

Published by World Academic Press, World Academic Union

ISSN 1746-7659, England, UK

Journal of Information and Computing Science
Vol. 9, No. 3, 2014, pp. 181-188

Linear Time Growth Collaborative Filtering Based on Caching

Techniques

Waleed M. Al-Adrousy 1, Hesham A. Ali 2, and Taher T. Hamza 3
1Computer Science Department, Computers and information sys Faculty,

Mansoura University, Egypt. Corresponding author Contacts:
waleed_m_m@mans.edu.eg , Fax (Work): +20502223754

2Computer Engineering and systems Department, Engineering Faculty,
Mansoura University, Egypt, h_arafat_ali@mans.edu.eg.

3Computer Science Department, Computers and information sys Faculty,
Mansoura University, Egypt, taher_hamza@yahoo.com

 (Received October 10, 2013, accepted March 8, 2014)

Abstract. One of social networks features is to recommend some items for users suitable and their profiles
and needs. One of the used techniques of item recommendation is to calculate the average rating of other

users' ratings of that item. The calculated average can be used as a rank for that item. New users' ratings are

made within the lifetime of social networks. This dynamic sized set of ratings can lead to a performance

problem. Ranking is not fixed since new users are constantly evaluating items in networks. However,

updating ranking by traditional averaging can have a quadratic time growth. This paper aims to convert this

aggregation method into linear growth instead of quadratic. The suggested algorithm needed extra storage

capacity. Caching is suggested to speedup ranking with preserving storage resources. Another target is to

have a high hit-ratio with better utilization of small cache size compared to the traditional Greedy- Dual-

Size-Frequency algorithm. At the end of this paper an evaluation of the proposed technique performance is

provided based on simulated experimental results. The experiment results show that the proposed technique

has better performance rather than traditional averaging recommender systems without caching.

Keywords: Social networks, collaborative filtering, recommender systems, caching techniques.

1. Introduction

 One of the most important tools for people to communicate with each other is the Social Networks.

According to the free on-line dictionary of computing (http://dictionary.reference.com/browse/

social+network), a social network is “a Web site where one connects with those sharing personal or

professional interests, place of origin, education at a particular school, etc.” [25]. One of users' interests is the

need to ask for the best suitable service, product, person or even an article for some special purpose. Social

networks have been used as a marketing way. However, not all advertisements are good as claimed or

suitable to all users. So, the social networks relationships of friends have been used to guide users to select

items suitable for them. This social network component is called a recommender system. Currently, there are

two types of recommender systems, collaborative filtering and content-based filtering [7]. Collaborative

filtering makes use of users' ratings to items, regardless of its content, while the content-based filtering does

the opposite. Content-based filtering systems analyze the semantic content of profiles and pages in social

network to suggest suitable items to users [5].

Recommender systems need to have a profile for each user [8]. User's profile can be static or dynamic

[14]. A static profile contains user's basic information; preferences given by user explicitly such as
preferences and selected friends. A dynamic profile is inferred by analyzing user's actions such as types of
daily browsed pages. Both profile types have several modeling techniques, including simple databases and
vector representation for user and his/her corresponding interests [7]. Vector Space Modeling (SVM) was the
start of a newer technique that focuses on semantic which is named Latent Semantic Analysis [13]. Most
recommender systems focus on dynamic profile because of its updated nature. Recommender systems can be
evaluated according to accuracy and performance. Performance issues are the main point of interest in this

mailto:waleed_m_m@mans.edu.eg
mailto:h_arafat_ali@mans.edu.eg
mailto:taher_hamza@yahoo.com
http://dictionary.reference.com/browse/%20social+network
http://dictionary.reference.com/browse/%20social+network

Waleed M. Al-Adrousy et.al. : Linear Time Growth Collaborative Filtering Based on Caching Techniques

JIC email for contribution: editor@jic.org.uk

182

research. For many Different techniques there is a common step, aggregation of several users' scores based
on some criteria. The hosting servers' resources of social networks should be managed optimally to avoid
wasting time or cost of hardware. One of the major resource consuming computations is the repeated ranking
overtime for items in the social networks. The ranking operation depends on having an average rating for an

item given by some users' ratings. The included users in the operation can be all users –in case of global
rating, or a subset of users who represent the friends to a specific inquiring user. The second case is used to
calculate the user based recommendation which tries to use user's profile to detect how suitable the
recommended item can be [23, 9].

