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Abstract. Most of the proposed self-similar traffic models could not address fractal onset time at which 
self-similar behavior actually begins. This parameter has considerable impact on network performance. 

Fractal point process (FPP) emulates self-similar traffic and involves fractal onset time (FOT). However, this 

process is asymptotic in nature and has less effective in queueing based performance. In this paper, we 

propose a model of variance based Markovian fitting. The proposed method is to match the variance of FPP 

and superposed Markov modulated Poisson Process (MMPP) while taking FOT into consideration. 

Superposition consists of several interrupted Poisson processes (IPPs) and Poisson process. We present how 

well resultant MMPP could approximate FPP which emulates self-similar traffic. We investigate queueing 

behavior of resultant queueing system in terms of a packet loss probability. We demonstrate how FOT affects 

the fitting model and queueing behavior. We conclude from the numerical example that network nodes with a 

self-similar input traffic can be well represented by a queueing system with MMPP input  

Keywords: Self-similarity; Fractal point process; fractal onset time; Markov modulated Poisson process, 

Variance;  Packet loss probability. 

1. Introduction  

Seminal studies revealed the presence of self-similarity or   long range dependence (LRD) in LAN, 
WAN, the variable bit rate (VBR) video traffic, and its impact on the network traffic [1-3]. This type of 
traffic exhibits statistical similarity over different time scales and is highly correlated. Characterizing the 
statistical behavior of traffic is crucial to proper design of routers to provide the quality of service (QoS). If 

the traffic models do not accurately represent the real traffic, then the network performance may be estimated 
over or underestimated [4]. Traffic models such as Fractional Brownian Motion (FBM), Fractional Auto 
Regressive Integrated Moving Average (FARIMA), Chaotic maps are proposed to characterize the self-
similarity. Although, these processes are parsimonious, but are less effective in the case of queueing based 
performance evaluation when buffer sizes are small. In [5-8], Markovian arrival process (MAP) is employed 
to model self-similar behavior over the different time scales. These fitting models equate the second order 
statistics of self-similar traffic and that of superposition of several 2-state Markov modulated Poisson 

Process (MMPP) over desired time-scales. However, in the paper [5], covariance function of resultant 
MMPP is approximated by suppressing the higher order terms in Taylor’s expansion. In the paper [6], 
MMPP emulating the self-similar traffic is fitted by matching variance over the desired time-scales. 
Resultant MMPP here is superposition of several Interrupted Poisson Process (IPPs) wherein two modulating 
parameters of each IPP are equal. The fitting method [6, 7] is generalized in the paper [8] by taking distinct 
modulating parameters in each IPP.  Paulo Salvador et.al [9] proposed a model to fit discrete time MMPP 
that matches both autocovariance and marginal distribution of the counting process in such a way that model 
can capture self-similar behavior up to the time-scales of interest. Fractal on set time (FOT) defines the time 

scale from which self-similar behavior begins and is denoted by 
0T  [11]. In the paper [12], the impact of FOT 

is realized besides the impact of another important characteristic Hurst parameter H  of the self-similar traffic. 
According to the measurement studies, FOTs of the network traffic are at scales in the order of a few 
hundreds of milliseconds. The FOT plays an important role in characterizing the burstiness of the network 
traffic. In the said papers, the Markov-modulated Poisson process (MMPP) emulating the self-similar traffic 
over the different time scale is fitted, however, the time scale where self-similar nature actually begins is not 
considered. 

