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Abstract. FP-growth method is an efficient algorithm to mine frequent patterns, in spite of long or short 

frequent patterns. By using compact tree structure and partitioning-based, divide-and-conquer searching 

method, it reduces the search costs substantially. But just as the analysis in Algorithm, in the process of FP-

tree construction, it is a strict serial computing process. Algorithm performance is related to the database size, 

the sum of frequent patterns in the database: ω. this is a serious bottleneck. People may think using 

distributed parallel computation technique or multi-CPU to solve this problem. But these methods apparently 

increase the costs for exchanging and combining control information, and the algorithm complexity is also 

greatly increased, cannot solve this problem efficiently. Even if adopting multi-CPU technique, raising the 

requirement of hardware, the performance improvement is still limited.  
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1. Introduction  

 (1). we can create a temp database for storing all the frequent items ordered by the list of frequent items, 

Lwe call this temp database as Projection Database (or PDB for short), which is used for projecting, reduce 

the expensive costs of individual node computation. 

(2). we can project the PDB, two columns at a time.1 One column (called current column) is used to 

computer the count of each different item, the other (previous) column is used to distinguish the node’s 

parent node of current column. we can insert one level of nodes into the tree at a time, not compute frequent 

items one by one. Then, the algorithm performance is only related to the depth of tree, namely the number of 

frequent items of the longest transaction in the database η,  

(3). because we only project two columns at a time, only save the information of the current nodes and 

their parent nodes, if there exist the case as follows: the current nodes’ parent nodes are identical, but their 

parent nodes’ parent nodes are different, we couldn’t judge how to deal with it. If we add their count 

regarding them as the same node, 

2. DEFINITION AND BASE FORMULATION  

conditional-pattern base (a “sub-database” which consists of the set of frequent items occurring with the 

suffix pattern), constructs its (conditional) FP-tree, and performs mining recursively with such a tree. The 

pattern growth is achieved via concatenation of the suffix pattern with the new ones generated from a 

conditional FP-tree. Since the frequent item set in any transaction is always encoded in the corresponding 

path of the frequent-pattern trees, pattern growth ensures the completeness of the result. our method is not 

Apriori-like restricted generation-and-test but restricted test only. The major operations of mining are count 

accumulation and prefix path count adjustment, which are usually much less costly than candidate generation 

and pattern matching operations performed in most Apriori-like algorithms.  the search technique employed 

in mining is a partitioning-based, divide-andconquer method rather than Apriori-like level-wise generation 

of the combinations of frequent itemsets. This dramatically reduces the size of conditional-pattern base 

generated at the subsequent level of search as well as the size of its corresponding conditional FP-tree.  
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A performance study has been conducted to compare the performance of FP-growth with two representative 

frequent-pattern mining methods, Apriori (Agrawal and Srikant, 1994) and Tree Projection (Agarwal et al., 

2001),   FP-growth outperforms the Tree Projection algorithm. our Ftree-based mining method has been 

implemented in the DBMiner system and tested in large transaction databases in industrial applications. 

Although FP-growth was first proposed briefly in Han et al. (2000), this paper makes additional progress as 

follows. 

– The properties of FP-tree are thoroughly studied.  we point out the fact that, although it is often compact, 

FP-tree may not always be minima. 

– Some optimizations are proposed to speed up FP-growth, for   technique to handle single path FP-tree has 

been further developed for performance improvements. 

 – A database projection method has been developed to cope with the situation when an FP-tree cannot be 

held in main memory—the case that may happen in a very large database. 

– Extensive experimental results have been reported. We examine the size of FP-tree as well as the 

turning point of FP-growth on data projection to building FP-tree. 

3. FREQUENT-PATTERN TREE: DESIGN AND CONSTRUCTION  

Let I ={a1, a2, . ..am} be a set of items, and a transaction database DB=T1, T2, . . . , Tn, where Ti (i = 

[1 . . . n]) is a transaction which contains a set of items in I . The support1 (or occurrence frequency) of a 

pattern A, where A is a set of items, is the number of transactions containing A in DB. A pattern A is frequent 

if A’s support is no less than a predefined minimum support threshold, ξ . 

A compact data structure can be designed based on the following observations:  

(1). Since only the frequent items will play a role in the frequent-pattern mining, it is necessary to perform 

one scan of transaction database DB to identify the set of frequent items (with frequency count obtained as a 

by-product). 

(2). If the set of frequent items of each transaction can be stored in some compact structure, it may be 

possible to avoid repeatedly scanning the original transaction database. 

