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Abstract. In this paper, we propose a filter method to solve the linear complementarity problem(LCP). By 

using the Fisher-Burmeister function, we convert the LCP to an equivalent optimization problem with linear 

equality constraints. A filter approach is employed to tackle the optimization problem and the proposed 

mechanism for accepting the trial step is obtained by a nonmonotone filter technique. Under some conditions, 

we establish the global convergence of the algorithm. 
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1. Introduction  

In this paper, we consider the following linear complementarity problem (LCP) 

                                             
0 0 0T

y Mx q

x , y ,x y ,

 

  
                                                                          (1) 

where n n nM R ,x, y R  and 0( 0)x y  means that 0( 0) 1,2, ,i ix y i n   . In this paper, we 

assume that the solution set of (1)  is nonempty, and let X denote the solution set of (1) . For 

convenience, we use ( , ) .T T Tw x y  

 LCP problem, arising in transportation, economy, engineering and many fields in the society, 

see [1,2] for survey. Optimization reformulation method is one of the most popular method for 

solving the LCP, one is the equivalent unconstrained optimization reformulation[3], and  the other 

the equivalent constrained optimization reformulation[4].  In the last few years, a great deal of 

numerical methods had been proposed to deal with the responding optimization reformulation 

problems, such as nonsmooth Newton methods(see[4,5,6,7,8]), interior method(see[9])and 

smoothing method (see[10,11,12,13]and[14]for survey). 

 This paper will focus on the equivalent constrained optimization reformulation and the filter 

method to deal with linear equality constrained optimization reformulation of the LCP. The filter 

methods  was proposed first by Fletcher and Leyffer[15], in which the use of a penalty function, a 

common feature of the large majority of the algorithms for constrained optimization, is replaced by 

the technique so-called "filter", and filter method has been actually applied in many optimization 

techniques, for instance, the pattern search method [16], the SLP method [17], the interior point 

method [18], the bundle approaches [19], the system of nonlinear equations and nonlinear least 

squares [20], multidimensional filter method[21], and so on.   

In fact, filter method exhibits a certain degree of nonmonotonicity. The idea of nonmonotone 

technique can be traced back to Grippo et al.[22] in 1986. Due to its excellent numerical exhibition, 

over the last decades, the nonmonotone technique has been used in trust region method to deal with 

unconstrained and constrained optimization problems. Motivated by above ideas and methods, in 

this paper we use a filter algorithm that combines the nonmonotone technique for solving LCP. 

The rest of paper is organized as follows: In the section 2, we state the knowledge summary 

and algorithm model. In the section 3 we analyze the convergence property of the algorithm.  In the 

section 4, some discussions and remarks are given. 

2. Knowledge  summary and algorithm Model 
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It has been well known that by means of a suitable function: 2R R   the system                                                                                                                            

                                        0, 0, 0,a b ab                                                                                  (2)  

can be transformed into an equivalent nonlinear equation 

                                                  ( , ) 0,a b                                                                                    (3) 

       In this situation, function  is called as NCP-function. Then (1) can be reformulated as the 

following equivalent nonlinear equation system: 

( , )
1 1

( ) ,

( , )

x Mx q

x

x Mx qn n





 
 

   
 
 

                                                                 (4)   

( , )
1 1

( , ) ,
( , )

x y

H x y
x yn n

y Mx q





 
 
 
 
 
   

                                                                      (5) 

 A lot of methods have been proposed to solve (4) or (5) to minimize their natural residual 

  
1 12 2

( ) ( ) ( ) ( , )
1 22 2

x x or x H x y    
                                    

(6) 

In general, (5) is nonsmooth and nonlinear, hence it is not easy to solve. However, in (5), the 

first n components are nonsmooth and nonlinear which is difficult to solve, contrarily to the first 

part, the last n components are easy to handle. Therefore, it is reasonable to handle the first part 

which consists of the n nonsmooth components and the second part which consists of the n linear 

equations separately. Based on this idea, we transform further (5) into the following equivalent 

minimization problem.  

