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Abstract. This paper presents hybrid of rationalized Haar (HRH) functions method for approximate the
numerical solution of the fractional nonlinear Fredholm integro-differential equations (FNFIDEs). The
fractional derivatives are considered in the sense of Caputo. The fractional operational matrix of hybrid of
block-pulse and rationalized Haar functions are presented. This matrix together with the dual operational
matrix are used to reduce the computation of FNFIDEs into a system of algebraic equations. Some numerical
examples are given and the results of applying this method demonstrate time and computational are small.
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1. Introduction

The main purpose of this paper is to consider the numerical solution of the FNFIDEs of the types

Y ()= 2 k(xt).D"y()dt =  (x) ®)

0<x<1l O<axl
with the initial condition

y(©0) =7,
and

Error! Not a valid embedded object. h
DY) - A[k(x, DG (y(B)dt = (), @)
0

0<x<1l n-1l<a< neN,

y?(0)=6;, with n initial conditions
i=01223,...,n-1.

Here .D“ is Caputo’s fractional derivative, a is a parameter describing the order of fractional derivative
and A is a real known constant. Also, f e L*([0,1])and k € L*([0,1]°) are given functions, y(x) is the
solution to be determined and G(y(x)) is a polynomial of the unknown function y(x), we assume
G(y(x)) =[y(x)]"wherel< q e N . The fractional calculus has been applied in many mathematica models.
For example the nonlinear oscillation of earthquake [1], fluid-dynamic traffic [2], continuum and statistical
mechanics [3] can be modeled with fractional derivatives. There are several methods that are used to solve
the fractional integro-differential equations such as, Adomian decomposition method [4], collocation method
[5], CAS wavelet method [6], hybrid functions and the collocation method [7] and second kind Chebyshev
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wavelet method [8]. In this work we report application of HRH functions to solve the FNFIDEs, for this
purpose, in problems (1) and (2) we expanding the high order of derivative by HRH functions with unknown
coefficients, then we can evaluate the unknown coefficients and obtain an approximate solution to problems
(2) and (2). In this technic time and computational are small and this is a good and useful property of the
HRH functions method.

The article is organized as follows:

In section 2, we introduce some necessary fundamentals of the fractional calculus theory. in section 3, we
present the properties of HRH functions required for our subsequent development. In section, 4 we describe
the solution of problems (1) and (2) by using HRH functions, and in section 5 we give some numerical
examples to demonstrate the accuracy of the proposed method.

2. Fundamentals of fractional calculus

In this section, we give some definitions and fundamentals of the fractional calculus theory.
Definition 2.1. The Riemann-Liouville fractional integral operator of order « > Qis defined as [9,10]

I“y(x)=$j(x—t)“‘ly(t)dt, a>0 x>0,

1°y(x) = y(x),
whrere T'(.) is Gamma function.
It has the following properties:
|“y(x):M’ 7/>_l.
IN'a+y+1)

Definition 2.2. The Caputo definition of fractional derivative operator is given by [11,12]

X

DY) = 17D Y0 = s [ty ot

where n—-1<a<n, neN, a>0.
It has following properties:

DU1y(x) = y(x),

o a & + Xk
1“.Dy(x) = y(x) - >_y®(0 )F’ x> 0.
0 -

3. Properties of hybrid functions

3.1 Hybrid functions of block-pulse and rationalized Haar functions

The HRH functions h_(x), n=12,.,N, R=012,..M -1, M =27" 3=012,..., where n, r are
the order of block-pulse functions and rationalized Haar functions respectively is defined on the interval [0,1)
as [13]

n

h,, (Nx—n+1), n—_1§x<—,
N N

ho (X) = ©)

0, otherwise,
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In (3), h, (x) are the orthogonal set of rationalized Haar functions and can be defined on the interval [0,1) as
[14]
1, J,<x<J 1
h(x)=4-1 J, SX<JZOY (4)
0, oztherwise,

Where, JU:J—_.U, u:O,%

1.

The value of r is defined by two parameters i and j as
r=2'+j-1, i=0123.. j=123..2",
h, (x) is defined for i = j = 0and given by
h,(x)=1 0<x<1.

since h, (X) is the combination of rationalized Haar functions and block-pulse functions which are both

complete and orthogonal, thus the set of hybrid functions are complete orthogonal set. The orthogonality
property of HRH functions is given by [13]

1 o-i | |
J.hnr(x)hn‘rv (X)dX: Wa n=n,r=r,
’ 0, oterwise,

where

r=2"+j-1, r'=2i'+j'—1.

