
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK 

Journal of Information and Computing Science 
Vol. 9, No. 3, 2014, pp. 224-232 

 

 
 

 

 

A single-input linear controller for complete synchronization of a 

delay financial hyperchaotic system 

Xiulei Fang, Guoliang Cai 

, Lan Yao and Lingling Zhang 

Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China 
(Received December 30, 2013, accepted July 3, 2014) 

Abstract. This paper is involved with the complete synchronization problems for two identical delay 
financial hyperchaotic system with different initial conditions, and a simple complete synchronization 

scheme only with a single linear input is proposed. Based on the Lyapunov stability theory, both linear 

feedback control and adaptive control approaches is derived to complete synchronization between two nearly 

identical delay financial hyperchaotic systems with unknown parameters is also studied. Numerical 

simulation results are showing the effectiveness of the proposed hyperchaotic synchronization method. 
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1. Introduction  

In recent years, chaos study has increasingly become an important topic in nonlinear areas. And chaotic 

synchronization has been developed extensively in the last few years. Since Pecora and Carrol proposed a 

successful method to synchronize two identical chaotic systems with different initial conditions [1]. Chaos 

synchronization has been widely explored and studied because of its potential applications in secure 

communication, chemical reactions, biological systems, information science, plasma technologies, etc. 

Meanwhile, many synchronization schemes have been proposed [2-7] such as complete synchronization, 

phase synchronization, anti-synchronization, lag synchronization, generalized synchronization and projective 

synchronization and so on. 

Economic dynamics has recently become more prominent in mainstream economics [8, 9]. However, 
with the development of economy, the old financial chaotic system cannot meet the needs of the market. 

Therefore, more and more scholars improve it by adding an additional state variable [10-13]. Recently, a 
novel financial hyperchaotic system was brought up [14]. The dynamical behaviors of the new system are 
more complex, and effective controls are implemented. But there are barely any studies on its 
synchronization which is the main job we did in this paper. And in a practical way, a smaller number of 
controllers and simpler form of controllers are greatly practical. The linear feedback control technique was 
used to synchronize chaotic system[15,16] in various research works. 

In this paper, we will adapt the single-input linear feedback controller to investigate the synchronization 
between these two identical time-delay financial hyperchaotic systems. Base on the Lyapunov stability 
theory and the adaptive control theory, the single-input adaptive controller associates with estimated update 
laws to synchronize two nearly identical delay hyperchaotic systems with unknown parameters. 

We organize our paper as follows. In Section 2, the financial hyperchaotic system with time delay is present. 

In Section 3, Synchronization between two identical new delay hyperchaotic systems via single-input linear 

feedback control and adaptive feedback control laws are proposed and show the synchronization with 

unknown parameters in the response system. The numerical simulations are also presented. Finally, the 

conclusions are drawn in Section 4. 
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2. The financial hyperchaotic system with time delay  

The novel financial hyperchaotic system is a non-delay financial hyperchaotic system in paper [14]. 

Based on the novel financial hyperchaotic system in this paper, we put forward a delay financial 

hyperchaotic system by plus a time delay on the average profit margin w in the first equation. 

The model describes the time variations of four state variables: the interest rate x, the investment demand 
y, the price exponent z, and the average profit margin w. 

The financial hyperchaotic system with time delay is described as 
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where τ >0 is the time delay, a, b, c, d, k are the parameters of the system (1), and they are positive constants. 
When τ =0, system (1) is the financial hyperchaotic system [14]. For convenience, we call it delay financial 
hyperchaotic system. When the parameters are a = 0.9, b = 0.2, c = 1.5, d = 0.2, and k = 0.17, the four 
Lyapunov exponents of the system (4) calculated with Wolf algorithm are L1= 0.034432, L2= 0.018041, L3= 
0, and L4=−1.1499. Figure 1(a)–(d) show the 3-dimensional phase portraits of financial hyperchaotic system 
(4). 

    
(a) 3D view in the x-y-z space.                   (b) 3D view in the x-y-w space. 

 
(c) 3D view in the x-z-w space.               (d) 3D view in the y-z-w space. 

Fig. 1: Phase portraits of hyperchaotic finance system (1). 

3. Complete synchronization of delay financial hyperchaotic system 

In this subsection, we will investigate the synchronization of two identical delay financial hyperchaotic 

system via a single feedback control only with one variable. For this purpose, the drive hyperchaotic time-

delay system is chosen as (1), and the response system is given as follows: 

-4

-2

0

2

4

-2

0

2

4
-1.5

-1

-0.5

0

0.5

1

1.5

xy

z

-4

-2

0

2

4

-2

0

2

4
-1.5

-1

-0.5

0

0.5

1

1.5

xy

w

-4

-2

0

2

4

-2

-1

0

1

2
-1.5

-1

-0.5

0

0.5

1

1.5

xz

w

-1
0

1
2

3
4

-2

-1

0

1

2
-1.5

-1

-0.5

0

0.5

1

1.5

yz

w



Xiulei Fang et.al. : A single-input linear controller for complete synchronization of a delay financial hyperchaotic system 

 

JIC email for contribution: editor@jic.org.uk 

226 

2 2 2 2 2 1

2

2 2 2

2 2 2

2 2 2 2

( ) ( ) ,

1 ,

,

.

x z y a x w t u

y by x

z x cz

w dx y kw

     


  


  
   

                                                                                      (2) 

In which u1 is the control law to be designed. Subtracting the drive system (1) from the response system 
(2), we have the following error dynamics: 
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where e1=x2-x1, e2=y2-y1, e3=z2-z1, e4=w2-w1, u1=-k1e1 and k1 is the positive feedback gain. 

