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Abstract. In this paper, a collocation method based on the Bessel polynomials are used for the solution of
nonlinear Fredholm-Volterra-Hammerstein integral equations (FVHIEs). This method transforms the
nonlinear (FVHIES) in to matrix equations with the help of Bessel polynomials of the first kind and
collocation points. The matrix equations corresponds to a system of nonlinear algebraic equations with the
unknown Bessel coefficients. Present results demonstrate proposed method in comparison with other
methods is more accurate, efficiency and reliability.
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1. Introduction

In recent years, many different method have estimated the solution of integral equations. Also, for
solution of these equations many analytical and numerical methods have been exited but most of the time
numerical methods have been used to solve these equations. Ordokhani [1] has used Walsh-hybrid functions
with Newton-Cotes nodes for solving of Fredholm-Hemmerstein integral equations. Authors [2] have solved
nonlinear integral equations of Hammerstein type by Chebyshev polynomials. Maleknejad in [3], has used
computational method based on Bernstein operational matrics for nonlinear Volterra-Fredholm-Hammerstein
integral equations. Babolian and Shahsavaran in [4] have solved the nonlinear Fredholm integral equations of
the second kind using Haar wavelets. Yousefi and Razzaghi in [5] have solved nonlinear Volterra-Fredholm
integral equations by Legendre wavelers method. Yuzbasi et al. [6], Yuzbasi and Sezer [7], Yuzbasi et al. [8]
have worked on the Bessel matrix and collocation methods for the numerical solutions of the neutral delay
differential equations, the pantograph equations and the Lane-Emden differential equations. Also, readers
who are interested to learn more about this topic could refer to [10 - 15].

Recently, Yazbasi in [16] used Bessel polynomials and Bessel collocation method [8] for solving high-order
linear Fredholm-Volterra integro-differential equations. In this article, by Bessel polynomials and Bessel
collocation method estimate solution of nonlinear (FVHIESs) to form:

Y0 = 900+ 2 [k (%, O (6 YOIt + 4, [ K, (%, (L y(D)t, 0<as<xt<b, ()

where y(x) is an unknown function, the known functions g(x), k,(x,t), k,(x,t), w,(t, y(t)) and
w,(t, y(t)). Also, 4,and A, are real or complex constants.

2. Bessel polynomial of first kind

The m-th degree truncated Bessel polynomial of first kind are defined by [16]

[Am] K
— . i 5 2k+m .
J (X)= kzz;‘ k!(K+m)!(2) , 0<x<ow, meN, 2)
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where N is chosen positive integer so that N >m and m=0,1,---, N. We are transform the Bessel
polynomials of first kind to N-th degree Taylor basis functions. In matrix form as

where

If N is odd

If N is even

I =[35(%), 3y (x), -, Iy (T,
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3. Fundamental relations

3.1. Matrix relation for the Fredholm integral part
In this section we can approximate the kernel function Kk, (X,t) by the truncated Maclaurin series and

truncated Bessel series [16], respectively

Where

J(X) = DX(X), ®)
X () =[x, x%,---, x"T". (4)
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1 1 0™, (0,0)

t ™ mn T ’ m,n:0,l,---,N.
minl  ox"ot"
We can write Egs. (5) to matrix form as
K, (%, 1) = XT (X)k; X (t), k' =[k:.1, m,n=01,---,N. (6)
K, (x,t) =37 (X)k:J(1), ki =[,k:.1, m,n=01,---,N. (7

By substituting Eqg. (3) in Eqg. (7) and putting equal to Eq. (6), we obtain

k! = DTk!D, ki =(D")"k}(D)™. (8)

Now, for solving these equations we need to define Zy(t) and Z(t) as
Z,(t) =y, (t, y(t)), 9)
Z,(t) =y, (. y(1))-
Also, we approximate Z,(t), Z,(t) by Bessel polynomials of first kind and with the help of Eqg. (3), we
have

Z,(t)=J"(t)A =X"D"A, (10)
Z,(t)=JT(t)A,=X"D"A,,

where
Alz[alO’all’”"alN]T’ Azz[azo’azly""azN]T-

By substituting the matrix forms of Eqgs. (7) and (10) in Fredholm integral part of Eq. (1), we get
b bt 1 T T 1
[k Ot 6 y@)dt = [ 37 (kI IT ) Adt =37 (IKIQ,A, (11)

so that
Q.= [ 303" et = [ DXOX" (D" dt = DH,D",

where H; the integration of dual operational matrix of Taylor polynomials [17] is define
X(x) =[Lx, %%, x"T",

H, = [ XOX @, H, =[h;1, i,j=01-N, (12)

where
i+j+1 _ i+j+1
:% i, j=0L:+N, (13)

Finally, by substituting Eq. (3) in Eq. (11), we have matrix form of Fredholm integral part
b
[ k(D (4, y(©) = XT (DT QA (14)
3.2. Matrix relation for the Volterra integral part

We can write kernel function K, (x,t) such as Kk, (X,t)and approximated by truncated Maclaurin series and
truncated Bessel series [16]
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06D = D03 K2 X,

m=0 n=0

o) =3 k2 3, (903, 1)

m=0 n=0
where
K2 = 1 0 kz(o,o)’ Mmn=01. N,
m!In!  ox"ot"
Matrix form as
kz(X’t): XT(X)ktZX(t)a kt2 :[tkrin]a m,n=01---,N.
ka (x,1) = 37 (kI (), K =,k21,  mn=01--N.