3.2 Function approximation
A function f (x) € L*([0,1]) may be expanded into HRH functions as [13]

F() =22 Cohy (¥, 6)
n=1 r=0
where C,, given by
< f,h, >

Cnr - 2 -

—2‘Nj'f(x)hm(x)dx,

nr

and <.,. > denote the inner product.

If, the infinite series in (6) is truncated, then (6) can be written as

F00=> e, (0 =CTHE) )

n=1 r=0
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The HRH function coefficient vector C and RH function vector H(x) are defined as

.
C :[cloycll,...,clM_l‘czo,021,...,c2M_1‘...|cN0,ch,...,cNM_l] :

H() =[H] O[3 GO JHAT',
where
HT () =[N, hve by o]y =12, N
Also, we can expand the function k(x,t) € L?([0,1]?) into HRH function as follow
k(x,t) = HT ()KH (t),
where K =(k,, )" isan MN x MN matrix such that

_ < HV(X)’ k(X,t), H,. (X) >

K,= , v=12..,N, r=01..,M-1,

I, G0l [, 0

Taking the Newton-Cotes nodes as following [15]

x. =271 i 12 MK
2MN
We have
1 3 2MN -1
~[H H e HEEE =3y,
ow =1 (ZMN) (ZMN) (ZMN )]

Then, from (12) the square hybrid matrix ¢,,, can be expressed as

oy = diag (¢3M><M ""’éMxM ’---’¢3MXM ),

where ¢3MX,V, M-square Haar matrix ([14]).

For example if M=2 and N=2 we have

1 1 0 O
|1 -10 0
Y2710 0 1 1]
0 0 1 -1
Using (7) we get
1 3 2MN -1

f , f vy F(———)]=CT .
[ (ZMN) (ZMN) ( VN )] Pun

From (10) and (14) we have

K= ((DKAIN )T KcohjllN '
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(12)

(13)
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(15)
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where

~

21-1 2p-1

R =Ky ) oG R ), Pl =12, MN.

3.3 Operational matrix of the fractional integration
The integration of the vector H(x) defined in (9) can be defined as [13]

JX. H (t)dt = PH (x), (16)

where P is the MN x MN operational matrix of integration.

In this section, we want to derive the HRH functions operational matrix of the fractional integration [16]. For
this purpose, we consider an m-set of block-pulse functions as

1 i+1 <x< i+1
b(X)=1"" m ~ m
0, otherwise,

wherem=MN, i=012,...m-1.

The function b, (X) , are disjoint and orthogonal. That is

[0 iw],
(0B 09 = {bi (), i=],
1 0, i=#],
[ B0ob; 00 =11 s
0 m

Rationalized Haar functions can be expanded into an m-set of block-pulse functions [16]. Similarly, HRH

functions can be expanded into their block-pulse functions as
H (X) = B(X), (17)
where B(x) =[b, (X),b, (X),...,b, ,(X)]" and ¢,,, is MN x MN matrix defined in (12).

In [17], Kilicman and Alzhour have given the block-pulse operational matrix of the fractional integration

F ¢ as follows:
1 “B(x) = F“B(x), (18)
where
1 & & & o g
1 & & oo Sno
0 0 1
Fa :l 1 ] ] . gl ng.]73 ’ (19)
mi(ae+)|: : = 1 :
0O 0 O &
0 0 0 O 1 ]
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withm=MN and &, = (k +1)“ — 2k + (k 1),

Now, we obtain the HRH function operational matrix of the fractional integration.

Let

1“H(x) = P“H (x),

where P“ is called the HRH functions operational matrix of the fractional integration.

Using (17) and (18), we have

1“H(X) = 1“0y B(X) = 9y | “B(X) = 9y F“B(X),

from (17) and (20), we get

P“H(X) = P“ @y B(X) = oy F“B(X),

Then, P“is given by

P = Pun Fa(”l?nlru )

Equations via Hybrid of Rationaliz

ed Haar Functions

(20)

(21)

Furthermore, we have found the operational matrix of fractional integration for HRH functions.

