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Abstract. The conservative domain decomposition procedure for solving the variable coefficient diffusion 
equation is presented. In this procedure, the fluxes at the interface of subdomains are properly defined, which 
results in the unconditional stability of the procedure. Numerical results examining the stability, the second-
order accuracy of solution values as well as fluxes, and parallelism of the procedure are also presented. 
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1. Introduction  
The diffusion equation is a basic topic, for many equations include the diffusion term, such as Sobolev 

equation, convection diffusion equations, and so on. The sequent finite difference methods are considered 
subject to such equations (see [8,9]). There is rich literature on parallel finite difference methods (see 
[1,2,3,4,5,6,7]). Domain decomposition is a powerful tool for devising parallel methods to solve the diffusion 
equation. The basic procedure of domain decomposition methods is to first decompose the domain into some 
subdomains, then define the interface values of subdomains by explicit schemes and the inner values of 
subdomains by implicit schemes. Once the interface values are available, the global problem is decoupled 
and parallelization is achieved. Domain decomposition methods with unconditional stability are desired in 
the application. However, most domain decomposition methods are conditionally stable . The major 
difficulty devising domain decomposition methods with unconditional stability is defining the suitable 
interface values of subdomains. It’s also an issue to consider conservative domain decomposition methods, 
for some diffusion problems have the conservation property. Conservative domain decomposition procedures 
for the constant coefficient diffusion equation are considered in [1,3,6], in which the scheme in [1] is 
unconditionally stable. The purpose of this paper is to present the conservative domain decomposition 
procedure with unconditional stability for the following variable coefficient diffusion problem  
 ( ) ( ( ) ( )) 0 ( ) (0 1) (0 ]t x xU x t x t U x t x t Tα, − , , = , , ∈ , × , ,  (1.1) 

(0 ) (1 ) 0 (0 ]x xU t U t t T, = , = , ∈ , ,  (1.2) 

0( 0) ( ) [0 1]U x U x x, = , ∈ , ,  (1.3) 

where ( )x tα ,  is smooth enough and 0 ( )x tα α< , ≤ . Define the flux  

 ( ) ( ) ( )xQ x t x t U x tα, = − , , .  (1.4) 
Then (1.1) and (1.2) become as  
 0 ( ) (0 1) (0 ]t xU Q x t T+ = , , ∈ , × , ,  (1.5) 
and 
 (0 ) (1 ) 0 (0 ]Q t Q t t T, = , = , ∈ , .  (1.6) 
From (1.5) and (1.6), there is  

 
1

0
0d U dx

dt
= ,∫  

which expresses conservation of mass. For the above problem, giving the solution U  and flux Q  the same 
second-order accuracy approximations, we consider the block-centered finite difference discretization.  

The rest of this paper is organized as follows. In the next section, we present the domain decomposition 
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procedure. In Section 3, we prove the unconditional stability. In Section 4, we examine numerically the 
stability, accuracy, and parallelism of the procedure. In the final section, we give a conclusion. 

2. Domain Decomposition Scheme  
Divide the domain [0 1] [0 ]T, × ,  by a set of lines parallel to the x - and t -axes. The crossing points are  

 1 2 3 2 1 20 1Ix x x/ / + /= < < < = ,L  
 
 0 10 Nt t t T= < < < = .L   
Denote  

 

1

1 2 1 2

1 2 1 2

1
1 2 1

1
1

1
2

1 1
2

n n n

i i i

i i
i

i i
i i i

t t n N
h x x i I

x xx i I

h hh x x i I

τ −

+ / − /

− / + /

+
+ / +

= − , ≤ ≤ ,
= − , ≤ ≤ ,

+= , ≤ ≤ ,

+= − = , ≤ ≤ − ,

 

and 
 max min max n

i iii n
h h h t τ= , = , Δ = .h  

Let n
if  be the discrete function on { }( )n

ix t,  and 1 2
n

if + /  be the discrete function on { }1 2( )n
ix t+ / , . Define the 

difference operators  

 
1

1 1 2 1 2
1 2

1 2

n n n n n n
n n ni i i i i i

i i in
i i

f f f f f ff f f
h hτ τ

−
+ + / − /

+ − + /
+ /

− − −Δ = , Δ = , Δ = ,  

and the discrete norms  

 
1

2 2 2 2
1 2 1 2

1 1
|| || ( ) || || ( )