(3). If multiple transactions share a set of frequent items, it may be possible to merge the shared sets with the 

number of occurrences registered as count.  

database 

(1). If two transactions share a common prefix, according to some sorted order of frequent items, the shared 

parts can be merged using one prefix structure as long as the count is registered properly. If the frequent 

items are sorted in their frequency descending order, there are better chances that more prefix strings can be 

shared. one may construct a frequent-pattern tree as follows. a scan of DB derives a list of frequent items, 

( f :4), (c:4), (a:3), (b:3), (m:3), (p:3)(the number after “:” indicates the support), in which items are ordered 

in frequency descending order.  the root of a tree is created and labeled with “null”. 

(1). The scan of the first transaction leads to the construction of the first branch of the tree:( f :1), (c:1), (a:1), 

(m:1),(p:1). (2). For the second transaction, since its (ordered) frequent item list f, c, a, b,m shares a common 

prefix f, c, awith the existing path f, c, a,m, p the count of each node along the prefix is incremented by 1, 

and one new node (b:1) is created and linked as a child of (a:2) and another new node (m:1) is created and 

linked as the child of (b:1). (3). For the third transaction, since its frequent item list  f, bhares only the node f 

with the f prefix subtree, f ’s count is incremented by 1, and a new node (b:1) is created and linked as a child 

of ( f :3).(4). The scan of the fourth transaction leads to the construction of the second branch of the tree, 

(c:1), (b:1), (p:1). (5). For the last transaction, since its frequent item list f, c, a,m, pis identical to the first one, 

the path is shared with the count of each node along the path incremented by 1. 

Definition  (FP-tree). A frequent-pattern tree (or FP- tree in short) is a tree structure 

(1). It consists of one root labeled as “null”, a set of item-prefix sub trees as the children of the root and a 

frequent-item-header table. 

(2). Each node in the item-prefix sub tree consists of three fields: item-name, count, and node-link, where 

item-name registers which item this node represents, count registers the number of transactions represented 

by the portion of the path reaching this node,  
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node-link links to the next node in the FP-tree carrying the same item-name, or null if there is none. 

(3). Each entry in the frequent-item-header table consists of two fields,  

(1) item-name  

(2) head of node-link (a pointer pointing to the first node in the FP-tree carrying the item-name). 

Algorithm  (FP-tree construction). 

Input: A transaction database DB and a minimum support threshold ξ. 

Output: FP-tree, the frequent-pattern tree of DB. 

Method: The FP-tree is constructed as follows. 

(1). Scan the transaction database DB once. Collect F, the set of frequent items, and the support of each 

frequent item. Sort F in support-descending order as FList, the list of frequent items. 

(2). Create the root of an FP-tree, T , and label it as “null”. For each transaction Trans in DB do the following. 

Select the frequent items in Trans and sort them according to the order of FList. Let the sorted frequent-item 

list in Trans be  where p is the first element and P is the remaining list. Call insert tree. The function insert 

tree is performed as follows. If T has a child N such  that N.item-name = p.item-name, then increment N’s 

count by 1; else create a new node N, with its count initialized to 1, its parent link linked to T , and its node-

link linked to the nodes with the same item-name via the node-link structure. If P is nonempty, call insert 

tree(P, N) recursively. 

4. COMPLETENESS AND COMPAVTNESS OF FP-TREE  

 There are several important properties of FP-tree that can be derived from the FP-tree construction 

process. 

Given a transaction database DB and a support threshold ξ . Let F be the frequent items in DB. For 

each transaction T , freq(T ) is the set of frequent items in T , freq(T ) = T, F, and is called the frequent item 

projection of transaction T . According to the Apriori principle, the set of frequent item projections of 

transactions in the database is sufficient for mining the complete set of frequent patterns, because an 

infrequent item plays no role in frequent patterns. 

Based on the FP-tree construction process, for each transaction in the DB, its frequent item 

projection is mapped to one path in the FP-tree. For a path a1a2 . . . ak from the root to a node in the FP-tree, 

let cak be the count at the node labeled ak and c k be the sum of counts of children nodes of ak . According 

to the construction of the FP-tree, the path registers frequent item projections of cak - c k transactions. 

Therefore, the FP-tree registers the complete set of frequent item projections without duplication. Based on 

this lemma, after an FP-tree for DB is constructed, it contains the complete information for mining frequent 

patterns from the transaction database.  only the FP-tree is needed in the remaining mining process, 

regardless of the number and length of the frequent patterns. Based on the FP-tree construction process, for 

each transaction in the DB, its frequent item projection is mapped to one path in the FP-tree. For a path a1 

a2 . . . ak from the root to a node in the FP-tree, let cak be the count at the node labeled ak and c k be the sum 

of counts of children nodes of ak . the path registers frequent item projections of cak - c k transactions 

Therefore, the FP-tree registers the complete set of frequent item projections without duplication. Based on 

this lemma, after an FP-tree for DB is constructed, it contains the complete information for mining frequent 

patterns from the transaction database.  only the FP-tree is needed in the remaining mining process,   FP-tree 

is a highly compact structure which stores the information for frequent-pattern mining. Since a single path 

“a1→a2 →a3→ a4…→” an in the a1-prefix sub tree registers all the transactions whose maximal frequent 

set is in the form of “a1→a2 →a3→ a4…→ak” for any 1≤k≤n the size of the FP-tree is substantially. 

