 0 : , ..... , ..... ( ); 1, 2...... }.g n n if F r r r G r r r for r R i nμ μ μρ μ μ= > < ≥ =  

 
   Also in a paper [4] Dutta introduced the following definition. 

Definition 1.5. Let 1 2

1 2

1 2
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, ,...... 0
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= ∑  be a function of n complex variables 

1 2, ,...... nz z z  holomorphic in the unit polydisc  

1 2{( , ,...... ) :| | 1; 1, 2,...... }n jP z z z z j n= ≤ =  
and  

1 2 1 2( , ,...... ) max{| ( , ,...... ) |: | | ; 1, 2,...... }n n j jF r r r f z z z z r j n= ≤ = , 

be its maximum modulus. Then the order ρ  and lower order λ are defined as  

1 2
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r r r
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Now we introduce the following definition. 
 
Definition 1.6. Let 1 2( , ..... )nf z z z be a non-constant analytic function of several complex variables 1, .....n nz z z   
holomorphic in the closed unit polydisc  

1 2:{( , ..... ):| | 1; 1, 2..... }n jP z z z z j n≤ =  

and 1 2( , ..... )ng z z z be an entire function then relative order of f with respect to g denoted by ( )g fρ  and defined 
by  

( )1 2
1 2

0 1 2

1 1 1( ) inf{ 0 : , ..... , ......
(1 ) (1 ) (1 )

                                                      for all 0 ( ) , ..... 1}

g n
n

n

f F r r r G
r r r

r r r r

μ μ μρ μ
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where 1 2 1 2( , ..... ) max{| ( , ..... ) |:| | ; 1, 2..... }.n n j jG r r r g z z z z r j n= = =  
 
Note 1.7. When 1 2 .....

1 2( , ..... ) nz z z
ng z z z e=  then Definition 1.6 coincides with the Definition 1.5 and if n=2 then 

coincide with Definition 1.3. 
 
    We require the following definition.   
 
Definition 1.8. An entire function 1 2( , ..... )ng z z z  is said to have the property (R) if for any 0,1 >> λσ and for all 

ir  sufficiently close to 1; 1, 2..... ,i n=  

       
( ) ( ) ( )

2

1 2 1 2

1 1 1 1 1 1, ....... , ...... .
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )n n

G G
r r r r r r

σ σ σλ λ λ λ λ λ

⎛ ⎞⎡ ⎤⎛ ⎞ ⎜ ⎟<⎢ ⎥⎜ ⎟ ⎜ ⎟− − −⎢ ⎥⎝ ⎠ − − −⎣ ⎦ ⎝ ⎠

  

 
Note 1.9. The function 1 2 .....

1 2( , ..... ) nz z z
ng z z z e=  has the property (R) but 1 2 1 2( , ..... ) .....n ng z z z z z z=  has not. 
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      Throughout we shall assume that 21 ,, fff  etc, to be functions analytic in P and 21,, ggg  etc, are 
non-constant entire functions of several complex variables. We do no explain stander notations and 
definitions of analytic functions those are available in [5] and [6]. 

2. Lemmas  
We require the following lemmas.   
Lemma 2.1. Let 1 2( , ..... )ng z z z be an entire function which has the property (R). Then for any positive 
integer n and for all 0,1 >> λσ , 

( ) ( ) ( )1 2 1 2

1 1 1 1 1 1, ....... , ......
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

n

n n

G G
r r r r r r

σ σ σλ λ λ λ λ λ

⎛ ⎞⎡ ⎤⎛ ⎞ ⎜ ⎟<⎢ ⎥⎜ ⎟ ⎜ ⎟− − −⎢ ⎥⎝ ⎠ − − −⎣ ⎦ ⎝ ⎠

 holds for all 

,0 1i ir r< < sufficiently close to 1; 1, 2..... .i n=  

The Lemma 2.1 follows from Lemma 2.1 in [3] on replacing ir  by
1

(1 )ir
λ−

, where 1, 2..... .i n=  

Lemma 2.2. Let 1 2( , ..... )ng z z z be an entire and 1,0α β α> < <  then  

 
1 2 1 2

1 1 1, ....... , .......
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )n n