I I
n n n n

i i i i
i i

f f h f f h
−

+ / + /
= =

= , | | = .∑ ∑  

 
Denote ( )n n

i iU U x t= , , 1 2 1 2( )n n
i iQ Q x t+ / + /= , . And let n

iu  and 1 2
n
iq + /  be the numerical approximations of 

n
iU  and 1 2

n
iQ + / . For simplicity, assume a decomposition of the domain [0 1] [0 ]T, × ,  into two subdomains 

[0 ] [0 ]x T, × ,  and [ 1] [0 ]x T, × , , where 1 2kx x + /=  for some integer k , 0 k I< < . It’s easy to extend to the 
case of multiple subdomains. Next we give the domain decomposition procedure.  

Approximate the equation (1.5) by  
 1 2 0 1n n

i iu q i Iτ − + /Δ + Δ = , ≤ ≤ .  (2.1) 
Enforce the boundary condition (1.6) by  
 1 2 1 2 0 1n n

Iq q n N/ + /= = , ≤ ≤ ,  (2.2) 
and the initial condition by  
 0

0 ( ) 1i iu U x i I= , ≤ ≤ .  (2.3) 

Sum for (2.1), by the boundary condition (2.2), there is 1

1 1

I I
n n
i i

i i
u u −

= =

=∑ ∑ , which simulates conservation of 

mass. So, we call the scheme (2.1) conservative scheme.  
We further define the approximating values of fluxes. For 1 1i I i k≤ ≤ − , ≠ , approximate 1 2

n
iQ + /  by  

 1 2 1 2
n n n
i i iq uα+ / + / += − Δ .  (2.4) 

Suppose U  and Q  are smooth enough, it’s easily get from the Taylor expansion that (2.1) and (2.4) have the 
second-order truncation error 2( )O h t+ Δ  if 2tΔ / h  is any constant. To define 1 2

n
kq + /  with the second-order 

truncation error, from (1.4) and (1.5), we have  
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1 2

1 2

1 2

1 1 2

( ) [ ]( ) (( ) )

[ ( )]( ) (( ) )

[ ( ) ]( ) (( ) )

( ) ( ) ( ) ( ) (( ) )

n n n n
t

n n n
x t x xt

n n n n
t x xx

n n n n n n
x xx

Q x t Q Q x t O

U U U x t O

U Q x t O

x t U x t x t Q x t O

τ τ
α τ α α τ
α τ α τ α τ

α τ α τ

−

−

−

− −

, = + , +

= − + − − , +

= − + + , +

= − , , + , , + .

 

Then,  
1

1 2 1 2

1 1
3 2 1 2 1 2 1 21 2

11 2

2
2 2

2

( )( ( ) )

n n n
k k k

n n n nn n
k k k kk

k kk

Q U

Q Q Q Q
h hh

tO h h t t

α

τ α

−
+ / + / +

− −
+ / + / + / − /+ /

++ /

= − Δ

⎛ ⎞− −+ −⎜ ⎟⎜ ⎟
⎝ ⎠
Δ+ + + Δ + Δ .
h

 

Thus, define 1 2
n
kq + /  by  

1
1 2 1 2

n n n
k k kq uα −

+ / + / += − Δ  

 
1 1

1 2 3 2 1 2 1 2 1 2

1 2 1

n n n n n n
k k k k k

k k k

q q q q
h h h

τ α − −
+ / + / + / + / − /

+ / +

⎛ ⎞− −+ − ,⎜ ⎟
⎝ ⎠

 (2.5) 

 
or  

 
1

1 1
11 2 3 2 1 2

1 2 2
1 2 11 21 n

k k

n n nn
n nk k k
k kn

k k kkh h

q qq u
h h hτ

α τ
α

+

− −
−+ / + / − /

+ / +
+ / ++ /

⎡ ⎤⎛ ⎞
= −Δ + + .⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

 