 Connect-4 used in Max Miner (Bayardo, 1998), which contains 67,557 transactions with 43 items in 

each transaction, when the support threshold is 50% (which is used in the Max Miner experiment. 

5. MINING FREQUENT PATTERNS USING FP-TREE  

Construction of a compact FP-tree ensures that subsequent mining can be performed with a rather 

compact data structure. this does not automatically guarantee that it will be highly efficient since one may 
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still encounter the combinatorial problem of candidate generation if one simply uses this FP-tree to generate 

and check all the candidate patterns.  we study how to explore the compact information stored in an FP-tree, 

develop the principles of frequent-pattern growth by examination of our running example,  

 PRINCIPLES OF FREQUENT-PATTERN GROWTH FOR FP-TREE MINING 

Property (1) (Node-link property). For any frequent item ai , all the possible pattern containing only 

frequent items and ai can be obtained by following ai ’s node-links, starting from ai ’s head in the FP-tree 

header. 

Property (2) (Prefix path property). To calculate the frequent patterns with suffix ai , only the prefix sub 

pathes of nodes labeled ai in the FP-tree need to be accumulated, and the frequency count of every node in 

the prefix path should carry the same count as that in the corresponding node ai in the path. 

Property (3) (Fragment growth). Let α be an item set in DB, B be α’s conditional pattern base ,β be an item 

set in B. Then the support of α Uβ in DB is equivalent to the support of β in B. 

TRADITIONAL FREQUENT PATTERN GROWTH ALGORITHM 

Let I  ={a1, a2, … am} be a set of items, and a transaction database DB =(T1, T2, …Tn), where 

Ti (i∈[1..n]) is a transaction which contains a set of items in I. Every transaction has a key label, called TID. 

The support1 (or occurrence frequency) of a pattern A, which is a set of items, is the number of 

transactions containing A in DB. A is a frequent pattern if the support of A is no less than a predefined 

minimum support threshold ξ. Given a transaction database DB and a minimum support threshold, ξ, the 

problem of finding the complete set of frequent patterns is called the frequent pattern mining problem. 

(1). Since only the frequent items will play a role in the frequent pattern mining, it is necessary to perform 

one scan of DB to identify the set of frequent items (with frequency count obtained as a by-product). 

(2). If we store the set of frequent items of each transaction in some compact structure, it may avoid 

repeatedly scanning of DB. 

(3). If multiple transactions share an identical frequent item set, they can be merged into one with the number 

of occurrences registered as count. It is easy to check whether two sets are identical if the frequent items in 

all of the transactions are sorted according to a fixed order. 

(4). If two transactions share a common prefix, according to some sorted order of frequent items, the shared 

parts can be merged using one prefix structure as long as the count is registered properly. If the frequent 

items are sorted in their frequency descending order, there are better chances that more prefix strings can be 

shared. Based on the above observations, we can get the definition of FP-tree: 

(1). It consists of one root labeled as “null”, a set of item prefix subtrees as the children of the root, and a 

frequent-item header table. 

(2). Each node in the item prefix subtree consists of three fields: item-name, count, and node-link, where 

item-name registers which item this node represents, count registers the number of transactions represented 

by the portion of the path reaching this node, and node-link links to the next node in the FP-tree carrying the 

same item-name, or null if there is none. 

(3). Each entry in the frequent-item header table consists of two fields, (1) item-name and (2)head of node-

link, which points to the first node in the FP-tree carrying the item-name. Based on this definition, we have 

the following FP-tree construction algorithm. 

Algorithm  (FP-tree construction) 

Input: A transaction database DB and a minimum support threshold ξ. 

Output: Its frequent pattern tree, FP-Tree 

Method: The FP-tree is constructed in the following steps. 

(1). Scan the transaction database DB once. Collect the set of frequent items F and their supports. Sort F in 

support descending order as L, the list of frequent items. 

(2). Create the root of an FP-tree, T, and label it as “null”, for each transaction in DB  Select and sort the 

frequent items in transaction according to the order of L. Let the sorted frequent item list in transaction be 

where p is the first element and P is the remaining list. Call insert tree . 

Function insert tree  

If T has a child N such that N.item-name = p.item-name 

Then increment N’s count by 1; 
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Else do {create a new node N; 

N’s count = 1; 

N’s parent link be linked to T; 

N’s node-link be linked to the nodes with the same item-name via the node-link 

structure;} 

If P is nonempty, Call insert tree (P, N). 