3.1. A single linear input for complete synchronization of a delay financial hyperchaotic 
system 

Theorem 1 For enough large feedback gain k1, the hyperchaotic systems (1) and (2) can be completely 

synchronized under the following linear control law: 

1 1 1.u k e                                                                                                  (4) 

Proof Construct a positive definite Lyapunov function as follows: 
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where β>0. The time derivative of the Lyapunov function along the trajectory is 
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                                                (6)  

Since a chaotic system has bounded trajectories, there exists a positive constant M such that |xi|, |yi|, |zi|, 

and |wi| ≤ M (i= 1, 2), thus, 
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where 
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It is obvious that, for suitable values of λ, β, and k1, the conditions in A1-A4 can be satisfied. Then the 

matrix P is positive definite, and V is negative definite. So one obtains ei→0 as t→∞, namely, lim
x

e


= 0. 

It follows that the states of the response system (2) and the states of the drive system (1) are ultimately 
completely synchronized asymptotically. 

In the numerical simulations, we assume the time delay τ=1, the feedback gain k1=14.2, the parameters 

are a = 0.9, b = 0.2, c = 1.5, d = 0.2, and k = 0.17, and the initial values of the drive systems and the response 
systems chosen as (-1.5, -2.5, -3.5, -4.5) and (-4.5, -3.5, -2.5, -1.5). Figure 2 presents us the time evolution of 
synchronization error between drive and response systems. 

 

Fig. 2: The time evolution of synchronization error between drive and response systems. 

3.2. A single adaptive feedback control for complete synchronization of a delay financial 
hyperchaotic system 

Please acknowledge collaborators or anyone who has helped with the paper at the end of the text. 

The linear feedback control laws proposed in Theorem 1 have a fixed feedback gain no matter what the 

initial error values start. This means that the feedback gain must be maximal to induce a kind of waste in 
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practice. In this section, the adaptive control technology is applied to accomplish the synchronization of two 

identical delay hyperchaotic systems. 

Theorem 2 The response system (2) can completely synchronize the drive system (1) globally and 
asymptotically, if the adaptive control law is selected as 

1 1 1u k e  ,                                                                                   (10) 

where k1 is an estimated feedback gain updated according to the following adaptation algorithm 
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where β,l1> 0. Calculating the time derivative of the Lyapunov function (12) along the trajectory of 
system(3), we arrive at 
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Because Eq. (13) is similar to Eq. (6), it is obvious that, for suitable values of λ, β and enough large 

value of l1, V will be negative definite. So ie →0 can be obtained as t→∞, namely, lim
x

e
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=0. The 

complete synchronization of systems (1) and (2) with the controller (10) associated with (11) can be 
observed. This completes the proof. 

For the numerical simulation in this example, the initial values of the drive systems and the response 
systems chosen as (-2, -3, -4, -5) and (-5, -4, -3, -2). Figure 3 show the time evolution of synchronization 
error between drive and response systems. 

 

Fig. 3: The time evolution of synchronization error between drive and response systems with the estimation of feedback 

gain k1. 

3.3. A single adaptive feedback control for complete synchronization of a delay financial 
hyperchaotic system with uncertain parameters 

In practical applications, some or all of the system parameters cannot be exactly known in advance. 
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the difference in initial conditions. 

For this case, the drive system is designed as (1), and the response system is modeled as follows: 
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where u1 is a controller to be constructed, and a(t), b(t), c(t), d(t), k(t) are unknown parameters which need to 
be estimated. 

Theorem 3 Systems (1) and (14) will approach complete synchronization for any initial condition if the 

adaptive controller is taken as 

1 1 1u k e  ,                                                                                                                                                                      (15) 
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following adaptation algorithm: 
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Proof  Subtracting the drive system (1) from the response system (14) yields the following error 
dynamical system: 

1 3 2 1 2 1 2 1 4 1

2 2 2 1 2 1

3 1 2 3

4 2 2 2 2 1 1 2 4

( ( ) ) ( ) ,

( ( ) ) ( ) ,

( ( ) ) ,

( ( ) ) ( ( ) ) .

e e y e e x a t a x ae e t u

e b t b y be x x e

e e c t c z ce

e d t d x y dx e dy e k t k w ke

        


     


    
        

                                             (17) 

Construct a positive definite Lyapunov function as follows: 
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where β>0 and l1> 0. 

Calculating the time derivative of the Lyapunov function (18) along the trajectory of system (17) 

associated with control law (15) and estimated parameters law (16), we have 
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Fig.4: The time evolution of synchronization error between drive and response systems with the estimation of 

feedback gain k1 and parameters. 

It is obvious that Eq. (19) is similar to Eq. (6). Therefore, with suitable values of λ, β and sufficient large 

value of l1,V will be negative definite, and the zero solution of the error dynamical system (17) can be 

globally asymptotically stable. So the complete synchronization of systems (1) and (14) with the controller 
(15) associated with (16) can be obtained. This completes the proof. 

For this numerical simulation, we also assume the time delay τ=1, the initial values of the drive systems 
and the response systems chosen as (-3, -4, -5, -6) and (-6, -5, -4, -3). Figure 4 gives the time response of 
states for the drive system(1) and the response system(14). And Figure 5 shows the evolution of the five 
parameters estimation with time t. 

 

 
Fig. 5: Evolution of the five parameters estimation with time t. 

4. Conclusion 

This paper is concerned with state feedback control to synchronize two identical delay financial hyperchaotic 

systems. Based on the Lyapunov stability theory the drive and response systems could be synchronized with 

only a linear feedback controller, This paper only to control the interest rate of financial hyperchaotic system, 

not only easy to operate in practice, but also to reduce the financial risks effectively, thus which is important 

significance on using this method for applications. Numerical simulations show the effectiveness of the 

analytical results. 
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