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Abstract. In this article, We apply Krylov subspace methods in combination of the ADI, BLAGE,... 
method as a preconditioner for a class of linear systems arising from fourth-order finite difference schemes in 
solution of hyperbolic equations )u,uu,t,F(x,t)u(x,-u txxxtt =βα  subject to appropriate initial and 
Dirichlet boundary conditions, where α  is constant. We show The BLAGE preconditioner is extremely 
effective in achieving optimal convergence rates for the class of fourth-order difference schemes considered 
in this paper. Numerical results performed on model problem to confirm the efficiency of our approach.  
Keywords: Fourth-order approximation; Hyperbolic equations; Krylov subspace methods; Preconditioner. 

1. Introduction  
     In Solution of PDE’s by means of numerical methods one often has to deal with large systems of linear 
equations, especially if the PDE’s is time-independent or if the time-integrator is implicit. For real life 
problems, these large systems can often only be solved by means of some iterative method. Even if the 
system are preconditioned, the  basic iterative method often converges slowly or even diverges. The 
numerical solution of one space second order hyperbolic equations with nonlinear first derivative terms in 
Cartesian, cylindrical and spherical coordinates are of great importance in many fields of engineering and 
sciences.  
       Many computational models give rise to large sparse linear systems. For such systems iterative methods 
are usually preferred to direct methods which are expensive both in memory and computing requirements. 
When the iterative method is based on Krylov subspaces, there is a need to use preconditioning techniques in 
order to achieve convergence in a reasonable number of iteration steps. Since the preconditioner plays a 
critical role in preconditioned Krylov subspace methods, many preconditioners have been proposed and 
studied [22, 5, 11]. These, preconditioners based on incomplete factorization such as ILU preconditioner that 
have been proposed and studied by many of researchers [17, 10, 11]. The ADI method is a preconditioner for 
non-symmetric systems that can be very effective but this method is not effective for more general block tri-
diagonal systems arising from the fourth-order approximations. Bhuruth and Evans [3]  proposed BLAGE 
method as a preconditioner for a class of non-symmetric linear systems arising from the fourth-order finite 
difference schemes. In this article, we compare different preconditioned methods for solving linear systems 
arising from the fourth-order approximation of hyperbolic equation 

)u,uu,t,F(x,t)u(x,-u txxxtt =βα  

defined in the region T]t[0 W <<×  , where } 1 x 0 |{x W <<=  and α  is constant. The initial and 

boundary conditions consists of 

1 t 2u(x,0) g (x), u (x,0) g (x), 0 x  1,= = ≤ ≤  

0 1u(0,t) h (t), u(1,t) h (t), t 0,= = ≥  

Where t)u(x,u = . The resulting block tri-diagonal linear system of equations is solved by using Krylov 
subspace methods. The outline of this paper is as follows: In Section 2, we describe Krylov subspace 
methods. In Section 3, we briefly introduce some available preconditioners. In Section 4 we present a class 
of fourth-order finite difference operators and in Section 5, we present an example to illustrate the accuracy 
of our method. In Section 6, we report a brief conclusion. 
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2. Krylov subspace methods 
 Let 0x   be an arbitrary initial guess for linear systems given by bAx =  and let 00 Ax-br = be the 

corresponding residual vector. A Krylov subspace of order m  that is shown with r)(A,Km is defined as 

follows: 

}r A,...,rA ,{rspan  )r(A,K 0
1-m

000m = . 

For un-symmetric matrix A, different Krylov methods can be used such as GMRES, GMRES(m), QMR, 

CGS, BiCG, BiCGSTAB [18, 24]. Now, we briefly describe some Krylov subspace methods: 

2.1. Generalized Minimal Residual(GMRES) method 

    In 1986, Saad and Schultz [19] introduced GMRES method for solving non-symmetric systems. This 

method has the property of minimizing the norm of the residual vector over the Krylov subspace method at 

every step. The major drawback for GMRES method is that the amounts of work and storage required per 

iteration linearly rises with the iteration number. The usual way for overcome this problem is to restart after 

m iteration.  

Proposition 2.1. Assume that A is a diagonalizable matrix and let -1XDXA = where },...,diag{D n1 λλ= is  

the  diagonal  matrix  of  eigenvalues.  Define,    

.|)p(|n}1,...,1}max_{ip(0),P min_{p im λεε ===m  

 Then, the residual norm achieved by the m-th step of GMRES satisfies the inequality   

2 0 2( ) m
mr K X r≤‖ ‖ ‖ ‖ò , 

where , 1
2 2( )K X X X −=‖ ‖‖ ‖ . 