 
Now we get the domain decomposition procedure (2.1)-(2.5). Since 1 2

n
kq + /  is defined by the solution 

values and fluxes in the former time level, we are able to identifying it with the Neumann boundary data of 
subdomains. Substituting (2.4) into (2.1) and using (2.2), we get two disjoint systems of equations  
 1 2 1n n n

i i i i n N= , = , , ≤ ≤ ,A u b  
in which  
 1 1 2 2 1 2( ) ( )n n n n T n n n n T

k k k Iu u u u u u+ += , , , , = , , , ,u uL L   
 

1 1 1 1
1 1 2 1 1 2( )

n
n n n n n n T

k k k
k

u u u u q
h
τ− − − −

− + /= , , , , − ,b L  

 

1 1 1 1
2 1 1 2 2 1

1

( )
n

n n n n n n T
k k k I I

k

u q u u u
h
τ− − − −

+ + / + −
+

= + , , , , ,b L   

and we have  

 

1 1

2 2 2

1

1 1 1

n n

n n n

n

n n n
k k k

n n
k k

d c
e d c

e d c
e d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
− −

= ,
− −

−

A O O O   
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1 1

2 2 2

2

1 1 1

n n
k k

n n n
k k k

n

n n n
I I I

n n
I I

d c
e d c

e d c
e d

⎛ ⎞
⎜ ⎟+ +⎜ ⎟
⎜ ⎟
⎜ ⎟+ + +
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
− −

= ,
−

−

A O O O   

where  

 

1 2

1 2

1 2
1 1

1 2

0

1 1 0

1

n n
n n ni
i k I

i i

n n
n n ni
i k

i i
n n n
i i i

c i k I c c
h h

e i k e e
h h

d c e

τ α

τ α

+ /

+ /

− /
+

− /

= , ≠ , , = = ,

= , ≠ , + , = = ,

= + + .

 

Thus, the two systems of equations can be solved in parallel.   

3. Unconditional stability  
For the domain decomposition procedure presented in the previous section, we have the following 

theorem of stability.  
Theorem 3.1.  Assume 1n nτ τ+ ≤  and 2t rΔ / =h , where r  is any positive number. Then the procedure 
(2.1)-(2.5) is 2L  stable, i.e.,  

 2 2 2 0 22

1

2max || || || || (1 2 ) || ||
N

n n n

n n
u q r uτ αα =

+ | | ≤ + .∑  

To prove the result, we need the following lemma.  
Lemma 3.2.  Let iu  and iv  be the discrete functions defined on{ }ix , 0 1i I= , , ,L , then   

 
1 1

1 1 0 0 1
0 1

( ) ( )
I I

i i i i i i I I
i i

u v v u u v u v u v
− −

+ − −
= =

− = − − − + .∑ ∑  

Proof of Theorem 3.1 Multiplying (2.1) by n
i iu h  and summing up the resulting equations for 

1 2i I= , , ,L  yields  

 1 2
1 1

0
I I

n n n n
i i i i i i

i i
u u h u q hτ − + /

= =

Δ + Δ = .∑ ∑  (3.1) 

Using lemma 3.2 and the boundary condition (2.2), we get  

 
1

1 2 1 2 1 2
1 1

I I
n n n n
i i i i i i

i i
u q h q u h

−

− + / + / + + /
= =

Δ = − Δ .∑ ∑  (3.2) 

Noticing that  

 2 1 2 2

1

1 || || || || || ||
2 2

nI
n n n n n
i i i n

i
u u h u u uτ τ

τ
τ

−⎛ ⎞
⎜ ⎟
⎝ ⎠

=

Δ = − + Δ ,∑  (3.3) 

and substituting (3.3) and (3.2) into (3.1), we have  

 
1

2 1 2 2
1 2 1 2

1

1 || || || || || || 0
2 2

n I
n n n n n

i i in
i

u u u q u hτ
τ

τ

−
−⎛ ⎞

⎜ ⎟ + / + + /⎝ ⎠
=

− + Δ − Δ = .∑  (3.4) 