G G
r r r r r rλ λ λ λ λ λ

α α α β
⎛ ⎞ ⎛ ⎞

>⎜ ⎟ ⎜ ⎟− − − − − −⎝ ⎠ ⎝ ⎠
  

 
for all ,0 1i ir r< < sufficiently close to 1; 1, 2..... .i n=  

The Lemma 2.2 follows from Lemma 2.2 in [3] on replacing ir  by
1

(1 )ir
λ−

, where 1, 2..... .i n=

  3. Sum and Product Theorems 

Theorem 3.1. Let 1 1 2( , ..... )nf z z z and 2 1 2( , ..... )nf z z z  be analytic in the unit polydisc P having relative 
order ( )1fgρ  and ( )2fgρ respectively, where 1 2( , ..... )ng z z z  is an entire function having the property (R). 
Then  
                    (a)  and  
                  (b) .  

The same inequality holds for the quotient. The equality holds in (a) if ( ) ( )1 2g gf fρ ρ≠ . 
 
Proof. We may assume that ( )1fgρ  and ( )2fgρ  both are finite, because if one of them or both are infinite 
then inequalities are evident.  
Let ( )1 2 1 1, gf f f fρ ρ= + = , ( )2 2g fρ ρ=  and 1 2ρ ρ≤ . 

For arbitrary 0ε > and for all , 0 1; 1,2.....i ir r i n< < = , sufficiently close to 1, we have 

( )
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1 1 2
1 2
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(1 ) (1 ) (1 )
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⎛ ⎞
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and    

( )
2 2 22 1 2

1 2

1 1 1, ..... , ......
(1 ) (1 ) (1 )n

n

F r r r G
r r rρ ε ρ ε ρ ε+ + +

⎛ ⎞
< ⎜ ⎟− − −⎝ ⎠

. 

 Now for all , 0 1; 1,2.....i ir r i n< < = sufficiently close to 1, 
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Therefore 2 3ρ ρ ε≤ − . 
Since ε >0 is arbitrary, so 2ρ ρ≤ . 
Therefore  

 
which proves (a). 
Next let 1 2ρ ρ< and suppose 1 2.ρ μ λ ρ< < <  
Then for all ,0 1; 1,2..... ,i ir r i n< < = sufficiently close to 1, we have                        

                     ( )1 1 2
1 2

1 1 1, ..... , ......
(1 ) (1 ) (1 )n

n

F r r r G
r r rμ μ μ

⎛ ⎞
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                            (1) 

and there exist non-decreasing sequence { }; 1_i k i kr r as k→ → ∞ such that  

          ( )2 1 2
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(1 ) (1 ) (1 )n

k k nk

F r r r G
r r rλ λ λ

⎛ ⎞
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                         (2) 

for 1, 2,.......k =  
We see that  
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  (3) 

for all ,0 1; 1,2..... .i ir r i n< < = , sufficiently close to 1. 
From (1), (2) and (3) we get 

( ) ( )2 1 2 1 1 2, ..... 2 , .....k k nk k k nkF r r r F r r r>  

for 1, 2,.......k =  
Therefore  
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1 2 2 1 2 1 1 2

2 1 2
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2
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k k nk
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1 1 1, ......
3(1 ) 3(1 ) 3(1 )k k nk

G
r r rλ λ λ

⎛ ⎞
> ⎜ ⎟− − −⎝ ⎠

 for all large k and by Lemma 2.2 

 

1 2

1 1 1, ......
(1 ) (1 ) (1 )k k nk

G
r r rλ ε λ ε λ ε− − −

⎛ ⎞
> ⎜ ⎟− − −⎝ ⎠

 

where ε >0 is arbitrary. 
This gives ρ λ ε≥ − and since 1 2ρ μ λ ρ< < < and ε >0 is arbitrary, we get 2ρ ρ≥ . 
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Therefore  
. 

 
For (b), we consider ( )1 2. , gf f f fρ ρ= = and 1 2ρ ρ≤ .  
Then for any arbitrary ε >0, 

      

( ) ( ) ( )

2 2 2

2 2 2

1 2 1 1 2 2 1 2

2

1 2

( ) ( ) ( )
1 2

, ..... , ..... . , .....
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1 1 1, ...... 2.1,
(1 ) (1 ) (1 )

n n n
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n

F r r r F r r r F r r r

G
r r r

G by Lemma
r r r

ρ ε ρ ε ρ ε

σ ρ ε σ ρ ε σ ρ ε
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=
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⎛ ⎞
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for every σ >1. 
So 

2( )ρ σ ρ ε≤ + . 
Since 0>ε  is arbitrary, we obtain by letting ,1+→σ  

2ρ ρ≤ . 
Therefore  

 
 

This proves the theorem. 
 