CONSTRUCTING FP-TREE GROWTH USING PROJECTION  

FP-growth method is a efficient algorithm to mine frequent patterns, in spite of long or short frequent 

patterns. By using compact tree structure and partitioning-based, divide-and-conquer searching method, it 

reduces the search costs substantially. But just as the analysis in Algorithm  and  in the process of FP-tree 

construction, it is a strict serial computing process.  algorithm performance is related to the database size, the 

sum of frequent patterns in the database: ω. People may think using distributed parallel computation 

technique or multi-CPU to solve this problem. But these methods apparently increase the costs for 

exchanging and combining control information , cannot solve this problem efficiently. Even if adopting 

multi-CPU technique, raising the requirement of hardware, (1) we can create a temp database for storing all 

the frequent items ordered by the list of frequent items L. we call this temp database as Projection Database 

(or PDB for short), which is used for projecting, reduce the expensive costs of individual node computation. 

(2) we can project the PDB, two columns at a time. One column  is used to computer the count of each 

different item, the other (previous) column is used to distinguish the node’s parent node of current column. 

By this way, we can insert one level of nodes into the tree at a time, not compute frequent items one by one. 

Then, the algorithm performance is only related to the depth of tree, namely the number of frequent items of 

the longest transaction in the database η, not the sum of frequent items in the database. 

(3) because we only project two columns at a time, only save the information of the current nodes and their 

parent nodes, if there exist the case as follows: the current nodes’ parent nodes are identical, but their parent 

nodes’ 

6. PROPOSED algorithm: 

Example 1. Consider the following Volterra IDEs 

Algorithm PFP-tree construction 

Input: A transaction database DB and a minimum support threshold ξ. 

Output: PFP-tree 

Method:(1). Scan the transaction database DB once. Collect the set of frequent items F and their supports. 

Sort F in support descending order as L, (2). Select and sort the frequent items in transaction according to the 

order of L, the result is saved in the PDB. 

(3). Create the root of an FP-tree, T, and label it as “null”. Let column number in PDB be j, the initial value 

of j is 1.  

If j = 1  

 The process is implemented as follows: first project the column (j-1) and column (j), then add 1 to j, and 

project column (j-1) and column (j) circularly, and so on, until project the last column of PDB.  

Then do { Project the column (1), collect the set of frequent items and their supports, let the result be [q:n], 

where q is the frequent item, n is the count; 

Insert these nodes as the root’s child nodes into the PFP-tree. } 

Else do { (1) Project both parent column (j-1) and current column (j), compare the set of 

binary-frequent items and collect their supports1. Let the result be [px, q:n],  where p is the parent frequent 

item of column(j-1), x is p’s TAI if it has (if p has no TAI, then let x be null)  and q is the current frequent 

item of column (j), n is the count; 

(2) Compare the result sets of [px, q:n], if their current frequent item name, q are identical, then add each px 

as its TAI to q, let the result be [px, qy:n], where y=px; Else do nothing.  
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(3) Insert the nodes [qy:n] or [q:n] as the child nodes of px into the PFP-tree and let their node-link be linked 

to the nodes with the same item-name via the node-link structure.  (4). Delete all the TAI in the PFP-tree and 

PDB. 

COMPARIOSION ON THE BASIS OF VARING MINIMUM SUPPORT EXECUTION TIME  
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Number 

of 

records 

Time taken to 

execute 

(In millisecond) 

FP-GROWTH 

Tree with 

conditional 

Time taken to 

execute 

(In millisecond) 

FPGROWTH 

Tree with  Data 

base Partition 

projection 

algorithm  

200 66 90 

300 72 100 

400 127 150 

500 197 205 

 

 

   

7. Conclusion 

Since a transaction is projected to only one projected database at the database scan, after the scan, the 

database is partitioned by projection into a set of projected Databases, and hence it is called partition 

projection. The projected databases are mined in the reversed order of the list of frequent items.  the 

projected database of the least frequent item is mined first, and so on. Each time when a projected database is 

being processed, to ensure the remaining projected databases obtain the complete information, each 

transaction in it is projected to the aj -projected database, where aj is the item in the transaction such that 

there is no any other item after aj in the list of frequent items appearing in the transaction. The partition 

projection process for the database. The advantage of partition projection is that the total size of the projected 

databases at each level is smaller than the original database, and it usually takes less memory and I/Os to 

complete the partition projection. the processing order of the projected databases becomes important, and 

one has to process these projected databases in a sequential manner. during the processing of each projected 

database, one needs to project the processed transactions to their corresponding projected databases, which 

may take some I/O as well. Nevertheless, due to its low memory requirement, partition projection is still a 

promising method in frequent pattern mining  
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