From the definition of 1 2
n
iq + /  and (2.1), we get  

 1 2

1 2

n
n i
i n

i

qu i k
α

+ /
+

+ /

−Δ = , ≠ ,  

and  
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1

1 1
1 2 3 2 3 2 1 2 1 2

1 2 1 2 1

( )n n n n
k k k

n n n n nn
k k k k k
n
k k k k

u u u

q q q q q
h h h

ττ

τ
α

−
+ + +

− −
+ / + / + / − / − /

+ / + / +

−Δ = −Δ − Δ Δ

⎛ ⎞− −= + + .⎜ ⎟
⎝ ⎠

 

Hence, the last term in (3.4) is changed as  

 

1

1 2 1 2
1

21
1 2

1 2
1 1 2

1 1
3 2 3 2 1 2 1 2

1 2 1 2
11 2

1 1
3 2 3 2 1 2 1 22

1 2
1

( )

1 || ||

I
n n
i i i

i
nI
i

in
i i

n n n nn
k k k kn

k k
k kk

n n n n
k k k kn n n

k
k k

q u h

q h

q q q qq h
h hh

q q q qq q
h h

α

τ

τ
α

−

+ / + + /
=

−
+ /

+ /
= + /

− −
+ / + / − / − /

+ / + /
++ /

− −
+ / + / − / − /

+ /
+

− Δ

=

⎛ ⎞− −+ +⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞− −≥ | | + + .⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 

Substitute the above equality into (3.4) to get  

 2 1 2 21 || || || || || ||
2 2

n
n n n

n u u uτ
τ

τ
−⎛ ⎞

⎜ ⎟
⎝ ⎠

− + Δ  

 2 3 2 1 2
1 2

1

1 || ||
n n

n n n k k
k

k k

q qq q
h h

τ
α

+ / − /
+ /

+

⎛ ⎞
+ | | + +⎜ ⎟

⎝ ⎠
 

1 1
3 2 1 2

1 2
1

n n
n n k k

k
k k

q qq
h h

τ
− −
+ / − /

+ /
+

⎛ ⎞
≤ +⎜ ⎟

⎝ ⎠
 

 2 1 2 1 2
1 2 3 2 1 2

1 1

( ) ( ) ( )
2 2 2 2

n n n n
n n n
k k k

k k k k

q q q
h h h h
τ τ τ τ− −

+ / + / − /
+ +

⎛ ⎞
≤ + + + .⎜ ⎟
⎝ ⎠

 (3.5) 

 
Denote  

 

2 3 2 1 2
1 2

1

2 2 2
1 2 3 2 1 2

1 1

|| ||
2

( ) ( ) ( )
2 2 2 2

n nn
n n n k k

k
k k

n n n n
n n n
k k k

k k k k

q qF u q
h h

q q q
h h h h

τ
τ τ

τ τ τ τ

+ / − /
+ /

+

+ / + / − /
+ +

⎛ ⎞
= Δ + +⎜ ⎟

⎝ ⎠
⎛ ⎞

− + − − .⎜ ⎟
⎝ ⎠

 

Rewrite (3.5) as  

 2 1 2 2 2 2
3 2 1 2

1

1 1|| || || || || || ( ) ( )
2 2 2

n n
n n n n n

k kn
k k

u u q F q q
h h
τ τ

τ α
−⎛ ⎞

⎜ ⎟ + / − /⎝ ⎠
+

− + | | + + +  

1 2 1 2
3 2 1 2

1

( ) ( )
2 2

n n
n n
k k

k k

q q
h h
τ τ− −

+ / − /
+

≤ + .                                                                                        (3.6) 

 
By (2.1), put F  in order, we have  

 

2 2 2
3 2 1 2 1 2 1 2

1

2

   1
1

|| || ( ) ( )
2 2 2

( ) 0
2

n n n
n n n n n

k k k k
k k

n I
n
i i

i
i k k

F u q q q q
h h

u h

τ

τ

τ τ τ

τ

+ / + / + / − /
+

=
≠ , +

= Δ − − − −

= Δ ≥ .∑
 

Multiplying (3.6) by 2 nτ  and summing on 1 2n m= , , ,L  for any m  yields  
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2 2
2 0 2 2 2 2

3 2 1 2
1 1 1

2 2
1 2 1 2
3 2 1 2

11

2 ( ) ( )|| || || || || || ( ) ( )

( ) ( )( ) ( )

n nm m
m n n n n

k k
n n k k

n nm
n n
k k

k kn

u u q q q
h h

q q
h h

τ ττ
α

τ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥+ / − /⎢ ⎥

= = ⎢ ⎥+⎣ ⎦

⎡ ⎤
⎢ ⎥− −
⎢ ⎥+ / − /⎢ ⎥

+= ⎢ ⎥⎣ ⎦

− + | | + +

≤ + .