4. Asymptotic Behavior 
Definition 4.1. Two entire functions g1 and g 2  are said to be asymptotic equivalent in the unit polydisc P if 
there exists l , 0< l < ∞  such that   

                
1

1 2

2
1 2

1 1 1, ......
(1 ) (1 ) (1 )

1 1 1, ......
(1 ) (1 ) (1 )

n

n

G
r r r

l
G

r r r

λ λ λ

λ λ λ

⎛ ⎞
⎜ ⎟− − −⎝ ⎠ →
⎛ ⎞
⎜ ⎟− − −⎝ ⎠

as 1 ; 1,2..... ,ir i n−→ =  

where λ >0 is any number and in this case we write 1 2~g g . 
 
Note 4.2. If 1 2~g g  then clearly 2 1~ .g g  
 
Theorem 4.3. Let 1g and 2g  be entire functions having property (R) and 1 2~g g  then   )()(

21
ff gg ρρ = , 

where f  is analytic in P. 
 
Proof. Let ε >0 any arbitrary number and for , 0 1; 1,2..... .i ir r i n< < = , sufficiently close to 1, we have 

1 2
1 2 1 2

2
1 2

1 1 1 1 1 1, ...... ( ) , ......
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

, ......
(1 ) (1 ) (1 )

n n

n

G l G
r r r r r r

G
r r r

λ λ λ λ λ λ

λ λ λ

ε

α α α

⎛ ⎞ ⎛ ⎞
≤ +⎜ ⎟ ⎜ ⎟− − − − − −⎝ ⎠ ⎝ ⎠

⎛ ⎞
≤ ⎜ ⎟− − −⎝ ⎠

    

where λ >0 and α >1 is such that l +ε <α . 
Next let )(

1
fgρ = 1ρ  and )(

2
fgρ = 2ρ . 
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Then 
 
 
 
 
 
 
 
 
 
 

Therefore 
2 1 2ρ ρ ε≤ + . 

Since ε >0 is arbitrary, so 2 1ρ ρ≤ . 
Therefore 

2 1
( ) ( )g gf fρ ρ≤ . 

Also from 2 1g g , we obtain 
1 2
( ) ( )g gf fρ ρ≤ . 

This proves the theorem. 
 
Note 4.4. The converse of the above theorem is not always true. 
 

Example 4.5. Consider the functions 1 2 1 2..... 2 .....
1 1 2 2 1 2( , ..... ) , ( , ..... )n nz z z z z z

n ng z z z e g z z z e= =  and 
1 2 .....

1 2( , ..... ) nz z z
nf z z z e=  then 1g is not asymptotic equivalent to g 2  but

1 2
( ) ( )g gf fρ ρ= .                

 

5. Relative Order of the Partial Derivatives  
Theorem 5.1: If f  is analytic in the unit polydisc P and g be transcendental entire having the property (R), 

then 
1

( ).g g
f f
z

ρ ρ
⎛ ⎞∂ =⎜ ⎟∂⎝ ⎠

 

 
To prove the theorem we require the following lemma. 
Lemma 5.2. Let 1 2( , ..... )nf z z z be a transcendental entire function then 

( ) ( ) ( )1 2 1 2
1 2

1 1

, ..... 2 , .....
, .....n n

n

F r r r F r r r
F r r r

r r
≤ ≤  

where  

( ) ( )1 2
1 2 | | ; 1,2......

1

, .....
, ..... max .

i i

n
n z r i n

f z z z
F r r r

z= =

∂
=

∂
 

Proof. Let ' ' '
1 2( , ..... )nz z z  be such that  

' ' '
1 2 1 2| ( , ..... ) | max{| ( , ..... ) |:| | ; 1, 2..... }.n n j jf z z z f z z z z r j n= = =  

With out loss of generality we may assume that ' '
2(0, ..... ) 0nf z z = . Otherwise we set  

1 2 1 1 2( , ..... ) ( , ..... )n nh z z z z f z z z= . 