Fractal point processes (FPPs) are proved to be self-similar [12], and they provide network traffic 
models [13]. The second order statistics of FPP involve not only the Hurst parameter but also FOT [12-13]. 
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However, these processes are asymptotic in nature and has less effective in queueing based performance 
when the buffer sizes are small. That is, FPP can be used as a self-similar traffic generator, but it is not so 
useful in the context of the queueing theory. Hence, in this paper, first, we fit the MMPP for FPP by equating 
the variance while taking FOT into consideration and then we model network nodes such as routers by the 

KDMMPP /1//  queueing system to investigate the queueing behavior. It is found from the numerical 

results that the MMPP model could emulate both the FPP traffic and the exact self-similar traffic. There are 
two objectives with the fitting described in this paper. First one is that, the resulting MMPP which works 
well for the queueing theory will have same statistical characteristics as that of FPP and self-similar process. 
The second one is to investigate queueing behavior under any traffic conditions. For the first objective, 

variance-time results of the self-similar traffic, FPP, and resultant MMPP are presented. In the context of the 
second objective, packet loss probability (PLP) against traffic intensity is presented. 

The rest of the paper is organized as follows. In section 2, we first overview the definitions of self-similar 

process and FPP. In section 3, we present the fitting procedure. We then present the analytical results of 

KDMMPP /1// , in section 4. In section 5, we demonstrate accuracy of the proposed model by means of 

numerical results. Finally, some conclusions are made in section 6.   

 

2. Self-Similar Process and Fractal Point Process (FPP)  

The second order statistics, namely variance, index of dispersion of counts (IDC), and auto 
covariance function (ACF) are relatively straightforward to fit the parameters of a model emulating self-

similar traffic and gives much information [11]. As a result, these statistics are exploited by several authors. 
In this section, first we overview the definition of the self-similar process and the fractal point processes in 
terms of the second order statistics.  

2.1 Self-Similar Process 

Consider X   to be a second -order stationary process with variance
2 , and divide time axis into 

disjoint intervals of unit length, we could define ........}3,2,1/{  tXX t
   to be a number of points (packet 

arrivals) in the 
tht  interval. A new sequence

)()( m

t
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is the average of the original sequence in  non-overlapping blocks. Then the definitions of the exact 
second-order self-similar process and the asymptotically second-order self-similar process are defined as 
follows: 

Definition 1. The second-order stationary process  X  is defined as an exact second-order self-similar 
process with the Hurst parameter, 21 H  if 

                      
 

Definition 2. The second-order stationary process X  is defined as an exact second-order self-similar process 
with the Hurst parameter, 

21 H  if  

   )(
2

1
)( 22  kkr  

where  )(kr  is  an auto covariance  function,  (.)2  is the second central difference operator and it is 

defined as  

  .)1()(2)1())((2  kfkfkfkf  

 

Definition 3.  The process X  is called asymptotically second-order self-similar process with the Hurst 

parameter, 21 H  if  
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2.2 Fractal Point Process 

Let )(tN  be the number of arrivals up to the time  t    and define 
nX  as the number of packets that 

are arrived during the 
thn time interval of size T sec, i.e., ))1(()( TnNnTNX n   then 

),cov(),( knn XXTnc  , is defined as the covariance between the number of arrivals in two counting 

windows of counting time T  and separation kT . Then the index of dispersion for counts (IDC) in a specified 

window of width T is given by [13],                                                      
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where 12  H , and 10  , 1
2

1
 H  in the case of self-similar process. The autocorrelation function 

is given by [13]  
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The auto covariance function (ACF) denoted by ),( Tkr  is given by 
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    Recall that  nX  represents the number of packets during the 
thn  time interval of size T and 
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then the covariance ),()( TkC m , ACF ),()( Tkr m , and variance )( )(mXVar  of this aggregated process are, 

respectively,  given by [13]  
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We shall make use of the Eq. (6) to fit the MMPP  in the next section. 

3. Fitting Procedure     

In this section, we fit the model for FPP that emulates the self-similar traffic using the Markovian 
approach. This procedure is based on variance while taking FOT into consideration. This model is similar to 

that of the paper [8] involving superposition of‘ d  two state interrupted Poisson process (IPP) and Poisson 

process. IPP is a particular case of MMPP. We can describe 
thi  IPP as follows: 
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Superposition of above d  IPPs and a Poisson process is again an MMPP, and is characterized by 

,......21 dQQQQ      

                        ,.......21 pd                                                … (8) 

where  denotes the Kronecker sum, and p  is the arrival rate of the Poisson process to be superposed. 