 The contributions of this is paper can be represented in achieving two main goals: (i) suggesting an

enhancement to averaging technique to have a linear order of growth, and; this will be done via a suggested

incremental equation that works on a pre-calculated values that indicate the aggregation of the old non-

changing ratings. Also (ii) suggesting an enhanced form of Greedy- Dual-Size-Frequency (GDSF) caching.

The proposed algorithm aims to achieve better hit-ratio by using a median timestamp of items age in cache

with no need for an artificial intelligence training phase. This paper is organized as follows; section 2

presents a background of research domain, section 3 presents the suggested techniques, section 4 presents the

testing results, and finally the conclusion is in section 5.

2. Related Work

 There are some common problems in researches about recommender systems [18]; prediction accuracy,

testing opinions' subjectivity, recommended items suitability rather than being high ranked, effective
preferences inference, trust formation of recommended items and usability of recommender systems
interface layout. Those problems focus on the value of the recommended items rather than the performance
of recommendation process itself. Recommender systems had many forms over the few past years. Some
expert systems such as "Syskill & Webert" and Web Browser Intelligence (WBI) [8] applied intelligence to
learn user preferences and patterns of recommendations and decision trees. "Syskill & Webert" system
allowed user to make symbolic ratings about items using words like cold or hot. The symbolic ratings were

converted later by the system into numeric ratings [12]. This technique aimed to handle the problem of
difference in modeling nature between the human view and machine the view. However, this approach used
explicit user likeness actions where user selects the rating for the item. Another technique in recommender
systems was modeling of general interests was the analysis of user's navigation actions items pages.
Knowledge based filtering was discussed in the work of Bruke et al. [4]. Their work classified knowledge
into three areas: the social knowledge about users' database, the individual knowledge about a particular user
and content knowledge about the items in the network. They discussed some problems in knowledge based

filtering such as the distribution of users to items. In that problem, few items gain the attention of users while
some other good items may not have been discovered.
 Some techniques of natural language processing and semantic analysis have been used in some
researches such as the work of Santos and Boticario [21]. In that research a new concept of Semantic
Educational Recommender Systems "SERS" was introduced to join e-learning with semantic analysis. In [19]
a survey is introduced to explore the features of some social networks that include e-learning support. One of
those discussed networks is "OpenStudy" which was a large social learning community.
 Semantic analysis can be complex, so, another technique was to use text mining techniques such as term

frequency x inverted document frequency (TD-IDF) which was used in the work of Middleton et al. [15, 17].
This technique is simple which tries to use a set of keywords that distinguish a content category from another.
Each item description is searched for those keywords and the tested to see how frequent each keyword is
contained in description text. Of course, selecting the keywords set needs another set of techniques to update
that set dynamically and also prevent term duplication. Term duplication can happen when many keywords
are added by users but have the same meaning [24]. The focus in this research is on two of the several
problems facing the collaborative filtering; aggregation used to predict rating for a user to a new item, and

caching that can be used to enhance that king of computation. More discussion is presented in the following
subsections. The content based filtering is beyond the scope of this study.
 The first problem in collaborative filtering is the aggregation process. The most common case of rating
aggregation is applied during averaging users' ratings. One variation of the averaging technique was

Journal of Information and Computing Science, Vol. 9 (2014) No.3, pp 181-188

JIC email for subscription: publishing@WAU.org.uk

183

discussed by Liu and Lee [10]. Their technique calculated the average rating per user, not per item. If there is
a user i, that have rated Ii set of items, then the user will have an average rating calculated by equation (eq.1).






I i
j

ji

i

i V
I

V ,

1
 (1)

 Where Vi is the average rating for user i. The value of average user rating is used as an input to user
similarity equation (eq. 2). This equation measures similarity between users i and j. This can be used to focus

on most similar users to user i to include in the process of predicating ratings of user i for any item in the
future.