If A  is positive real with symmetric part M , the following error bound can be derived from the proposition, 

/2
0[1 / ] ,m

mr rα β≤ −‖ ‖ ‖ ‖  

with 2
min (M))(λα = ,  A).(AT

maxλβ = This proves the convergence of the GMRES(m) for all m  when A  

is positive real [18]. 

2.2. Bi-Conjugate Gradient (BiCG) method 
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Bi-conjugate gradient (BiCG) method was suggested by Fletcher in 1977, is applied to non-symmetric 

matrices. BiCG method needs matrix-vector products with A  and TA . Also, BiCG method is sensitive to 

possible breakdowns and numerical instabilities. 

Proposition2.2 [18] The vectors produced by the Bi-conjugate Gradient algorithm satisfy the following 

orthogonality properties: ൫r୨, r୧∗൯ = 0, i ≠ j ൫Ap୨, p୧∗൯ = 0, i ≠ j 
2.3. Quasi- Minimal Residual (QMR) method 

    In 1991, Freund and Nachtigal proposed the quasi-minimal residual (QMR) method for solving non-

Hermitian linear systems. Later in 1994, they presented QMR method based on the coupled two-term 

recurrences instead of three-term recurrences [9]. This method sometimes avoids the break down of BiCG 

method. Also, QMR method has a regular convergence behavior than other Krylov subspace methods. 

  Proposition 2.3 [18]The residual norm of the approximate solution mx  of QMR method satisfies the 

relation 

1 2 1 0 2| ... | .m m mb Ax V s s r+− ≤‖ ‖‖ ‖ ‖ ‖  

2.4. Conjugate Gradient Squared (CGS) method 

    In 1989, Sonneveld presented the conjugate gradient squared (CGS) method for nonsymmetric systems 

[21]. The speed of convergence of this method usually is about twice as fast as BiCG method. Convergence 

behavior of this method is often quite irregular, which may result loss of accuracy in the updated residual. 

Algorithm of Preconditioned Conjugate Gradient Squared method is presented in [21]. 

2.5. Bi-Conjugate Gradient Stabilized (BiCGSTAB) method 

This method is applied for non-symmetric systems. Bi-conjugate gradient stabilized method is an alternative 

for CGS method that avoids the irregular convergence behavior of CGS method while maintaining about the 

same speed of convergence [20]. Algorithm of BiCGSTAB method that applied to the preconditioned system 

(2.1) is presented in [2]. 

3. Preconditioner 
 The convergence rate of iterative methods depends on spectral properties of the coefficient matrix. Hence 

we will attempt to transform the linear system into another equivalent system in the sense that it has the same 
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solution, but has more favorable spectral properties. A preconditioner is a matrix that effects such as a 

transformation [2, 4]. If the preconditioner be as 21MMM =  then the preconditioned system is as 

bMx)(MAMM -1
12

-1
2

-1
1 = . 

The matrices 1M  and 2M  are called the left and right preconditioners, respectively. Now, we briefly 

describe preconditioners that we use for solving linear systems and let us take A matrix arising from fourth 

order approximations that is block tri-diagonal. 

3.1. Preconditioner based on relaxation technique 

Let A=D+L+U such that D, L and U are diagonal, lower and upper triangular block matrices, respectively. A 

splitting of the coefficient matrix is as A=M-N where the stationary iteration for solving a linear system is as 

bMNxMx -1(k)-11)(k +=+ . 

In Table 1, we briefly show preconditioners based on relaxation technique. 

Table 1 Preconditioners based on relaxation technique 
Preconditioner 
Preconditioner M 
Jacobi  D 
Gauss-Seidel  (D+L)  

SOR )(1 LD ω
ω

+   

SSOR )()(
)2(

1 1 UDDLD ωω
ωω

++
−

−   

In the above notation, ω  is called the relaxation parameter. The optimal value of the parameter ω  reduces 

the number of iterations to a lower order [1]. We have chose M in Jacobi, G-S, SOR as a left preconditioner 

and in SSOR preconditioner, we have chose L) (D
)-(2

1M1 ω
ωω

+=  as a left preconditioner and 

U)(DDM -1
2 ω+= as a right preconditioner. Also, we take

211
2

J

opt
ρ

ω
−+

=  

3.2. ADI preconditioner 

Peaceman and Rachford [16] in 1955 presented the ADI method for solving linear systems. Let A=H+V and 

in the form 
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⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
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⎜

