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Abstract. This paper presents hybrid of rationalized Haar (HRH) functions method for approximate the 
numerical solution of the fractional nonlinear Fredholm integro-differential equations (FNFIDEs). The 

fractional derivatives are considered in the sense of Caputo. The  fractional operational matrix of hybrid of 

block-pulse and rationalized Haar functions are presented. This matrix together with the dual operational 

matrix are used to reduce the computation of FNFIDEs into a system of algebraic equations. Some numerical 

examples are given and the results of applying this method demonstrate time and computational are small.  

Keywords: Fredholm integro-differential equation, Riemann-Liouville integral, Caputo fractional 
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1. Introduction  

The main purpose of this paper is to consider the numerical solution of the FNFIDEs of the types 
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Here 
D*  is Caputo s,

fractional derivative,   is a parameter describing the order of fractional derivative 

and   is a real known constant. Also, ])1,0([2Lf  and )]1,0([ 22Lk  are given functions, y(x) is the 

solution to be determined and G(y(x)) is a polynomial of the unknown function y(x), we assume 
qxyxyG )]([))((  where Nq1 . The fractional calculus has been applied in many mathematica models. 

For example the nonlinear oscillation of earthquake [1], fluid-dynamic traffic [2], continuum and statistical 

mechanics [3] can be modeled with fractional derivatives. There are several methods that are used to solve 

the fractional integro-differential equations such as, Adomian decomposition method [4], collocation method 

[5], CAS wavelet method [6], hybrid functions and the collocation method [7] and second kind Chebyshev 
                                                           
1   Corresponding author. 
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wavelet method [8]. In this work we report application of HRH functions to solve the FNFIDEs, for this 

purpose, in problems (1) and (2) we expanding the high order of derivative by HRH functions with unknown 

coefficients, then we can evaluate the unknown coefficients and obtain an approximate solution to problems 

(1) and (2). In this technic time and computational are small and this is a good and useful property of the 

HRH functions method. 

The article is organized as follows: 

    In section 2, we introduce some necessary fundamentals  of the fractional calculus theory. in section 3, we 

present the properties of HRH functions required for our subsequent development. In section, 4 we describe 

the solution of problems (1) and (2) by using HRH functions, and in section 5 we give some numerical 

examples to demonstrate the accuracy of the proposed method. 

 

2. Fundamentals of fractional calculus  

    In this section, we give some definitions and fundamentals of the fractional calculus theory. 

Definition 2.1. The Riemann-Liouville fractional integral operator of order 0 is defined as [9,10] 

,)()(
)(

1
)(

0

1 dttytxxyI

x





 


    ,0       ,0x  

 

whrere (.) is Gamma function. 

It has the following properties: 

,
)1(

)1(
)(








 xyI        .1  

Definition 2.2. The Caputo definition of fractional derivative operator is given by  [11,12] 
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It has following properties: 
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3. Properties of hybrid functions  

3.1 Hybrid functions of block-pulse and rationalized Haar functions 

The HRH functions ),(xhnr  ,,...,2,1 Nn   ,1,...,2,1,0  MR  ,2 1 M  ,...,2,1,0  where n, r are 

the order of block-pulse functions and rationalized Haar functions respectively is defined on the interval [0,1) 

as [13] 
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In (3), )(xhr  are the orthogonal set of rationalized Haar functions and can be defined on the interval [0,1) as 

[14] 
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The value of r is defined by two parameters i and j as 

                                          ,12  jr i
     ,...,3,2,1,0i       ,2,...,3,2,1 ij   

)(0 xh  is defined for 0 ji and given by 

.10,1)(0  xxh  

 

since )(xhnr is the combination of rationalized Haar functions and block-pulse functions which are both 

complete and orthogonal, thus the set of hybrid functions are complete orthogonal set. The orthogonality 

property of HRH functions is given by [13] 
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3.2 Function approximation 

A function ])1,0([)( 2Lxf  may be expanded into HRH functions as [13] 
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and  .,. denote the inner product. 

If, the infinite series in (6) is truncated, then (6) can be written as 
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 The HRH function coefficient vector C and RH function vector H(x) are defined as 
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Taking the Newton-Cotes nodes as following [15] 
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Then, from (12) the square hybrid matrix MN can be expressed as 
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where 
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3.3 Operational matrix of the fractional integration 

The integration of the vector H(x) defined in  (9) can be defined as [13] 
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In this section, we want to derive the HRH functions operational matrix of the fractional integration [16]. For 
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Rationalized Haar functions can be expanded into an m-set of block-pulse functions [16]. Similarly, HRH 

functions can be expanded into their block-pulse functions as 
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In [17], Kilicman and Alzhour have given the block-pulse operational matrix of the fractional integration 
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with m=MN and .)1(2)1( 11    kkkk
 

Now, we obtain the HRH function operational matrix of the fractional integration. 

Let 
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3.4 The dual operational matrix 

The integration of the cross, product of two hybrid vector is [13] 
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Then we obtain the matrix W that is dual matrix of HRH functions. 