  

 



j j

j
iijaja

VVVV

VVVV

ijiaja

iaw

)()(,,

))((

),(
22

,, (2)

 Where w(a,i) is the similarity degree between users a and i. In fact this equation is called Pearson's
correlation equation [10, 22] which is one of famous equations in data mining. However, Mobasher et al. had
made an excellent survey about the attacks on social networks and recommendation systems including the
shilling attacks [16]. One of those attacks is called Push Attack. In push attacks, the attacker tries to deceive
the similarity based recommender system. The attacker mimics the target victim user known ratings. In that

way, the recommender systems consider the attacker a very similar user to victim user. This gives the
attacker the chance to give false ratings about items that victim hasn't yet rated or experienced. A suggested
prevention technique for push attack is to calculate item overall ratings average (ranking) instead of
depending on users' similarity [16].
 The second problem is caching which aims to provide a memory copy of permanent object stored on
a host like database server. This memory copy has a faster access time. The power of caching technique is to
determine which objects are more important to be cached and which items are not. This is important since
memory has a relative small capacity compared to permanent storage media. A suggested use of caching in

recommender systems had been discussed by Ekstrand to store similar users to a target user [6]. A very good
survey had been made about available caching techniques [2]. In that survey, some techniques used the
intelligence methods such as neuro-fuzzy and neural networks systems. One of the systems that applied those
methods is Intelligent Client- side Web Caching Scheme Based on Least Recently Used Algorithm and
Neuro-Fuzzy System [1]. However, the artificial intelligence methods need a training phase to adjust internal
weights before real testing. Greedy-Dual-Size (GDS) is one of the known techniques for caching
prioritization without training phase. If we assumed that C(p) is the cost of fetching object p form host to

cache and S(p) is the size of object p. Then GDS equation can be formed to calculate a priority K(p) as in
equation (eq. 3).

)(

)(
)(

pS

pC
LpK  (3)

 Where L is an aging factor to measure how old is the item in cache. An enhancement is made on
GDS to consider frequency of use F(p) for object p. This enhancement is called Greedy- Dual-Size-
Frequency (GDSF) which is formed in equation (eq. 4).

)(

)(
*)()(

pS

pC
pFLpK  (4)

 Some researchers suggested using some intelligence techniques to predict the future use for items in

cache to increase a measure called Hit-Ratio [2]. Hit ratio can be calculated by dividing count of times that a

needed item is found on cache over the total count of queries requests. The hit ratio is originally used as a

search engine optimization measure. Similarly, in recommender systems with caching, this measure can be

used to evaluate the utilization of caching capacity.

3. Methods and Techniques

3.1 Problem Formulation

Waleed M. Al-Adrousy et.al. : Linear Time Growth Collaborative Filtering Based on Caching Techniques

JIC email for contribution: editor@jic.org.uk

184

 Social networks can be modeled as large graph G(V,E), where V is the set of vertices (users) and E is
the set of edges (relationships) between those vertices. Set V contain two types of vertices sets; set of users U
and set of items I. Set E mainly have three possible types of edges; user-to-user relationships, user-to-item
preferences and item-to-item dependency. The third type of edges may be ignored sometimes due to the

complexity of its analysis and the large storage capacity that it needs. This kind of graph can be called
sometimes "bipartite" graph since it contains two types of nodes [3]. A generalization of that kind of graph is
called "k-partite" graph which includes k types of nodes [11]. The focus in this research is on the bipartite
networks. Suppose that the function rating (a,b) means that user a has rating item b, and the function
path(c,d) means that there is a bidirectional path between users c and d in the social network G. If there is a
set of users Z such that any user z that belongs to Z has a direct or indirect relation to user y such that
path(z,y) exits and there rating(z,x) exists also, then the target of the recommender system is to predict how

much rating(y,x) can be in case that direct rating does exit so far. When the set Z equal set U, then the
predicted rating(y,x) can be called rank(x) which is unified over all the social network G.

This research questions are: Can the aggregation of ratings be computed in a linear time? And Can the
Caching techniques be enhanced to fit the suggested collaborative filtering technique? This research
contribution is suggesting a simple equation to calculate the rank for an item in a linear time instead of
quadratic. Another contribution is suggesting a new caching policy equation to increase hit ratio when
applying the linear ranking equation with no need for a training phase needed in some other artificial
intelligence methods.

3.2 Suggested Technique
 Recommender systems mainly focus on the user-to-item preferences and sometimes user-to-user
relationships. Several techniques use average calculation of a set of users' ratings for a target item. The users'
set can contain all users or only a subset of neighbors, friends or similar users to the querying user. Some
techniques calculate a weighted average, which multiply each individual rating by strength of relation factor

[6, 20]. All those variations are based on a general simple equation of average described in equation (eq.5).