∑ ∑

∑
 

From 1n nτ τ+ ≤  for 1n ≥ , there is  

 

2 2

1

1 2 1 2
0 2 0 2 0 2

3 2 1 2
1

2 20 0 0 02 2
0 02 1 10 2

3 2 1 2
3 2 1 2

2 2
0 2 0 2 0 2 0 2

2 13

2|| || || ||

( ) ( )|| || ( ) ( )

( ) ( )|| ||

2( )|| || ( ) ( ) ( ) (

m
m n n

n

k k
k k

k k k k
k k

k k

k k k

u q

u q q
h h

u u u ut tu
h h

tu u u u u

τ
α

τ τ

α α

α

=

+ / − /
+

+ + −
+ / − /

+ / − /

+ +

+ | |

≤ + +

⎛ ⎞ ⎛ ⎞− −Δ Δ≤ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ≤ + + + +

∑

h h

h
0 2

1

22 0 2

)

(1 2 )|| ||

k

r uα

⎡ ⎤
⎢ ⎥−⎣ ⎦

≤ + .

 

Thus, the theorem is proved.    

4. Numerical results 
In this section, we show numerical results examining the stability, accuracy and parallelism of the 

domain decomposition procedure. Consider the problem  
           ( ) ( ( ) ( )) ( , ) ( ) (0 1) (0 ]t x xU x t x t U x t f x t x t Tα, − , , = , , ∈ , × , ,  (4.1) 

(0 ) (1 ) 0 (0 ]x xU t U t t T, = , = , ∈ , ,  (4.2) 

( 0) cos [0 1]U x x xπ, = , ∈ , ,  (4.3) 

where 
2

( ) 1 sintx t e xπα π, = +  and 2( ) sin 2f x t xπ π, = . The solution is 
2

( ) cos( )tU x t e xπ π−, = .  

4.1 The stability of the procedure  
Consider the domain decomposition procedure on uniform mesh 0 001h = .  and n tτ = Δ  with two 
subdomains 1 [0 0 5] [0 ]TΩ = , . × ,  and 2 [0 5 1] [0 ]TΩ = . , × , . We show the numerical results || ||nu  for 

10r =  and 100  in Table 1, and plot || ||nu  versus t  in Fig. 1. It can be seen that the 2L -norm || ||nu  
doesn’t occur blowing up even if r  is large enough. This explains the unconditional stability of the domain 
decomposition procedure.  

10r =      100r =   
 t n  || ||nu    t n || ||nu   
0.1 10000  2.63553e-01  0.1 1000 2.63467e-01  
0.2 20000  9.82296e-02  0.2 2000 9.81735e-02  
0.3 30000  3.66111e-02  0.3 3000 3.65837e-02  
0.4 40000  1.36452e-02  0.4 4000 1.36333e-02  
0.5 50000  5.08565e-03  0.5 5000 5.08565e-03  
0.6 60000  1.89545e-03  0.6 6000 1.89350e-03  
0.7 70000  7.06446e-04  0.7 7000 7.05677e-04  
0.8 80000  2.63297e-04  0.8 8000 2.62997e-04  
0.9 90000  9.81325e-05  0.9 9000 9.80160e-05  
1.0 100000 3.65750e-05  1.0 10000 3.65298e-05  

Table 1. || ||nu  versus t  
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4.2 The errors of solution values and fluxes  
Denote  

 
1 2

2

1

|| || || ||
N

n n n n n
h h

n

u U q Qη ε τ
/⎛ ⎞

⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎝ ⎠

= − , = | − | .∑  

 
Fig. 1:  || ||nu  versus t  

To observe the accuracy of the domain decomposition procedure, we compute errors hη  and hε  for 

subsequent mesh refinements. Let n tτ = Δ  and 2 1r t= Δ / =h . We will look at the following three scenarios:   
1. Fully implicit finite difference scheme on uniform mesh h .  
2. Domain decomposition procedure on uniform mesh h  with two subdomains 1Ω  and 2Ω , where 