Then the whole arrival rate  is given by 
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Hence, the variance of the whole process is 
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For the given traffic parameters ,H ,0T  and   we match the variance at d  different points im ,

di ,,2,1  . Let ],[ maxmin mm (that is
maxmin mmm  ) be the time interval over which we want the 

process to emulate self-similarity of the original process, then im  is given by 
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Now, we assume the following relations  
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These are due to the fact that a self-similar process looks the same in any time scale. Because of these 

assumptions, the number of parameters to be determined is reduced. That is, if we determine 2111,cc , we can 

obtain the values of ii cc 21 ,  ),,2,1( di  . Having ii cc 21 ,  ),,2,1( di  ,  and i  we can obtain the p

from the Eqn. (12).  Now the parameters need to find are 2111,cc  and i  ),,2,1( di  . Step by step method 
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to determine these parameters is as follows [8]: 

Step 1. [Assign appropriate initial approximations for both 2111,cc ]. 

 Step 2. [Determine 
i  as the function of 2111,cc ]. 

From (6) and (12), we have  
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which gives 
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where B is  the ‘ dd  ’ matrix whose ),( ji element is 
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Eqn. (16) is a non-homogeneous system of equations in 22

2

2

1 ,......, d . Solving this system by any Matrix 

method, Cramer’s rule (say) and using (14) and (16), we can express i  ),,2,1( di  as the function of

2111,cc . 

Step 3. [Determine the values of 2111,cc ]. 

Using (16) and the expressions for i  obtained in step 2, consider the integral   
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This integral is the function of two parameters 2111,cc . Determine the values of 2111,cc  so that the value of 

the integral is minimum.          

Step  4.  [Compute the values of i  from the equations obtained in step 2]. 

From step 2, it is clear that matrix B must be non-singular. Sufficient condition under which B is non- 
singular is given in the papers [6, 8]. 
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3.1 Analytical Results of Index of Dispersion for Counts (IDC) 

 

The Index of Dispersion for Counts (IDC) of an aggregated process of the Second order Self-similar 

process and fractal point process is given as follows. 
The mean of the aggregated process is  
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From Eqs.  (12), (18), The Index of dispersion for counts of an aggregated process is 
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The Index of dispersion counts of an exact self-similar process is 
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and from Eqs. (6), (18) Index of dispersion counts of  fractal point process  
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4. Loss Behavior of Resultant Queueing System   

In this section, having the MMPP emulating self-similar input traffic, network nodes such as router 
or switch is modeled as KDMMPP /1//  queueing system to analyze the loss behavior.  In the 

KDMMPP /1// queue, the packets arrive according to the MMPP of m states and is characterized by a 

matrices RQ, , where  RQ,  are   mm  matrices.  The service time is deterministic with mean service rate 

h . That is, we are considering synchronous input traffic of fixed length h  (in time units).  Let kD , 0k  

denote   the  matrices of order mm whose (i,j) element is the probability that given departure at time 0, 

which left at least one packet in the system and the process is in state i, the next departure occurs when the 

arrival process in j, and during that service time there were k  arrivals. Then kD in the case of general 

service time distribution )(tH  satisfies the following equation 
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Since the service time is deterministic with h  time units,  then the above equation can be reduced to  
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Now we compute the kD s using the recurrence formulae [14]. Consider the embedded Markov chain 

}0/)(),({ nnJnL at the departure epochs of the queueing system on the state space

}1,10/),{( miKbibS  , where L(n) denotes buffer occupancy and J(n) denotes the state of 

MAP. Then the pertinent embedded Markov chain has the following transition probability matrix : 
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where ,)( 1 RQRG  and its ),( ji element is conditional probability that the system is not busy when the 

system is in j  state given that system was in i  state, and 





ik

ki DE . Let
ky , )10(  Kk be an m1  

vector whose 
thi element is the stationary conditional probability that the number of packets in the system is 

k and the state of underlying arrival process is in i at an arbitrary time. The packet loss probability (PLP) is 
given by [7] 

                                                    
 

.
1

1 0



ey
PLP


                                                … (25) 

In the above equation,  e  is column vector consisting of 1 and   is the traffic intensity. 