N

ijratejufactor
iuprediction

Nj 


),(*),(
),((5)

 Where prediction (u,i) is the predicted rating for user u to item i, factor (u,j) is a weighting factor that can
have the value of 1, N is the set of users to aggregate, and rate(j,i) is the rating of user j to item i . For
simplicity we can shorthand this form into equation (eq. 6).

ratingsofcount

ratings
prediction

__


 (6)

 In fact, the equation is correct and simple but has a performance shortage. This equation requires that all
ratings are already given and doesn't take into account the changing nature of social networks. In the real life,
a new set of users can add, modify, or remove their ratings for any item at any moment. If the average rating
is always updated by users' actions over time, then a quadratic growth of computation is resulted. If some
batching techniques are used to buffer new ratings instead of instant updates, then some old predictions

values may mislead users. In this research, a modification is suggested for equation (eq. 6) to be in the form
of equation (eq. 7).

ItemsNewCountOf

NewRating
 ItemsOldCountOf*OldAverage= NewAverage  (7)

 This equation gives the same results always as equation (eq. 6). It has been tested on 20000 variable
sized sets and always gives the correct average. If the value of NewCountOfItems is 1, this means that the
rated item has never been rated before this new user. Equation (eq. 7) has a linear time growth compared to

equation (eq. 6) in the instant updating. This equation can be used also to restore ratings to its original state
in case of rollback operations performed after transactions failures.
 The problem in equation (eq. 7) is the need to store old average value for target items. This is an
extra overhead of storage. In fact, not all items are frequently updated. Some items are rarely accessed. So,
the recommender system shouldn't waste the storage capacity by storing all current averages for all items.
We suggest using a prioritization policy similar to caching techniques described previously in section 2. To
enhance the GDSF technique that's presented in equation (eq. 4), we suggest a modification in equation (eq.

8).

Journal of Information and Computing Science, Vol. 9 (2014) No.3, pp 181-188

JIC email for subscription: publishing@WAU.org.uk

185

)(

)(
*)()(

pS

pC
pMLpK  (8)

 Where M(p) is the frequency of use above the median timestamp of caching age for the item p.
Although this is a simple modification in equation (eq. 4), it has a remarkable effect. It enhances the

utilization of limited cache size compared to GDSF. In the next section we shall explore the results that
confirm that. The Main Process of the suggested technique is summarized in figure 1. When new ratings
are added to the social networks about any item, then the suggested technique tries to fetch the old ranking
and count of raters to the target item from cache instead of re-calculating them. If those data are found in
cache then the linear averaging in equation (eq. 7) can be applied, otherwise, the traditional averaging in
equation (eq. 6) must be applied. In both cases, a new median of timestamps is calculated by equation (eq. 8)
in order to decide which items can be in cache contents after updating ranking for any item. The suggested
caching equation (eq. 8) can increase hit ratio in the future ranking updating processes.

4. Solution of FNFIDEs

 In this research, we have tested two measures; the effect of the suggested equation (eq. 7) on average
calculation time, and the effect of caching policy in the suggested equation (eq. 8) in hit ratio and
computation time.

For the first measure, which is the effect of equation (eq. 7), we have generated 20000 set samples with

sizes varying from 1 to 20000 items per set. Both equations (eq. 6) and (eq. 7) are applied to calculate the
average. In all cases the average values in both equations are the same. Figure 2 shows the time comparison
between the two techniques.
 The suggested equation has a linear growth over time while the traditional averaging equation has
quadratic growth. This is because the traditional averaging equation iterates over both time and users on each
calculation request and never uses the historical average values of unchanged old ratings. It re-calculates its
results with each time a new user adds a new rating. The suggested incremental averaging handles those
problems by using historical results of old users to target item.

For the second measure, that is the usage of the suggested caching technique in equation (eq. 8). The
experiments are made on a standard dataset for a real online community called "MovieLens"

(http://www.movielens.org/). This dataset is collected by GroupLens Research Project at the University of
Minnesota (http://www.grouplens.org/). This dataset contains 943 users, 1682 items and 100000 ratings. In
this dataset each rating has its timestamp. The ratings are first ordered by timestamp to simulate the time
factor. Then we sent ratings one by one to both techniques; the suggested technique in equation (eq. 8) and
GDSF. A great challenge is considered, which is using a very small size of cache to test the performance of

both techniques in heavy load situations. The count of items in cache was considered as the logical size
measure for simplicity. The experiment started with cache sizes that can store only 10 objects. Then we
increased cache sizes slightly to be 20, 50 and 100 objects. Both C(p) and S(p) are assumed to be constants.
L is the time passed so far for a cache time since its first storage in it. We also applied the experiments first
of small set of requests (ratings) like 20000, 25000, 30000, 40000, 6000 and 100000 ratings requests. Figures
3, 4, 5 and 6 are the comparison results.