1 [0 0 5] [0 ]TΩ = , . × ,  and 2 [0 5 1] [0 ]TΩ = . , × , .  
3. Domain decomposition procedure with two subdomains 1 [0 0 6] [0 ]TΩ = , . × ,  and 

2 [0 6 1)] [0 ]TΩ = . , × , . Use uniform mesh for each subdomain. The coarsest mesh on 1Ω  and 2Ω  
consist of 60  blocks and 50  blocks respectively. All subsequent mesh refinements are obtained by 
halving the mesh. Denote ih  to be the mesh spacing for subdomain iΩ , 1 2i = , , then 

1 2 1max( )h = , =h h h  and 2 2
2tΔ = =h h .  

The errors hη  of solutions at 0 1T = .  for Scenarios 1-3 are compared in Table 2. Three mesh 
refinements were used. As can be seen in this table, the errors for each scenario are roughly of the 
same order of magnitude, and the errors appear to be 2( )O h  in each case.  

The errors hε  of fluxes at 0 1T = .  are given in Table 3. We see virtually the same phenomena in Table 3 

as in Table 2. The errors are all of roughly the same magnitude, and the converge rate is like 2( )O h .  

1h−  2        
 

     
1

h h

Scenario
hη η /

 

2        
 

    
2

h h

Scenario
hη η /

 

2        
 

    
3

h h

Scenario
hη η /

 
100 1.247e-04 1.25 1.107e-04 1.11 7.908e-05 .791 
200 3.119e-05 1.25 2.943e-05 1.18 2.039e-05 .815 
400 7.798e-06 1.25 7.577e-06 1.21 5.173e-06 .828 

       

Table 2. Convergence of solution 
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1h−  2         
 1

     h h

Scenario
hε ε /

 

2         
 2

    h h

Scenario
hε ε /

 

2         
 3

    h h

Scenario
hε ε /

 
100 1.393e-04 1.39 1.477e-04 1.47 9.460e-05 9.46 
200 3.483e-05 1.39 3.577e-05 1.43 2.342e-05 9.46 
400 8.706e-06 1.39 8.816e-06 1.41 5.809e-06 9.30 

       

Table 3. Convergence of flux 

4.3 The parallelism of the procedure  
The method has been implemented on the Nankai Star cluster system. In Table 4, we show running timings, 
speed-up and errors hη  for different decompositions. The notation n  refers to the domain decomposition 
scheme with n  subdomains, as well as the number of processors. When 1n = , this represents the fully 
implicit finite difference scheme, which is without the domain decomposition. nT  refers to the total running 
time with n  processors. The speed-up of n  processors is defined as 1n nS T T= / . In these runs an uniform 

mesh is used with 1 10000h = / . The time step 610n tτ −= Δ = , and 0 1T = . . The Thomas algorithm is 
used to solve the tridiagonal systems on each subdomain.  

The table shows that, for the test problem, the errors resulting from the domain decomposition algorithm 
are slightly less than that from the fully implicit finite difference scheme, and they decrease with the increase 
of the processors. This may be due to the fact that the rounding error in each subdomain decreases with the 
increase of the number of subdomains. These results also indicate that the speed-up is slightly better than 
linear. Thus, the scheme is of high parallelism.  
 

n  hη   nT (sec.)  nS   
1 9.947e-07 126.44  
2 8.229e-07 64.90 1.95 
3 7.361e-07 49.33 2.56 
4 6.495e-07 36.56 3.46 

 
Table 4. The parallelism of the scheme 

5. Conclusion  

We have presented a conservative domain decomposition scheme with unconditional stability for 
variable coefficient parabolic problems. The constructed scheme satisfies the discrete mass conservation. 
The unconditional stability are proved. Numerical results demonstrate the unconditional stability, the second-
order accuracy to solution values as well as fluxes and high parallelism. The numerical results also show that 
the errors resulting from the domain decomposition algorithm are less than that from the fully implicit finite 
difference scheme, which is without the domain decomposition. 
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