For example, let N =M =2, then we have

_é+1
2
&
«_ 1 1 2
4 T(a+1)| |
0

&

1—

2

2

[

[
2

53

+&, +

[
2

b %

2
é:z_

2

o %

2 2

_a

1-

and for o = 0.25, the operational matrix P%% can be expressed as following

—-0.1181 0.2809
—-0.0747

0.7422
o2s _ | 01181
0.0000
0.0000

3.4 The dual operational matrix

0.5060
0.0000
0.0000

0
0

1422

1181

The integration of the cross, product of two hybrid vector is [13]

W :J:'H(X)HT(x)dx:%diag(D, D,...,D),

0.0747
—-0.0419
-0.1181]

0.5060

where Wisa MN x MN matrix and D isa MN x MN matrix given by [14]
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1 1 1 1
g g g )

22

22 2/

. 11
D=diag(11=,=,
g( 55

Then we obtain the matrix W that is dual matrix of HRH functions.

4. Solution of FNFIDEs

In this section we first consider the FNFIDES given in problem (1).To solve for y(x), we first approximate y'(x)
as
y(x)=C"H(X)=H" (X)C, (23)

where C is the HRH functions coefficient vector and H(x) is HRH functions vector.
For simplicity, we can let that the initial condition » = 0. By using the properties of Caputo derivative we
have

DY(X) =17y (X) =C"P"H(X), (24)
y(x)=C" j H(t)dt = C"PH(x), (25)

Suppose f(x) and k(x,t) can be expressed approximately as

f(x)=H"(X)F, k(x,t)=HT(X)KH(t), (26)

where F and K are given in (7) and (15) respectively.
Using (22), (24) and (26), we have

j k(x,1).Dy(t)dt = j HT(X)KH@®)HT (t)(P**) Cdt =HT (x)KW (P*“)"C, @7)
with substituting (23), (26) and (27) in problem (1), we obtain
HT(X)C—AHT (X)KW(P"*) ' C =HT (X)F, (28)
therefore,
(1 —AKW (P**)")C-F =0, (29)

where is MN x MN identity matrix. (29) is a system of linear equations and can be solved for the unknown
vector C, easily.

In second case, we consider the FNFIDEs given in problem (2). we first assume
.Dy(x)=CTH(X)=HT(X)C, (30)
where C is the HRH functions coefficient vector and H(x) is HRH functions vector.
For simplicity, we can let that the initial conditions 6 = 0. So by using the properties of Caputo derivative in
section 2, (20) and (30) we have
y(x) =CTP“H(X), (31)

Also, we let
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z(x) = G(y(x)). (32)
Suppose z(X), f(x) and k(x,t) can be expressed approximately as
z(X)=Z"H(X), f(X)=H"(X)F, k(xt)=HT (X)KH(t), (33)

where Z, F and K are given in (7) and (15) respectively.
Using (22), (32) and (33), we have

1 1
[KOGOG(y®)dt = [HT (KH (t)Zdt = HT (x)KWZ, (34)
0 0
with substituting (30), (33) and (34) in problem (2), we have
H'(X)C-AHT (XY)KWZ =H" (X)F, (35)
then, (35) can be written as
C-AKWZ -F =0, (36)

from (31), (32), and (33) we get

Z"TH(X) =G(CTP“H (x)). (37)
In order to construct the approximation for y(x) we collocate (37) in MN points. For a suitable collocation
points we choose Newton-Cotes nodes defined in (11). By using (9), (12) and (13) we have

H(X)=owe, 1=12,...,MN,
where
i-1 MN—i
Then, from (36) and (37) we obtain the following nonlinear systems of algebraic equations
{C —AKWZ - F =0,

ZT _ Tpa H (38)
o =G(C P pe), 1=123,...,MN.

Therefore, (38) can be solved for the unknowns C and Z, then required approximation to the solution y(x)
in problem (2) is obtained.

5. Numerical examples
In this section, we apply the present method and solve some examples where given in the different papers.
All calculations were performed using MATLAB software.

Example 1. Consider the

following FNFIDE ([18]) 1 1
y (x) = f(x)+.fk(x,t)*D4y(t)dt, y(0) =0,
0

1
Where k(x,t) = x’t2, f(x)=8x" _3. —( 48 I'(2.5)

- )x?, and the exact solutionis
2" " \6.25T'(4.75) 4.25T'(2.25)
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3

y(x) = 2x* —x2. Table 1 shows the absolute error for example 1.