In fact, we confirm the used cache size is so small compared to thousands of requests in real life. However,
in figure 6 for example, a hit ratio is achieved when using cache size 100 objects when sample size was

100000 requests. That means that the suggested technique achieves 25% hit ratio using a cache size 0.1% of
all requests compared to almost 18% hit ratio by GDSF. Due to the hardware limitations of testing
environment, we used small sample sizes for testing. Of course deciding the optimal size of cache is a good
research point, but it's beyond the scope of study in this research. To conclude that testing, we've made
another test of time to compare both GDSF and the suggested technique and the results are shown in figure 7.

From figure 7, we can say that both techniques have almost the same time performance with a slight delay
of the suggested technique. This can be justified by noticing that there is an extra step in the suggested

technique to compute the median timestamp and filter out all timestamps before that median. From all above
results, the suggested system can get a performance advantage over the traditional averaging recommender
systems. Even the overhead of storing extra data about ratings has been handled by applying a new suggested
caching technique. The combination of both suggested equations (eq.7 and 8) represents an enhancement in
current recommender systems performance with high utilization of small-sized caches.

http://www.movielens.org/
http://www.grouplens.org/

Waleed M. Al-Adrousy et.al. : Linear Time Growth Collaborative Filtering Based on Caching Techniques

JIC email for contribution: editor@jic.org.uk

186

Figure 1-Main Flow of The Suggested Recommender Systems

Figure 2-Comparison between The Two Averaging Techniques in Time

Figure 3-Hit Counts at Cache Size 10 Figure 4-Hit Counts at Cache Size 20

Journal of Information and Computing Science, Vol. 9 (2014) No.3, pp 181-188

JIC email for subscription: publishing@WAU.org.uk

187

Figure 5-Hit Counts at Cache Size 50

Figure 6-Hit Counts at Cache Size 100

Figure 7-Time of Computation Comparison between Suggested Caching Technique and GDSF

5. Conclusion

 In this research, we've studied a simple form of recommender system that can avoid push attacks by

averaging a subset of users' ratings for an item. We've tried to study the time factor effect on the performance.

We've presented two suggested equations; the first one is to enhance to averaging computation to be linear

order of growth, and the second equation is to use caching policies to select most important items that need

to cache their old averages. For the other items that aren't in cache, the traditional averaging is to be applied

in that case. We could achieve a relatively high hit ratio with a very small cache size and nearly in the same

time as the known GDSF technique. Our suggested caching technique – like GDSF- doesn't need an artificial

intelligence training phase. Future points of research can be specifying the optimal size of cache size related

to the frequency of operations. Another point of future research can be studying the effect of variable sizes of

histories set from an item to another. The caching enhancement by semantic analysis of items and users

profiles can be another possible research point. Another possible enhancement is to eliminate the need of

cached data and preserve linear growth performance also.

6. References

[1] Ali, W. and Shamsuddin, S.: "Intelligent client-side web caching scheme based on least recently used algorithm

and neuro-fuzzy system". Advances in Neural Networks, Springer-Verlag Berlin Heidelberg, 2009, 5552, (II), pp.

70–79.

[2] Ali, W., hamsuddin, S., and Ismail, A.: "A Survey of Web Caching and Prefetching". International Journal

Advanced Soft Computing Applications, 2011, 3, (1), pp. 18-44.

Waleed M. Al-Adrousy et.al. : Linear Time Growth Collaborative Filtering Based on Caching Techniques

JIC email for contribution: editor@jic.org.uk

188

[3] Asratian, A., Denley, T., and Häggkvist, R.: "Introduction to Bipartite Graphs" chapter in "Bipartite Graphs and

their Applications", (Cambridge University press, 1998).

[4] Burke, R., Felfernig, A. and Gker, M.: "Recommender systems: An overview". AI Magazine, Association for the

Advancement of Artificial Intelligence, 2011, 32, (3), pp. 13–18.

[5] Cai, X., Bain, M., Krzywicki, A. and Wobcke W.: "Collaborative filtering for people to people recommendation in

social networks". Australian Joint Conference on Artificial Intelligence, AUS-AI, 2010, pp.476-485.

[6] Ekstrand, M.: “Collaborative Filtering Recommender Systems”. Foundations and Trends® in Human–Computer

Interaction, 2010, 4 (2), pp. 81–173.