 

5. Numerical examples  

In this section, we investigate the accuracy of the proposed fitting model in terms of the second order 
statistics of counts and queueing-based performance measure, namely packet loss probability. We 
demonstrate how the proposed fitting model and the queueing behavior are affected by 

0T . We have fitted 

MMPP by the equating its variance to that of  real time traffic measured at AT&T Bell Labs [13], over the 

time scale [102,108].   The values of traffic parameters are ,92.0H 1.8 , 5.1332  , and 033.00 T , 

The variance time curves of the resultant MMPP, that of FPP, and that of the above  real-time traces are 
shown in Fig.1. Also, for the said case IDC curves are presented in Fig. 2. From the figures, we conclude that 

our results exhibit good concord with that of the self-similar traffic and that of FPP. Variance-time and IDC-

time results pertaining to the values ,6.0H 1 , 6.02  (Sample1), ,7.0H 1 , 6.02   (Sample 

2), and ,8.0H 1 , 6.02   ( Sample 3 ), ,1T  and  for arbitrary values of FOT are presented in Figs. 

3-8. The pertinent self-similar traffic of these samples are generated in the paper [6] by the random midpoint 

displacement algorithm [10]. In all the fitting cases, the number of   two state MMPPs, d , is equal to 4.  

From these figures it is observed that fitted MMPP could emulate the FPP and the self-similar traffic.  Next, 
we investigate queueing behavior in terms of a performance measure namely packet loss probability in the 
resultant MMPP/D/1/K queue for arbitrary values of FOT.  Following [8], and [15], we use matrix analytic 

methods to compute steady state probability distribution of the transition probability matrix P of buffer 

occupancy  that in turn gives the packet loss probability. The packet loss probability is computed using Eqn. 
(25). Numerical calculations are performed using MATLAB and results are shown in  figures 9-16. The 
buffer depth  K is taken to be  10.  Figures 9 and 10 illustrate the results for the case of Hurst parameter 

H=0.7 for different values of  0T  over the time scales [102, 107] and [102, 106]. Figures .11 and 12 depict the 

results for the case of Hurst parameter H=0.6 for different values of  0T  over the time scales [102, 108] and 

[102, 106] , respectively. From the figures we conclude that PLP is affected with  0T  for the same value of 

Hurst parameter. i.e., packet loss probability decreases as  0T  increases for TT 0 . Figure 13 depicts the 

results for the case of 0T =0.95 and Hurst parameter H=0.6 over the different time scales [102, 106], [102, 107], 

and [102, 108]. From this figure it is clear that PLP increases with the time-scale as in the paper [8]. Figures 

14, 15, and 16 illustrate the results for the case of 0T =0.95 for different Hurst parameter values ,6.0H  
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,7.0H and 8.0H  over the different time scales [102, 106], [102, 107], and [102, 108]. From the figures, we 

conclude that packet loss probability increases as H increases. From these observations, we conclude that 

fractal onset time 
0T  does   have significant effect on the queueing behavior of network nodes. 

 
Fig.1 Variance-time curves of the   FPP, resultant MMPP and real time self-similar traffic with the values ,92.0H

1.8 , ,5.1332  and ,1T 033.00 T  over the time scale range [10
2
, 10

8
].                        

 
Fig.2.  log (IDC)-log (Time) curves of the resultant MMPPs and FPPs over the time scale [102, 108] at 

,92.0H 1.8 ,  ,5.1332   and ,1T 033.00 T . 

 
Fig.3. Variance-time curves of the   FPP, resultant MMPP and self-similar traffic over the time scale range [10

2
, 10

8
] 

when ,6.0H 1 ,  K=10 and ,1T 95.00 T . 
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Fig.4. Variance-time curves of the FPP , resultant MMPP, and  self-similar traffic over the time scale [10
2
, 10

8
] when 

,7.0H 1  , K=10  and ,1T 95.00 T . 