By substituting Eq. (3) in Eq. (17) and putting equal to Eq. (16), we obtain

k?=D"k’D, k?=(D")'k*(D)™.

By using the matrix form of Egs. (10) and (17) in Volterra integral part of Eg. (1), we have

[k OOy (6 y@)dt = [ 37 (00kFIOIT (DA dE =37 (0K Q, () A,,

so that
Q,(X) = LXJ(I)JT (t)dt = j DX (t)X T (t)D"dt = DH, (x)D".

where Hy(x) the integration of dual operational matrix of Taylor polynomials is defined [17] as

H,(x) = [ X@OXT ()dt = [0 ()], i,j=0L-N,

Xi+j+1 _ai+j+1

hif (x) = , i,j=01---,N.

1+ j+1
By substituting Eq. (3) in Eq. (19), we have matrix form of Volterra integral part

[k (w6 y©) = XT (OMH, (D" A, M =D'kZD,

3.3. Method of solution
To solve Eq. (1), we have used Egs. (14) and (20) as

y(x) = g(x) + 4 X" (X)D Kk, QA + 4, X" (X)MH, (x)D" A,.
Now, by substituting Egs. (21) in Eq. (9), we get

{Zl(x) =y (% g+ 4XT(X)DTKQ A +4,XT (X)MH,(x)DT A,)),
Z,(x) =y, (%, 9(x) + 4 X" (D K Q A + 4, X ()MH, (X)D" A,).

By using Eg. (10) and substituting it in Eq. (22), we obtain
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{XT(X)DTAl =y, (% 9(X) + 4XT (XD KyQ A + 4, XT (X)MH, (x)D" A,),
XT()DTA, =y, (x,9() + 4L X T (X)D Ky QA +4,XT (X)MH,(x)D" A,).

With the help of Egs. (23) and collocation points [16] defined by

X, =a+——i, i =01 N.
N

We have
{XT(Xi)DTAl =y, (%, 9(%) + 4, X7 (x)DTk;Q A + 4, X7 (x)MH,(x,)D" A,),
XT(Xi)DTAz :l//z(xi’g(xi)—}_ﬂ’le(Xi)DTk;QlAl +/12XT(Xi)MH2(Xi)DTA2),

where 1 =0,,---, N. Or briefly the fundamental matrix system is

XD"A =w,(%,G+ 1, XD kIQ,A + 4, XMHDA,),
XDTA, =y, (x.,G+ A4, XD kIQ,A + 1, XMHDA,).

where i =01,---,N and

127

(23)

(24)

(25)

a(%,) X T (X,) D' M 0 0 O
T T

G| 90| x| X' 5 |PT] Ho|0 M 00
: : : 0O 0 M O

g(xy) X" (xy) D' 0 0 0 M
XT(%) 0 = 0 Hy(x) 0 - 0
c_| 0 X)) 0 g_| 0 Hix) -0
0 0o . | 0 o .

0 0 XT(xy) 0 0 Hy(xy)

We can obtain A; and A, from system of Eq. (25) and with substituting A; and A, in Eqg. (21). Ultimately,

we get approximate solution of Eqg. (1).

4. Hlustrative examples

In this section, we report the results of approximation solution with some examples where given in the
different papers. In addition, we have expressed absolute error function which are define as
| y(X) =y, (X) |, where y(x) is the exact solution of Eq. (1) and Y, (X) is the approximate of y(x). All the

examples were performed on the computer by using a program written in MATLAB.

Example 1. Let us first consider the nonlinear FVHIE [18]

cos() —1

y(x) = x° + + [ tsin(y(©)d, 0<x<1

(26)

The exact solution to Eq. (26) is yY(X) = x* . Now, we obtain approximate solutions of this example for
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N =2, 4, 8 by Bessel polynomials. where k, (x,t) =t?, g(x) = x>+ cos(l) -1

{xo =0,x1=%,x2 = }

and A, =1. Also, the set of

collocation points for N = 2 is

so that
0 0 1 0 0 01 0 0 8
X = At D={0 £ 0} k,fm—OOO, k;=000,
1 1 0 0 ¢ 0 0O 0 0 16
1 2 3 —0.153232 0.8458 0.2187 0.03541
Ho=|2 § 1| G =]-0.018232 |, Q=]0.2187 0.0833 0.01562 |.
1 21 0.846767 0.0354 0.0156 0.00312

Hence, by substituting these matrix in system (25), we obtain Bessel coefficient matrix as

A=[-0.002815 -0.687978 9.488377] .