[7] Ghauth, K., and Abdullah, N.: "The Effect of Incorporating Good Learners' Ratings in e-Learning Content-based

Recommender System", Educational Technology and Society, 2011, 14, (2), pp. 248–257.

[8] Gomah, A., Abdel-Rahman, S., Badr, A., and Farag, I.: "An Auto-Recommender Based Intelligent E-Learning

System". International Journal of Computer Science and Network Security, 2011, 11, (1), pp. 67-70.

[9] Jøsangm A., Ismail, R. and Boyd, C.: "A survey of trust and reputation systems for online service provision".

Decision support systems, 2007, 43, (2):pp. 618-644.

[10] Liu, F., and Lee, H.: "Use of social network information to enhance collaborative filtering performance". Expert

Systems with Applications, 2010, 37, (7), pp. 4772-4778.

[11] Long, B., Wu, X., Zhang, Z., and Yu, P.: "Unsupervised Learning on K-partite Graphs". Proceedings of the 12th

ACM SIGKDD international conference on knowledge discovery and data mining. New York, USA, 2006, pp.

317-326.

[12] Lops, P., De Gemmis, M. and Semeraro, G.: "Content-based Recommender Systems: State of the Art and Trends",

chapter in: "Recommender Systems Handbook" (Springer Science and Business Media, LLC), 2011, pp. 73–105.

[13] Luna, J., Huete, J., and Cano, J.: "User Intent Transition for Explicit Collaborative Search through Groups

Recommendation". Proceedings of the 3rd international workshop on Collaborative information retrieval, ACM,

New York, USA, 2011, pp. 23-28.

[14] Mezghani, M., Zayani, C., Amous, I., and Gargouri, F.: "A User Profile Modelling Using Social Annotations: A

Survey". Proceedings of the 21st World Wide Web Conference, WWW 2012, April 2012, Lyon, France, pp. 969-

976.

[15] Middleton, S., De Roure, D. and Shadbolt, N.: "Capturing knowledge of user preferences". Proceedings of the

international conference on Knowledge capture - K-CAP, 2001, pp. 100-107.

[16] Mobasher, B., Burke R., Bhaumik, R., and Williams, C.: "Towards Trustworthy Recommender Systems: An

Analysis of Attack Models and Algorithm Robustness". ACM Transactions on Internet Technology, 2007, 7, (2),

Article No. 23.

[17] Pazzani, M., Muramatsu, J. and Billsus, D.: "Syskill & Webert: Identifying interesting web sites". AAAI Press,

MIT Press, 1, 1996.

[18] Pu, P., Chen, L. and Hu, R.: "A user-centric evaluation framework for recommender systems". Proceedings of the

ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces

(UCERSTI), Barcelona, Spain, Sep 30, 2010, i, pp. 14–21.

[19] Ram, A., Ai, H., Ram, P., Sahay, S.: "Open Social Learning Communities". International Conference on Web

Intelligence, Mining and Semantics, WIMS-11, Sogndal, Norway, May 2011, Article No. 2.

[20] Ricci, F., Rokach, L. and Shapira, B.: "Introduction to Recommender Systems Handbook", chapter in:

"Recommender Systems Handbook" (Boston, MA: Springer US), 2011, pp. 1–35.

[21] Santos, O., and Boticario, J.: "Requirements for Semantic Educational Recommender Systems in Formal E-

Learning Scenarios". Open access Algorithms, 2011, 4, (2), pp. 131-154.

[22] Schafer, J., Frankowski, D., Herlocker, J. and Sen, S.: "Collaborative filtering recommender systems". The

Adaptive Web, LNCS, Springer-Verlag Berlin Heidelberg, 2007, pp. 291–324.

[23] Su, X. and Khoshgoftaar, TM.: "A Survey of Collaborative Filtering Techniques". Advances in Artificial

Intelligence, Hindawi Publishing Corporation. Volume 2009, Article ID 421425.

[24] Wu, H., Luk, R., Wong, K. and Kwok, K.: "Interpreting TF-IDF term weights as making relevance decisions".

ACM Transactions on Information Systems, Jun, 2008, 26, (3), pp. 1–37.

[25] Zhou, X., Xu, Y., Li, Y., Josang, A. and Cox, C.: "The state-of-the-art in personalized recommender systems for

social networking". Artificial Intelligence, 2012, 37, (2), pp. 119-132.