 

Fig.5. Variance-time curves of the FPP, resultant MMPP, and self-similar traffic   over the time scale [10
2
, 10

8
] at 

,8.0H 1  , K=10  and ,1T 95.00 T . 

 

Fig.6. log (IDC)-log (Time) curves of the resultant MMPPs and FPPs over the time scale [10
2
, 10

8
] at ,6.0H 1 ,  

,6.02   and ,1T 95.00 T . 
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Fig.7. log (IDC)-log (Time) curves of the resultant MMPPs and FPPs over the time scale [10
2
, 10

8
] at ,7.0H 1 ,  

,6.02   and ,1T 95.00 T . 

 

Fig.8. log (IDC)-log (Time) curves of the resultant MMPPs and FPPs over the time scale [102, 108] at 

,8.0H 1 ,  ,6.02   and ,1T 95.00 T . 

 

Fig.9. Loss probability of the resultant MMPP/D/1/K queues with d=4, H=0.7 1 , K=10 and T=1 over the time scale 

[10
2
, 10

6
]. 
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Fig.10. Loss probability of the resultant MMPP/D/1/K queues   with d=4, 1 , H=0.7, K=10 and T=1 over 
[102, 107]. 

 

Fig.11. Loss probability of the resultant MMPP/D/1/K queues   with d=4, 1 , H=0.6, K=10 and T=1 over [10
2
, 10

8
]. 

 

Fig.12. Loss probability of the resultant MMPP/D/1/K queues with d=4, H=0.6, 1 , K=10, and T=1 over the time 

scale [10
2
, 10

6
]. 
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Fig.13. Loss probability of the resultant MMPP/D/1/K queues with d= 4, 1 , H=0.6, K=10, 95.00 T  and T=1 

over the different  time scale . 

 

Fig.14. Loss probability of the resultant MMPP/D/1/K queues with d= 4, 1 , K=10, 95.00 T  and T=1 over the 

time  scale [10
2
, 10

6
]. 

 

Fig.15. Loss probability of the resultant MMPP/D/1/K queues with d= 4, 1 , K=10, 95.00 T  and T=1 

over the time  scale [102, 107].               



Rajaiah Dasari et.al. : Internet Traffic Modelling -Variance Based Markovian Fitting of Fractal Point Process from Self-Simil

arity Perspective 

 

JIC email for contribution: editor@jic.org.uk 

222 

 

 

Fig.16. Loss probability of the resultant MMPP/D/1/K queues with d= 4, 1 , K=10, 95.00 T  and T=1 over the 

time scale [10
2
, 10

8
]. 

 

6. Conclusion  

The earlier self-similar traffic models are parsimonious, but asymptotic in nature. They are less 
effective in queueing based performance evaluation when the buffer sizes are small. Therefore, Markovian 
models are well recognized as the appropriate self-similar traffic models. However, these models do not 
involve fractal onset time. Fractal point process (FPP) involves fractal onset time, but is not suitable for 

queueing based performance evaluation. In order to have suitable model emulating FPP, we use variance 
based Markovian fitting procedure to match the variance of FPP over several time scales. We present how 
well the resultant MMPP could emulate the variance and IDC of FPP and the original self-similar traffic.  

On the other hand, in order to dimension the internet router or switch accurately, we model it as a 
MMPP/D/1/K queueing system. We investigate queueing behaviour in terms of packet loss probability 

against traffic intensity, Hurst parameter, time-scale, and FOT. From the results, it is clear that loss 
probability increases as FOT and Hurst parameter increases. Numerical results show that self-similar 
network traffic can be investigated by means of  FPP and MMPP. Proposed model is not parsimonious, in 
the sense, there is an extra parameter. However, there is no enhancement in the computational complexity 
because of this extra parameter.   
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