Table 1 Absolute error for different values of M, N for example 1

Peresent method

Method of [18]

1.0

X N=3 d=3 d=10
M=4 M=8 M=16 (N=15) (N=50)
00 | 26233x10°  1.0571x10°%  3.1259x10* - -
01 | 2530002 84142x10*  3.0031x10"* i -
0.2 - -
1.8580x<10 2 7.0771x10™*  2.4749x107*
0.3 i 3
04 1.7035x10°  4.3479%10™*  2.2967x10*
3667610 1.1471x10°° 3.6822x10 *
. B o, | 1247610 2008710
05 4.7507910 2.6090x10 1.5864x10
06 | 37515107 12903x10°  8.0527x10° ] ]
0.7 | 5.3464x10° 1.8156<10™*  2.0443x10°* ) )
0.8 |2.1215x10°  1.6582x10° 1.7129%10°° - 3
09 | 92554x10° 25623x10°  7.2916x10* 7240310 2 73243103

177

We have solved this example for N=3 for different M, the result in Table 1, show that our method is better

than method of [18] and computational with our method is small.

Example 2. Consider the following FNFIDE ([6-8])

*D"‘y(x)—j'(x+t)2[y(t)]3dt =g(x), 0<x<l,

where
6 x> x 1
90 =——¥x-Z--2-=
1 7 7 9
l"f
(3)
With the initial conditions:
y(0) =y (0)=0.

The exact solution is y(X) = x°.

We have solved this example for N=3 and M=32 and have compared it with method of [7]. The comparison
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is shown in Table 2.

Equations via Hybrid of Rationaliz

ed Haar Functions

Table 2 Comparison of present method and method of [7] of example 2

X Present method Method of [7] Exact
Numerical Absolute Numerical Absolute solution
solution error solution error

02 | 004009273  9.2725x10° | 0.04023540  2.3540%10* | 0.04000000
04 | 0.16014505  1.4505x10* | 0.16196810  1.9681x<10° | 0.16000000
0.6 |0.36021653  2.1653x10™* | 0.36025632  2.5632x10* | 0.36000000
08 | 064031407  3.1407x<10* | 0.64035128  3.5128x10“* | 0.64000000
1.0 | 1.00041220  4.1220x10* | 1.00133210  1.3321x10* | 1.00000000
CPU | 7.4012070s - - - -

From Table 2 we can see the numerical results that are obtained with our method are in a good agreement
with the exact solution. Although with present method number of value must be very large but time and
computational are small.

Example 3. Consider the following FNFIDE ([6-8])

*D“y(x)—_lf(xt)[y(t)]zdt =1—§, 0<x<l O<a<l,

with the initial condition:

y(0) =0.
The only case which we know the exact solution for & =1 is y(X) = X.
In Table 3 comparison present method for different N and M with method of [6] in the case of & =1, show
the error by using HRH functions method is smaller than the method of [6]. From Table 3 and Fig 1 we
conclude that the numerical results is in good agreement with the exact solution when « =1. Therefore, for

1 1 3 L. . .
the casess a =—, o =— and @ = Z that exact solution is unknown and numerical results are shown in

2
Table 4 and Fig 1 for N=3 , HRH functions method is powerful and reliable tool and as & — 1, numerical

results tend to exact solution of a =1.

Table 3 Maximum absolute error for example 3

Present method Method of [6]
N=3, M=4 N=3, M=8 k=2, M=1 k=3, M=1
(m=12) (m=24) (m =12) (m' =24)
5.4233x10 % 1.3561x10"* 27133102 6.5179x10*
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Table 4 Approximate and exact solution for different o of example 3

Exact

X 1 1 3 solution

a=— a== a:Z a=1 for (a=1)
0.0 0 0 0 0 0.0
0.1 | 0.650962 0.362260 0.194154 0.099998 0.1
0.2 | 0.821678 0.525361 0.329896 0.199995 0.2
0.3 | 0.959520 0.657181 0.450540 0.299988 0.3
0.4 | 1.084520 0.774336 0.563051 0.399978 04
0.5 | 1.203260 0.883175 0.670474 0.499966 0.5
0.6 | 1.1318270  0.986267 0.774073 0.599951 0.6
0.7 | 1.431310 1.085710 0.875049 0.699934 0.7
0.8 | 1.543170 1.182460 0.973941 0.799913 0.8
0.9 | 1.654420 1.277270 1.071220 0.899890 0.9
1.0 | 1.765420 1.370720 1.167250 0.999864 1.0

6. Conclusion

Fig. 1: Plot of example 3 for different o

179

In the present work HRH functions are used to solve the FNFIDEs. We reduce the FNFIDESs to a system of
algebraic equations by using the HRH functions together Newton-Cotes nodes. In this method time and
computations are small, because the matrix ¢,,, introduces in (12) contain many zeros, and these zeros

make HRH functions faster than other methods. Numerical examples with satisfactory results are given to

demonstrate that it is reliable and useful tool to solve the FNFIDEs.
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