   
 

21
min ( , ) ,

2 2 1,

. 0

n
x y x yi in ix y R

s t y Mx q

  


  

                                   

Throughout the paper, we shall use the famous Fisher-Burmeister function defined by 

2 2( , ) , ( , ),a b a b a b a b R       which has many promised properties and attracted the 

attention of many researchers. 

 

As mentioned in the former, we exploit the famous Fisher-Burmeister function. Then (1) can be 

converted to the equivalent nonlinear equation system (5).                                        

 
   

21
min ( , ) ,

2 2 1,

. 0,

n
x y f w x yi in ix y R

s t y Mx q

   


  

                    (7) 

Since the algorithm we proposed in this paper converges to KKT point of (7). The first 

question needed to be answered is what condition guarantee that a KKT point of (1) is global 

solution of (7). Then, we easily know w solves (1) if and only if w solves (7). We have the 

following properties.   

Lemma 
 23

2.1   Function has the following properties: 

(1) ( , ) 0 0, 0, 0a b a b ab      ;  
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(2) is Lipschitz continuous with modulus 1 2,L    ' '. , ( ) ( )i e w w L w w     for all 

' 2,w w R ; 

 (3)   is directionally differentiable; 

 (4) The generalized gradient ( , )a b  of  at 2( , )a b R equals to      

{( 1, 1)} ( , ) (0,0)
2 2 2 2

( , ) { ,
{( 1, 1)} ( , ) (0,0)

a b if a b
a b a ba b

if a b


 

  
  

  
 

where ( , )  is any vector satisfying 2 2 1    

Definition:  If matrix M satisfy for any nx R , 0x  , there exists a component 0kx  , such that 

  0k k
x Mx  , then we call M is 0p  matrix. 

 Lemma 
 24

2.1  Let M be 0p  matrix. Furthermore, let vector , nv u R such that 0u vi i   
for all   

1, ,i n . Then 

0 0u Mv if and only if u v    . 

Lemma 2.3 If M is 0p matrix, then   

                                ( , ) (1) int (7)w x y solve w is a K T po of      .  

Proof: see lemma2.5 in [23]. 

 It is well known that the traditional SQP method generates a sequence { kw } converging to 

the desired solution by solving quadratic programming problem                                        

  21
, min ( )

2

1
min ( )

2

. ( ) ( ) 0,

k k

k k

k k

QP w G V d w
k k

T Tg w d d G d

Ts t C w A w d





 

                                                         (8)   

where we denote      ( ) ( , ), ( ) , ( ) , ,
k

k k k

k

x
g w x y C w M I q and A w C w M I

y

 
        

 
 

for a given ( , ),k k kw x y we write ( ), ( ), ( ) ( ) , , ,k k k k k k k kf w C w g w and A w as f C g A respectively, 

 ,T k k

kV x y is a generalized Jacobian of   ,w  and T

k k kG V V . 

As to the idea of filter method, solving problem (1) equivalents to minimize the objective 

function (8) and to satisfy the constraints. To inspect if the constraints are satisfied or not, we 

denote the violation function h as follows: 

h( w) C( w) .                                                                   (9) 

  It is easy to see that   0h w  if and only if x is a feasible point (   0h w   if and only if x is 

infeasible). To decide whether each point is better than the former one, we adopt nonmonotone 

technique to control h( w)  decreased nonmonotonically and to minimize function f ( w) . 

In our Algorithm, the nonmonotone parameter  m k satisfies 

      0 0 0 1 1 1 0m , m k min m k ,N , for k ,N ,        

and N is positive integer, for the convenience, we denote   

  
 

    
 

 
0 0

k j k jl k l k
j m k j m k

f w max f w h w max h w , 
   

    
   
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where    k m k l k k   . 