Then ' '
2(0, ..... ) 0nh z z =  and ( ) ( )g gf hρ ρ= . 

We may write for fixed | | ; 2.....i iz on z r i n= =  
1

2
1 2

0

( , ..... )( , ..... ) ,
z

n
n

f t z zf z z z dt
t

∂=
∂∫  

( )
1 1 1

1 1 1

1 1 1

1 2 1
1 2

2
1 2

2 2 2 2
1 2

1 1 1, ..... , ......
(1 ) (1 ) (1 )

, ......
(1 ) (1 ) (1 )

1 1 1, ...... .
(1 ) (1 ) (1 )

n
n

n

n

F r r r G
r r r

G
r r r

G
r r r

ρ ε ρ ε ρ ε

ρ ε ρ ε ρ ε

ρ ε ρ ε ρ ε

α α α

+ + +

+ + +

+ + +

⎛ ⎞
< ⎜ ⎟− − −⎝ ⎠

⎛ ⎞
≤ ⎜ ⎟− − −⎝ ⎠

⎛ ⎞
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where the line of integration is the segment from 0z = to 0 , 0.iz re rθ= >  
Now 

'
1

1 1

' ' '
1 2 1 2

' '
2

0

' '
1 2

1 | |
1

( , ..... ) | ( , ..... ) |

( , ..... )

( , ..... )max

n n

z
n

n
z r

F r r r f z z z

f t z z dt
t

f z z zr
z=

=

∂=
∂

∂≤
∂

∫  

                                                    1 1 2( , ..... ).nr F r r r=                                                  (4) 

Let '' '' ' '
1 2( , ..... )nz z z  be such that 

'' ' ' ' '
1 2 1 2

| | ; 1,2, .....
1 1

( , ..... ) ( , ..... )max
i i

n n
z r i n

f z z z f z z z
z z= =

∂ ∂=
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. 

Let C denote the circle ''
1 1| | .t z r− =  

So, 
 

 
 
 
 
 

( )

' ' ' '
2

'' 2
1

1 2
12

1

( , ..... )1
2 ( )

2 , .....1 2
2

n

C

n

f t z z dt
i t z

F r r r
r

r

π

π
π

=
−
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( )1 2

1

2 , .....
.nF r r r

r
=                                            (5) 

From (4) and (5) we obtain 
( ) ( ) ( )1 2 1 2

1 2
1 1

, ..... 2 , .....
, ..... .n n

n

F r r r F r r r
F r r r

r r
≤ ≤  

This proves the lemma. 

Proof of the theorem 5.1:  Let us consider any arbitrary 0ε > then from definition of 
1

g
f
z

ρ
⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

, we have for 

all ,0 1; 1,2.....i ir r i n< < =  sufficiently close to1, 

( )
1 1 1

1 2

1 2

1 1 1, ..... , ......

(1 ) (1 ) (1 )
g g g

n f f f
z z z

n

F r r r G

r r r
ρ ε ρ ε ρ ε

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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⎜ ⎟

≤ ⎜ ⎟
⎜ ⎟− − −⎝ ⎠

. 

Now by Lemma 5.2 

1 2
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1

'' ' ' ' '
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1
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i i

n
n z r i n

n

f z z zF r r r
z

f z z z
z

= =
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∂

∂=
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σ ρ ε
⎛ ⎞⎛ ⎞∂ +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
by Lemma 2.1 and for any 1,σ > since g has the property (R). 
So, 

1

( )g g
ff
z

ρ σ ρ ε
⎛ ⎞⎛ ⎞∂≤ +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

. 

Letting ,1+→σ and since ε >0 is arbitrary 

1

( )g g
ff
z

ρ ρ
⎛ ⎞∂≤ ⎜ ⎟∂⎝ ⎠

. 

Using (5) we obtain similarly 

1

( )g g
f f
z

ρ ρ
⎛ ⎞∂ ≤⎜ ⎟∂⎝ ⎠

. 

So,  

1

( ).g g
f f
z

ρ ρ
⎛ ⎞∂ =⎜ ⎟∂⎝ ⎠

 

This proves the theorem. 
Note 5.3. Similar result hold for other partial derivatives. 
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