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Abstract. In this paper, a collocation method based on the Bessel polynomials are used for the solution of 

nonlinear Fredholm-Volterra-Hammerstein integral equations (FVHIEs). This method transforms the 

nonlinear (FVHIEs) in to matrix equations with the help of Bessel polynomials of the first kind and 

collocation points. The matrix equations corresponds to a system of nonlinear algebraic equations with the 

unknown Bessel coefficients. Present results demonstrate proposed method in comparison with other 

methods is more accurate, efficiency and reliability. 
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1. Introduction  

In recent years, many different method have estimated the solution of integral equations. Also, for 

solution of these equations many analytical and numerical methods have been exited but most of the time 

numerical methods have been used to solve these equations. Ordokhani [1] has used Walsh-hybrid functions 

with Newton-Cotes nodes for solving of Fredholm-Hemmerstein integral equations. Authors [2] have solved 

nonlinear integral equations of Hammerstein type by Chebyshev polynomials. Maleknejad in [3], has used 

computational method based on Bernstein operational matrics for nonlinear Volterra-Fredholm-Hammerstein 

integral equations. Babolian and Shahsavaran in [4] have solved the nonlinear Fredholm integral equations of 

the second kind using Haar wavelets. Yousefi and Razzaghi in [5] have solved nonlinear Volterra-Fredholm 

integral equations by Legendre wavelers method. Yuzbasi et al. [6], Yuzbasi and Sezer [7], Yuzbasi et al. [8] 

have worked on the Bessel matrix and collocation methods for the numerical solutions of the neutral delay 

differential equations, the pantograph equations and the Lane-Emden differential equations. Also, readers 

who are interested to learn more about this topic could refer to [10 - 15]. 

Recently, Yazbasi in [16] used Bessel polynomials and Bessel collocation method [8] for solving high-order 

linear Fredholm-Volterra integro-differential equations. In this article, by Bessel polynomials and Bessel 

collocation method estimate solution of nonlinear (FVHIEs) to form:  
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where y(x) is an unknown function, the known functions ),(xg ),(1 txk , ),(2 txk , ))(,(1 tyt and  

)).(,(2 tyt  Also, 1 and 2  are real or complex constants. 

                                              

2. Bessel polynomial of first kind 

The m-th degree truncated Bessel polynomial of first kind are defined by [16] 
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where N is chosen positive integer so that N m   and 0,1, , .m N  We are transform the Bessel 

polynomials of first kind to N-th degree Taylor basis functions. In matrix form as 

 

                                                                          ),()( xDXxJ                                                                   (3)  

where 
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If N is even 
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3.    Fundamental relations 

3.1. Matrix relation for the Fredholm integral part 

In this section we can approximate the kernel function ),(1 txk  by the truncated Maclaurin series and 

truncated Bessel series [16], respectively 
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We can write Eqs. (5) to matrix form as 

 

                      ),()(),( 1

1 tXkxXtxk t

T          ],[ 11

mntt kk              .,,1,0, Nnm                                 (6) 
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By substituting Eq. (3) in Eq. (7) and putting equal to Eq. (6), we obtain 
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Now, for solving these equations we need to define Z1(t) and Z2(t) as 

                                                                     )),(,()( 11 tyttZ                                                                  (9) 

 )).(,()( 22 tyttZ   

Also, we approximate )(1 tZ , )(2 tZ by Bessel polynomials of first kind and with the help of Eq. (3), we 

have 
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By substituting the matrix forms of Eqs. (7) and (10) in Fredholm integral part of Eq. (1), we get 
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where H1 the integration of dual operational matrix of Taylor polynomials [17] is define 
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Finally, by substituting Eq. (3) in Eq. (11),  we have matrix form of Fredholm integral part 
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3.2. Matrix relation for the Volterra integral part 

We can write kernel function ),(2 txk  such as ),(1 txk and approximated by truncated Maclaurin series and 

truncated Bessel series [16] 
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Matrix form as 
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By substituting Eq. (3) in Eq. (17) and putting equal to Eq. (16), we obtain 
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By using the matrix form of Eqs. (10) and (17) in Volterra integral part of Eq. (1), we have 
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where H2(x) the integration of dual operational matrix of Taylor polynomials is defined [17] as 
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By substituting Eq. (3) in Eq. (19),  we have matrix form of Volterra integral part 
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3.3. Method of solution 

To solve Eq. (1), we  have used  Eqs. (14) and (20)  as 
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Now, by substituting Eqs. (21) in Eq. (9), we get 
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By using  Eq. (10) and substituting it in Eq. (22), we obtain 
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With the help of Eqs. (23) and collocation points [16] defined by 
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where  .,,1,0 Ni   Or briefly the fundamental matrix system is 
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We can obtain A1 and A2 from system of Eq. (25) and with substituting A1 and A2  in Eq. (21). Ultimately, 

we get approximate solution of Eq. (1). 

4. Illustrative examples  

In this section, we report the results of approximation solution with some examples where given in the 

different papers. In addition, we have expressed absolute error function which are define as 

|,)()(| xyxy N  where y(x) is the exact solution of Eq. (1) and )(xyN is the approximate of y(x). All the 

examples were performed on the computer by using a program written in MATLAB. 