In the coming algorithm, we aim to decrease the value of  h w , more precisely, we will use a 

trust region type method to obtain   0i

kC w  by the help of the nonmonotone technique. Let 

   

      Ω

i i i

k k k

i i i i

k k k k

M h w h w d

h w C w A w d ,

  

  
                                                       (10) 

and                                                     
 

 Ω

i

ki

k i

k

M d
r .

d
  

Definition: A vector 2nw R  is called  

(1) a stationary point of problem (7) if w it is feasible and there exists a vector 

 1 2

T n

nρ ρ ,ρ , ,ρ R   such that  

    

   

 

0

0 1 2

g w A w ρ ,

c w ,i , , ,ni

 

   

 (2) an infeasible stationary point defined above is precisely a KKT point of problem(7)         if w it 

is infeasible and 

      2 1

T
γ w min max c w c w d ,i in i , ,nd R

 


 

where     
1

i
i , ,n

γ w max c w


 . 

The definition about the stationary point can be found in [25]. 

 (3) The function    0 0σ : , ,    is a forcing function (F-function) if for any sequence

   0it ,    0
0

lim σ tii



 implies 0

0
lim tii




. 

 (4) Let     2

1 2 1 2 0nη sup g w g w w ,w R    . Then the mapping    0 0σ : , ,   defined 

by 

 
  

1 2 0

1 2

w w
inf t t ,η

g w g w
θ t {

lim σ s t η,
s η

 
 
  
      

        

 
 

  
  


 




 

 

is the reverse modulus of continuity of gradient  g w . 

The algorithm is given as follows: 

Algorithm 2.1 

Step 0: Chosen 0 0

nx , y R , we computer 2 2

0

n nG R  and
1

1 0 0 1
2

k krβ ,α , λ ,λ λ       

 1 2 1r , , m k ,  Positive integer 1N ,  set  0 0k ,m k  ; 

Step 1: Solve  k kQP w ,G  to get kd ,if 0kd  ,stop; 

Step 2: If           

                                          ,                                                                   (11) 

set 1kα  . Otherwise go to step 3; 
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Step 3: Let 0kα  be bound above and satisfy.       

     
 

 
1

0

m k

k k k k kr k r k

r

f w α d max f w , λ f w σ t






 
   

 


       

                    (12) 

Where  kσ t  is a forcing function and
T

k k
k

k

g d
t

d


 , See [25]. 

Step4:  Set
1

w w α d .
k k k k

 
  

Let  
0

h max h w
k jj m k 

 
 


 

 if  1
h w βh

k



, that set   1m k  

  1mi n m k , N . Otherwise, let 1k k  , call restoration algorithm 2.2 to obtain r

kw , let rw w
k k
 .

   m k m i  and go to step 1.  

We describe the Restoration Algorithm as follows; 

 Algorithm 2.2 

Step 0:  0 0 0 0 0 1 0k kw w , ,i , η ,m i       ; 

Step 1: If  1kh x βh  , then r i

k kx x , stop; 

Step 2: compute 

                                                   
 Ωi

k

i

max d

s.t d  
                                                                           (13) to 

get i

kd . Calculate i

kr ; 

Step 3: If i

kr η , then let     1 1 1 1 1
2

i
i i i

k kw w , ,i i ,m i min m i ,N  
          and go to step 2; 

Step 4: If i

kr η , then 1i i i

k k kw w d   , 1 2i i   ,     1 1 1i i ,m i min m i ,N     and go to step1; 

3.    The convergence properties 

In this section, we discuss the global convergence property, we make the following assumptions; 

Assumptions: 

(1)The iterate kw remains in compacted subset 2nK R ;  

(2) There exist two constants 0 a b  such that 
2 2Ta d d Gd b d  , for all    iteration k and 

2nd R ; 

 (3) The solution of problem (11) satisfies 

           Ωi i i i i i i

k k k k kd h w C w A w d ν min h w ,


      ,  where 0ν   is constant. 

Assumptions (1) are the standard assumptions. (2) plays an important role in obtaining the 

convergence results. (3) is the sufficient reduction which guarantees the global convergence in a 

trust region method. 