⎝

⎛

=

−−−

nn

nnn

BA
CBA

CBA
CB

A

111

222

11

OOO  

where },,{ 111 iiii cbatridiagA = , },,{ 222 iiii cbatridiagB =  and },,{ 333 iiii cbatridiagC =  of order NN ×  

where H and V are bounded and include },,5.0{ 13 iii bbBH = , },,,,5.0{ 3311 iiiii cacaBV = . The alternative 

direction implicit method for solving the linear system Ax=b is in following form: 

,I)ur-(V-bI)ur(H (k)
1

1/2)(k
1 =+ +  

,I)ur-(H-bI)ur(V 1/2)(k
2

1)(k
2

++ =+  

The ADI preconditioner is as I)rI)(Vr(HM 21 ++= that I)r(HM 11 += and I)r(VM 22 += where 

Parameters 1r  and 2r  are acceleration parameters. Young and Varga [25,23] proved that the optimum value 

for 1r  and 2r  is αβ  where  , ii βνμα ≤≤  and ii νμ ,  are eigenvalues of matrices H and V respectively. 

3.3. BLAGE preconditioner 

The BLAGE method [3,7] was originally introduced as analogue of the AGE method [6]. The BLAGE uses 

fractional splitting technique that is applied in two half steps on linear systems with block tri-diagonal 

matrices of order 22 NN × and in the form 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−−

nn

nnn

BA
CBA

CBA
CB

A

111

222

11

OOO  

where ii B ,A and iC  are tri-diagonal matrices of order NN × . The splitting of matrix A is sum of matrices 

1G  and 2G  in which 21 GGA += where 1G  and 2G  are of the form  
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for odd values of n and 
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for even values of n where ii B
2
1=B′  . The BLAGE preconditioner is as I)I)(G(GM 2211 ωω ++=  that 

I)(GM 111 ω+=  and I)(GM 222 ω+=  where 1ω  and 2ω  are optimal iteration parameters. We have 

experimentally chosen the relaxation parameter 211 βαω = and 122 βαω = where )(M1min1 λα = ,  

)(M1max1 λβ = and )(M2min2 λα = , )(M2max2 λβ = so that we will have the minimum condition number. 

4. Fourth-order approximations  

     Now let us
h
kp = , Mohanty et al. [14] have derived finite difference schemes of fourth-order accuracy 

for equations of the form 

t),f(x,t)u(x,t)u(x,t)u(x,t)uA(x,-u txxxtt +++= λνμ  

the fourth-order scheme for (4.1) can be written in the form 
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Where 
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where 

)11.3(,226,)(,)( 42343224321 LLLLLLLL ++=+−−=++−= λλλ
)12.3(,4212,)22(,)22( 41643154314 LLLLLLLL −+−=−+−=−−−= λλλ
)13.3(,226,)(,)( 42943284327 LLLLLLLL +−=−+=−−= λλλ  

If we put above operators in (4.1) we arrive to a system of equations in which the corresponding matrix is tri-

diagonal. We can solve this system with well-known iterative methods such as Krylov subspace methods. 

5.    Numerical experiment  
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 In this section, we present a numerical example to show the computational efficiency of the preconditioning 

methods introduced in Section 2. Our initial guess is the zero vector and the iterations are stopped when the 

norm of relative residual is less than 610− . In following Tables, We show the iteration number without using 

preconditioner by "no pre". The computations have been done on a P.C. with Corw 2 Pue 2.0 Ghz and 1024 

MB RAM. We consider hyperbolic differential equation 

txxxtt uuuu ++= , 

subject to appropriate initial and Dirichlet boundary conditions (1-2,1-3), where 

3t).exp(2xt)u(x, +=  

We discretized equation (5.1) by using forth-order approximation. The resulting coefficient matrix is block 

tri-diagonal and the diagonal elements are tri-diagonal matrices. We show the iteration count of different 

Krylov subspace methods in combination various preconditioning in Tables 2-6. When mesh size h  is finer, 

we encounter break down by using direct preconditioners while BLAGE preconditioners work quite well. In 

Figures 1-5, comparison of convergence behavior are shown. Also, In Fig. 6, 7, for sample we show 

distribution of eigenvalues ADI and BLAGE preconditioners that  M ,M 21 are left and right preconditioners 

respectively. It is obvious that the distribution of eigenvalue BLAGE preconditioning is regular than ADI. 