 

Example 1. Let us first consider the nonlinear FVHIE [18] 
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The exact solution to Eq. (26) is 
3)( xxy   . Now,  we obtain approximate solutions of this example for 
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 N = 2, 4, 8 by Bessel polynomials. where 
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Hence, by substituting these matrix in system (25), we obtain Bessel coefficient matrix as 
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Ultimately, by substituting A in Eq. (21)  we have approximate solutions of this example for N = 2 
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Similarly for N = 4, 8 we have 
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The absolute error values are given for different values of N in Table 1.  

 

                                             Table 1:Absolute errors of example 1 

 

x 

Present method 

 

       N=2               N=4                N=8 

Method of 

[18] 

n=15 

0.0  
31081.2       

31031.1       
61013.4   

4103.1   

0.2  
31081.2       

31031.1       
61013.4   

4103.1   

0.4  
31081.2       

31031.1       
61013.4   

4103.1   

0.6  
31081.2       

31031.1       
61013.4   

4103.1   

0.8  
31081.2       

31031.1       
61013.4   

4103.1   

1.0  
31081.2       

31031.1       
61013.4   

4103.1   

 

 

Example 2. Now Consider the nonlinear FVHIE [19] 
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The exact solution to this equation is y(x) = x. The values obtained in Table 2 show that if the accuracy 

increases, N will increase. 

 

 

 Table 2: Absolute errors of example 2 
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Present method 

 

       N=2               N=3                N=4 

Method of 

[19] 

n=100 

0.0             0                       0                       0 - 

0.2   
41007.2      

61001.7     
71065.3   

71085.6   

0.4   
41063.9       

51096.1    
91038.3   

61046.1   

0.6    
31058.1      

51076.1     
71060.5   

61044.2   

0.8    
31040.1      

51062.3     
61007.1   

61057.3   

1.0    
31004.1      

51062.9     
61050.4   

61076.4   

 

 

Example 3. Consider the nonlinear FVIE [20, 21, 22] 
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4

5

3

5

3

1

30

1
)( 246 


 xxxxxg  The 

computational result of absolute error for N = 2, 4 with the result of other methods are given in Table 3. 

 

Table 3: Absolute errors of example 3 

 

x 

Present method 

 

N=2               N=4  

Method of  

[20] 

k=16 

Method of 

[21] 

k=16 

Method of 

[22] 

n=8,m=8 

0.0   
31067.6      

111007.2   
3105   - 51050.8   

0.1   
31091.7      

111036.2   
3101   

3104.2   
41004.1   

0.2   
31034.9      

111069.2   
3105   

3108.6   
41025.1   

0.3   
21011.1       

111014.3   
3102   

21095.1   
41052.1   

0.4   
21031.1       

111078.3   
3101   

21078.2   
41074.1   

0.5   
21050.1      

111077.4   
3102   

21066.1   
41095.1   

0.6   
21064.1       

111033.6   
3103   

21089.1   
41008.2   

0.7   
21068.1       

111076.8   
21.2 10  

21000.2   
41004.2   

0.8   
21059.1       

101024.1   
3101   

21058.2   
41042.7   

0.9   
21034.1       

101080.1   
3105   

21003.6   
41049.1   

1.0   
31092.9       

101060.2   
3106   - 41060.8   
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Example 4. Consider the nonlinear FVHIE [3] 

 

,)()(
64

)ln()(
1

0 0

)(2
3

dtetxdttxty
xx

xxy
x

ty

         ,10  x  

 

The exact solution to this example is y(x) = ln(x). To solve this equation, we can not use the collocation 

points defined above, because at this points the 
64

)ln()(
3xx

xxg   function  is undefined. So, to solve 

this equation we used the Newton-Cotes nodes  

 

N

i
xi

2

12 
 ,       .,,1,0 Ni   

 

The values in Table 4 show that by increasing N, the accuracy of solution will increase. 

 

 

Table 4: Absolute errors of example 4 

 

x 

Present method 

 

N=3                  N=6 

Method of 

[3] 

m=16 

0.1   
31018.1         

51042.8   
41079.9   

0.2   
31063.3         

41068.1   
31025.2   

0.3   
31045.5        

41055.2   
31063.4   

0.4   
31030.7        

41044.3   
31028.7   

0.5   
31017.9        

41039.4   
31083.9   

0.6   
21010.1        

41043.5   
21018.1   

0.7   
21030.1        

41095.6   
21030.1   

0.8   
21051.1        

41093.7   
21028.1   

0.9   
21073.1        

41050.9   
21010.1   

1.0   
21096.1        

31013.1   
31019.7   

5. Conclusions  

      In this paper, we have solved nonlinear FVHIEs by Bessel polynomials of the first kind and collocation 

method. One significant advantage of this method is that there is a direct relationship between increase of N 

and increase accuracy. According to the proposed method one of the major reasons for reduce errors, is 

produce the sparse matrix. In addition, these features make the better results compared with other methods 

such as the Bernstein polynomial in example (4) and Legendre-hybrid in example (3). Also, our compared 

with satisfactory results show the validity and efficiency of proposed method. 
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