   Since the point we obtain by the filter method may not satisfy the constraints, the cluster point 

of the sequence generated by Algorithm 2.1 can be either of the two different types of stationary 

points. Clearly, a strong stationary point defined above is precisely a KKT point of problem (7). 

The following lemma describes the properties of infeasible stationary point, see [25]. 

 Lemma 
 25

3.1   If nx,y R is an infeasible stationary point, there exists 0 0ρ  and 2nρ R    such 

that the following first-order necessary condition 

   0

1

0
n

i i

i

ρ g w ρ c w ,


    
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  holds. 

 Lemma 3.2 If  kw  is generated by (12). Then we have 

           
2 1

0 1 0

1 1

k k

k r k r

r r

f w f w λ σ t σ t f w λ σ t
 



 

      . 

Proof. The proof see [26]. 

 Lemma 3.3 Let  kw  be an infinite sequence generated by Algorithm2.1, then   0kh w 

 k  . 

Proof.  According to the definition of the  m k , we have    1 1m k m k   .so 

  
 

 

 
 

     

  

11
0 1

1
0 1

1

max

max

max ,

k jl k
j m k

k j
j m k

kl k

l k

h w h w

h w

h w h w

h w

 
  

 
  



 
 

 
 





 

This implies that
  l k

h w  converges. Then by  
 

 1
0
maxk k j

j m k
h w h w 

 

 
 

. 

We get
     1l k l k

h w h w


 . 

Since  0,1  , we deduce that   0kh w   k  . 

Therefore     1 0k l k
h w h w   , hold by Algorithm 2.1. So we have  lim 0k

k
h w


 . 

Lemma 3.4 If Algorithm 2.1 terminates at  kw , then  kw  is the either an infeasible stationary  

or a  stationary point. 

Proof.  (i) If the algorithm terminates at step 1. Then we have 0kd  . Obviously, we compute 

 kh w . If   0kh w  , then we get the solution of the subproblem (7). Which indicate 0kd   is a 

feasible point. Otherwise   0kh w  , which means 0kd   is an infeasible point. 

          (ii) If the algorithm terminates at step 2. Then 0kd  is the solution of subproblem (7). In this 

case, 0kd  satisfies the following K-T condition. 

                                                   0g G d A
k k k

                                                                                   (14) 

    0, 1,2, ,
T

c w c w d i ni ik k
                                                                      (15)         

Form lemma 3.3, we have 

  0,h w k
k

  .                                                                         (16)  

Namely w
k

 is a stationary point. 

 Lemma 3.5 In step 3, the line search procedure is well defined. 

Proof.  By the  algorithm 2.1. We have
1

2

T Tg d d G d
k k k k k

  . 

By the definition of   l k
f w , we have 

 
0

f w max f w
k jl k j m k

         

         
. 
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 And    0lim σ t
kk


  

implies 0lim t
kk



. From lemma 2, we get  

 
0

k
λ σ tr
r

 


 

Under assumption (1), we know  kf w  is bounded below. 

     0 10

k
λ σ t f w f wr kr

  
 

  Let k  , we have  
0

k
λ σ tr
r

 


. Hence we have   0lim σ t
kk




. 

 Case 1: assume that      f w αd f w σ t
k k k k
    , 

Now we prove that there exist a  0,1  , such that 

     f w αd f w σ t
k k k k
     

 Assume by contradiction that for  0,1   it holds. 

                        
T Tg d g d
k k k kf w αd f w σ t σ

k k k k
d d

k k

 
       
  
 

.                                 (17) 

   Divided by α  on the both sides of (16), 

   
0

Tf w αd f w g dk k k k k α
α α d

k

 
  , 

T
T k k
k k

k

g d
g d

α d
  

 Which implies that 0T

k kg d  . This is contradicts (11). 