Table 2 Number of iterations with GMRES method 
N no pre Jacobi SOR SSOR ADI BLAGE 
9 74 42 27 22 13 28 
19 147 131 72 53 33 63 
29 251 231 121 93 43 120 
39 350 335 170 144 48 183 
49 452 430 221 204 132 246 
59 564 530 273 318 220 294 
69 665 630 488 Nun 310 356 
79 770 724 Nun Nun 405 455 
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Fig.1 Comparison of convergent behavior of GMRES method 
Table 3 Number of iterations with CGS method 

N no pre Jacobi SOR SSOR ADI BLAGE 
9 45 34 22 14 12 22 
19 162 155 82 57 52 79 
29 370 368 212 190 90 199 
39 621 878 417 637 114 369 
49 909 1509 1082 Nun 1329 548 
59 1232 Nun Nun Nun Nun 912 
69 1493 Nun Nun Nun Nun 1102 
79 2003 Nun Nun Nun Nun 1430 

 

 

Fig.2 Comparison of convergent behavior of CGS method 
Table 4 Number of iterations with QMR method 

N no pre Jacobi SOR SSOR ADI BLAGE 
9 76 54 39 23 17 39 
19 154 143 102 60 45 81 
29 322 322 207 150 92 179 
39 553 605 407 409 93 309 
49 863 1232 1228 Nun 595 519 
59 1113 Nun Nun Nun Nun 781 
69 1456 Nun Nun Nun Nun 1173 
79 1930 Nun Nun Nun Nun 1356 
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Fig.3Comparison of convergent behavior of QMR method 
Table 5 Number of iterations with BiCG method 

N no pre Jacobi SOR SSOR ADI BLAGE 
9 78 55 38 23 18 39 
19 154 148 103 61 44 82 
29 344 323 209 151 87 180 
39 553 608 486 405 91 309 
49 854 1249 2932 Nun 651 515 
59 1126 Nun Nun Nun Nun 803 
69 1495 Nun Nun Nun Nun 1333 
79 1922 Nun Nun Nun Nun 1504 

 

 

  Fig.4 Comparison of convergent behavior of BiCG method 
Table 5 Number of iterations with BiCGSTAB method 

N no pre Jacobi SOR SSOR ADI BLAGE 
9 58 40 22 13 10 23 
19 369 291 96 67 54 83 
29 676 615 247 209 94 249 
39 1067 1265 584 917 111 499 
49 1438 2400 1554 Nun 816 718 
59 2169 Nun Nun Nun Nun 1381 
69 2932 Nun Nun Nun Nun 1702 
79 3503 Nun Nun Nun Nun 2132 
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Fig.5 Comparison of convergent behavior of BiCGSTAB method 

 

Fig.6 Distribution of eigenvalues in ADI Preconditioner 

 

Fig.7 Distribution of eigenvalues in BLAGE Preconditioner 

We see that we obtain less iteration number with using ADI and SSOR preconditioners but SSOR 
preconditioner needs more computing time than other preconditioners. Also, we saw that using ADI and 
BLAGE preconditioner we save in computing time. It is seen that when the condition number is high, the 
ADI and SSOR preconditioner do not work very well but in well-conditioned problems the iteration 
number of the BLAGE, SSOR preconditioners is less and the iteration number of the Jacobi and SOR 
preconditioners is more. We found when mesh size is finer, the QMR, BiCG, CGS and BiCGSTAB 
methods in composition preconditioners don't work very well but with using GMRES method in 
composition preconditioners, we get less iteration number than other preconditioned krylov subspace 
methods. Also, preconditioned GMRES method has regular convergence behavior. 

6. Conclusions  
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 Here, we compared the different preconditioners in non-symmetric systems for hyperbolic equation. 
From Tables and Figures, we see that although all the methods seem to work well with BLAGE 
preconditioning using GMRES gives the fastest convergence. Also, the computing time of BLAGE 
preconditioner is less than other preconditioners. So we propose using BLAGE preconditioner because this 
preconditioner needs to less computing time and have the less iteration numbers than other. We propose 
using the parallel machines for better comparison of block preconditioners because the BLAGE and ADI 
preconditioners can be employed in parallel environment where the preconditioning operations can be 
divided into several subproblems which can be run in parallel [3]. 
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