4. Solution of FNFIDEs 

 In this section we first consider the FNFIDEs given in problem (1).To solve for y(x), we first approximate y'(x) 

as 
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where C is the HRH functions coefficient vector and H(x) is HRH functions vector.  
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Using  (22), (24) and (26), we have 

             ,)()())(()()()(),( 11

1

0

1

0

* CPKWxHCdtPtHtKHxHdttyDtxk TTTTT                     (27) 

with substituting (23), (26) and (27) in problem (1), we obtain 
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where I is MNMN  identity matrix. (29) is a system of linear equations and can be solved for the unknown 

vector C, easily. 

In second case, we consider the FNFIDEs given in problem (2). we first assume 
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where C is the HRH functions coefficient vector and H(x) is HRH functions vector. 

For simplicity, we can let that the initial conditions .0i  So by using the properties of Caputo derivative in 

section 2, (20) and (30) we have 
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   Therefore, (38) can be solved for the unknowns C and Z, then required approximation to the solution y(x) 

in problem (2) is obtained. 

5. Numerical examples  

In this section, we apply the present method and solve some examples where given in the different papers. 

All calculations were performed using MATLAB software. 

Example 1. Consider the 

following  FNFIDE ([18]) 
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4 xxxy   Table 1 shows the absolute error for example 1. 

 

 

 

 

Table 1 Absolute error for different values of M, N for example 1 
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We have solved this example for N=3 for different M, the result in Table 1, show that our method is better 

than method of [18] and computational with our method is small. 

Example 2. Consider the following FNFIDE  ([6-8]) 
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The exact solution is .)( 2xxy   

We have solved this example for N=3 and M=32 and have compared it with method of [7]. The comparison 
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is shown in Table 2. 

 

 

 

Table 2 Comparison of  present method and method of [7] of example 2 

x Present method 

Numerical            Absolute 

 solution                   error 

Method of [7] 

Numerical                 Absolute 

  solution                      error 

Exact 

solution 

0.2 

0.4 

0.6 

0.8 

1.0 

0.04009273        9.2725×10
5
        

0.16014505        1.4505×10
4
 

0.36021653        2.1653×10
4
 

0.64031407        3.1407×10
4
 

1.00041220        4.1220×10
4
 

0.04023540        2.3540×10
4
        

0.16196810        1.9681×10
3
 

0.36025632        2.5632×10
4
        

0.64035128        3.5128×10
4
        

1.00133210        1.3321×10
4
        

0.04000000 

0.16000000 

0.36000000 

0.64000000 

1.00000000 

CPU 7.4012070s                -        -                            - - 

From Table 2 we can see the numerical results that are obtained with our method are in a good agreement 

with the exact solution. Although with present method number of value must be very large but time and 

computational are small. 

Example 3. Consider the following FNFIDE  ([6-8]) 

,10,10,
4

1)]()[()(

1

0

2

*    x
x

dttyxtxyD  

with the initial condition: 

.0)0( y  

The only case which we know the exact solution for 1  is .)( xxy   

In Table 3 comparison present method for different N and M with method of [6] in the case of ,1  show 

the error by using HRH functions method is smaller than the method of [6]. From Table 3 and Fig 1 we 

conclude that the numerical results is in good agreement with the exact solution when 1 . Therefore, for 

the cases ,
4

1
  

2

1
  and 

4

3
  that exact solution is unknown and numerical results are shown in 

Table 4 and Fig 1 for N=3 , HRH functions method is powerful and reliable tool and as 1 , numerical 

results tend to exact solution of 1 . 

Table 3 Maximum absolute error for example 3 

Present method  

 N=3, M=4          N=3, M=8 

 (m=12)                (m=24) 

Method of [6] 

k=2, M=1          k=3, M=1 

(m
'
=12)             (m

'
=24)    

5.4233×10
4
      1.3561×10

4
      2.7133×10

3
      6.5179×10

4
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Table 4 Approximate and exact solution for different α of example 3 

 

x 

 

 
4

1
            

2

1
             

4

3
              1  

Exact 

solution 

for (α=1) 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

     0                       0                      0                        0 

0.650962        0.362260         0.194154         0.099998 

0.821678        0.525361         0.329896         0.199995 

0.959520        0.657181         0.450540         0.299988 

1.084520        0.774336         0.563051         0.399978 

1.203260        0.883175         0.670474         0.499966 

1.1318270      0.986267         0.774073         0.599951 

1.431310        1.085710         0.875049         0.699934 

1.543170        1.182460         0.973941         0.799913 

1.654420        1.277270         1.071220         0.899890 

1.765420        1.370720         1.167250         0.999864 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

 

 

Fig. 1: Plot of example 3 for different   

6. Conclusion  

In the present work HRH functions are used to solve the FNFIDEs. We reduce the FNFIDEs to a system of 

algebraic equations by using the HRH functions together Newton-Cotes nodes. In this method time and 

computations are small, because the matrix MN  introduces in (12) contain many zeros, and these zeros 

make HRH functions faster than other methods. Numerical examples with satisfactory results are given to 

demonstrate that it is reliable and useful tool to solve the FNFIDEs. 
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