Case2:  when      
1 1

0 0

m k m k

max f w , λ f w λ f w
k kr k r kr k rr r

   
   
   

  
      
 

. 

This means    
1

0

m k

λ f w f w
kr k r kr

 
 
 



 
 

 On the same way we assume that      
1

0

m k

f w αd λ f w σ t
k k kr k r kr

 
 
 



    
. 

 So use scaling law, we have      f w αd f w σ t
k k k k
    , which is the same with the case 1. 

This completes the proof. 

Lemma 3.6 Under assumption (3), the Restoration Algorithm terminates finitely. 

Proof.  The proof  see [25].           

Theorem 3.1 Suppose kw is an infinite sequence generated by Algorithm 2.1, kd  is the solution of

 k kQP w ,G . If the multiplier according to the subproblem (7) is uniform bounded, then 

0k
k
lim d


 . 

Proof:   By assumption (1), there exists point w such that w w for k O
k

  ,  where O  is a 

infinite index set, by Algorithm 2.1 and lemma 3. We talk about the following two possible cases. 
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Case 1: 
1

0 2

T TO k O g d d G d
k k k k k

 
    
 

 is infinite index set. In this case, we have 

       
1

0

m k

f w α d max f w , λ f w σ t
k k k k kr k r kr

 
 
 

 
     
 

. 

No matter        
1 1

0 0

m k m k

max f w , λ f w f w or λ f w
k kr k r k kr k rr r

   
   
   

  
      
 

. 

Since f  is bounded below. Since      0 10

k
λ σ t f w f w .r kr

    

We can get  

 lim 0 lim 0t t
k kk k

  
 

 

So                                                                      lim 0
T

k k

k
k

g d

d
  . 

Then we have                                                    lim 0Tg d
k kk




. 

Since                                                     
1

0
2

T Tg d d G d
k k k k k

   . 

According to the squeeze theorem, we obtain 

  

0
0

Tlim d G d
k k kk




 

Since kG is a positive matrix. So we  get 0lim d
kk




.                                                      (18)  

Case 2: 0O  is a finite index set, which implies 1

1

2

T T

k k k k kO k O g d d G d
 

    
 

is an infinite  

index set. If  18  does not hold, then there exist a positive number c and an infinite index set 2O ,  

such that 2 1kd c for k O O   . Since kd is the solution of  ,k kQP w G , we have 

 0, 0T

k k k k k k kg G d A C A d       

 Where 2n

k R  are the multipliers. Then we can assume that exist 0N   such that k N  . By  

lemma 3, we know   0kh w  , hence there exist 0 0k  , such that for 0 2,k k k O   , it holds 

 
2

2

2 2 2

Ta d d G dac k k k kh w
k N N N

    

Consequently, we deduce  

                   

 

1

2

T T T

k k k k k k k k

T T

k k k k k

T

k k k k

T

k k k

g d d G d d A

d G d C

Nh w d G d

d G d





  

  

 

 

 

This contradicts the definition of 1O . The proof is complete. 
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Theorem 3.2.  Suppose  kw  is an infinite sequence generated by Algorithm 2.1 and the 

assumption in Theorem 1 hold. Then cluster point of  kw  is a stationary point (KKT point) of (7). 

Proof.  Since  kw  lies in a compacted set, there exist 2nw R , such that ,kw w k O  .  By 

the lemma 3.3,  we have   0,kh w  k O , which means that w is a feasible point. Form Theo 

rem1, we have 

  

0kd  .  By the lemma 3 and Theorem3.1, we get 0d    is the solution of 

subproblem  ,QP w G  . Then by the KKT condition, we obtain 

0

0, 1,2, ,i

g A

c i n

  



 

 
 

   Therefore w  is a KKT point of problem (7), so we obtain the solution of (1) form lemma 2.3. 

4. Conclusions  

      In this paper, we propose a new filter method with the nonmonotonne line search technique for LCP, and 

the global convergence can be established under the weaker assumption than those of existed nonmonotone 

line serach. 
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