Ultimately, by substituting A in Eq. (21) we have approximate solutions of this example for N = 2

Y, (x) = x* —2.818144 x10°>,
Similarly for N = 4, 8 we have
¥4 (X) = x* —1.31544842x10°°,
and
Yo (X) = x° —4.13279x10°° — (8.923511x10 *")x°,

The absolute error values are given for different values of N in Table 1.

Table 1:Absolute errors of example 1

Present method Method of
X [18]
N=2 N=4 N=8 n=15
00 | 2.81x10° 1.31x10° 4.13x10° | 1.3x10™*
02 | 2.81x10° 1.31x10° 4.13x10° | 1.3x10™*
04 | 281x10° 1.31x10° 4.13x10° | 1.3x10™*
06 | 281x107°% 1.31x10° 4.13x10° | 1.3x10™
08 | 2.81x10° 1.31x10° 4.13x10° | 1.3x10™*
1.0 | 2.81x10° 1.31x10° 4.13x10° | 1.3x10™*
Example 2. Now Consider the nonlinear FVHIE [19]
y(X) = xcos(x) + LX xsin(y(t))dt, 0<x<l
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The exact solution to this equation is y(x) = x. The values obtained in Table 2 show that if the accuracy

increases, N will increase.

Table 2: Absolute errors of example 2

Present method Method of

X [19]
N=2 N=3 N=4 n=100

0.0 0 0 0 -
0.2 2.07x10™* 7.01x10° 3.65x107 | 6.85x107
04 | 963x10* 1.96x10° 3.38x107° | 1.46x10°°
0.6 1.58x107° 1.76x10° 5.60x107 | 2.44x10°
0.8 1.40x107° 3.62x10° 1.07x10° | 3.57x10°°
1.0 1.04x10° 9.62x10° 450x10° | 4.76x10°

Example 3. Consider the nonlinear FVIE [20, 21, 22]

Y(x) =909 + [ (x+y@dt+ [ (x-1)y* t)et,

0<x<1],

The exact solution to this example is y(X)=x*—2 and g(x)=_—1x6+1x4—x2+gx—%. The

computational result of absolute error for N = 2, 4 with the result of other methods are given in Table 3.

30

Table 3: Absolute errors of example 3

3

Present method Method of | Method of | Method of
X [20] [21] [22]
N=2 N=4 k=16 k=16 n=8,m=8

00| 6.67x10° 2.07x10™* | 5x10°° - 8.50x107°
0.1 7.91x10° 2.36x10™ | 1x10° | 2.4x107° | 1.04x10™*
02| 934x10° 2.69x10™ | 5x10° | 6.8x10° | 1.25x10™*
03| 1.11x10?% 3.14x10™ | 2x10° | 1.95x1072 | 1.52x10™*
0.4 1.31x107% 3.78x10™ | 1x10° | 2.78x1072 | 1.74x10™*
05| 150x102% 4.77x10™ | 2x10° | 1.66x1072 | 1.95x107*
06| 1.64x10?% 6.33x10* | 3x10° | 1.89x1072 | 2.08x10°*
0.7 1.68x102 8.76x10™*" | 1.2x1072 | 2.00x107 | 2.04x10™*
0.8| 159x107% 1.24x107° | 1x10° | 2.58x1072 | 7.42x10™*
09| 1.34x10% 1.80x10™ | 5x10° | 6.03x107% | 1.49x10™*
10| 992x10° 2.60x10™*° | 6x107 - 8.60x10™*
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Example 4. Consider the nonlinear FVHIE [3]
Y09 =m0 - X=X+ [y @dt+ [ (x—0e0dt,  0<x<1
4 6 0 ’ - ’

The exact solution to this example is y(x) = In(x). To solve this equation, we can not use the collocation
3

: : N X X o :
points defined above, because at this points the g(x) = In(x) Ry function is undefined. So, to solve

this equation we used the Newton-Cotes nodes

Xi:E, i=01---,N.
2N

The values in Table 4 show that by increasing N, the accuracy of solution will increase.

Table 4: Absolute errors of example 4

Present method Method of

X [3]
N=3 N=6 m=16

0.1 ] 118x10° 842x10° | 9.79x10™*
02 | 363x10° 1.68x10™* | 2.25x107°
03 | 545x10° 2.55x10* | 4.63x107°
0.4 1 730x10° 3.44x10™* | 7.28x10°
05| 917x10° 4.39x10™ | 9.83x10°°
0.6 | 1.10x102 5.43x10™* | 1.18x107?
0.7 | 1.30x102 6.95x10* | 1.30x107?
0.8 | 151x102 7.93x10™* | 1.28x107°
09 | 1.73x10° 9.50x10™* | 1.10x107?
10 | 196x102 1.13x10° | 7.19x10°°

5. Conclusions

In this paper, we have solved nonlinear F\VHIEs by Bessel polynomials of the first kind and collocation
method. One significant advantage of this method is that there is a direct relationship between increase of N
and increase accuracy. According to the proposed method one of the major reasons for reduce errors, is
produce the sparse matrix. In addition, these features make the better results compared with other methods
such as the Bernstein polynomial in example (4) and Legendre-hybrid in example (3). Also, our compared
with satisfactory results show the validity and efficiency of proposed method.
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