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Abstract. In this paper, we propose a smoothing Newton method to find the minimum norm solution of 
linear program problems. By using the smoothing technique, we reformulate the problem as an unconstrained 
minimization problem with a twice continuous differentiable objective function. The minimization of this 
objective function can be carried out by the classical Newton-type method which is shown to be globally 
convergence. 
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1. Introduction  
     Consider the linear program in primal form 

min . . , 0Tc x s t Ax b x= ≥                                                        (1) 
Together with its dual  

max . .T Tb s t A cλ λ ≤                                                  (2) 
Where , ,m n n mA R c R and b R×∈ ∈ ∈  are the given data, and A is assumed to have full row rank. Let us 
denote the optimal value of the primal problem (1) by 

inf(P) : {c x , 0}T Ax b x= = ≥  
Throughout this manuscript, we assume 

( )inf P R∈                                                                                  (3) 
This is equivalent to saying that the primal (and hence also the dual) linear program has a nonempty 

solution set.  
The aim of this paper is to find the minimum norm solution of the primal program (1), i.e., we want to 

find the solution *x of the program 
21min . . , inf(P),x 0

2
Tx s t Ax b c x= = ≥                                              (4) 

Note that this problem has a unique solution under the assumption (3).Since the minimum norm 
solution could be a vertex as well as a point belonging to the relative interior of the solution set, neither the 
simplex method [1] nor the class of interior-point methods [2] will be assured to find the minimum norm 
solution of (1). 

The standard method for finding a minimum norm solution of a convex program is based on the 
Tikhonov regularization[3]. Specialized to our linear program (1), the Tikhonov regularization generates a 
sequence of iterates{ }kx with kx being the unique solution of the regularized program  

2min . . , 0
2

T kc x x s t Ax b xε+ = ≥                                           (5) 

where 0kε >  is a positive parameter and the sequence { kε } tends to zero. However, the Tikhonov 
regularization is, in general, quite costly since it has to solve a sequence of quadratic programs. On the other 
hand, due to special properties of linear programs, it is known that a solution of a single quadratic program (5) 
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with a sufficiently small but positive parameter already gives a solution of (4). This follows from 
Mangasarian and Meyer[[4],Corollary2]. 

To overcome this drawback, Kanzow, Qi and Qi [5] describes a new technique to solve problem (4), 
their main idea is to reformulate the problem as an unconstrained minimization problem with a convex and 
smooth objective function, a Newton-type method with global convergence was proposed. We note that 
although the objective function in [5] is smooth and convex, it does not twice continuous differentiable, and 
therefore the classical Newton method can’t be used. Based on the recently development of smoothing 
function for complementarity problems, see, for examples [8,15,16,19], in this paper, we propose a 
smoothing unconstrained optimization reformulation and a Newton method to find the solution of problem 
(2). This reformulation provides a twice continuous differentiable objective function of the reformulation in 
[5], we obtain the positive definite of the Hessian matrix of the objective function under certain conditions 
and hence the classical Newton method can be used to solve the problem directly. 

The organization of this paper is as follows. In Section 2, we give the smoothing unconstrained 
optimization reformulation and some properties of the reformulation including the Newton method. The 
numerical results are reported in Section 3. 

A few words about our notation: We denote the n-dimensional real space by nR . For a vector nx R∈ , we 
write x� � for its Euclidean norm, and x+ or [ ]x + for the vector max{ }0, x , where the maximum is taken 

componentwise, i.e., x+ is the projection of x  onto the nonnegative orthant. The rows of a matrix B will be 

denoted by iB , where as we write ijb for the ( ),i j th element of the matrix B.       
 

2. Unconstrained Minimization Reformulation  
    The following result is given in [6], which is essentially based on some related results given by 
Mangasarian [7] and Mangasarian and Meyer[4]. 

Theorem 2.1 A vector * nx R∈ is the minimum norm solution of the primal linear program (1) if and 
only if there exists a positive number R>0 such that, for each r R≥ , we have  

* * rcTx A rλ= − +⎡ ⎤⎣ ⎦  

Where *
rλ denotes a solution of the nonlinear system  

    T
rA A rc bλ

+
⎡ ⎤− =⎣ ⎦  

Motivated by the characterization stated in Theorem 2.1, Kanzow, Qi and Qi [5] gave an unconstrained 
minimization reformulation of problem (4) as follows: 

21min ( ) rc ,
2

T T m
r r rf A b Rλ λ λ λ

+
⎡ ⎤= − − ∈⎣ ⎦                                     (6)  

The objective function in (6) has the following property, the proof can be found in [5]. 
Lemma 2.1 The function f from (6) is convex and continuously differentiable with gradient: 

( ) T
r rf A A rc bλ λ

+
⎡ ⎤∇ = − −⎣ ⎦                                                 (7) 

The lemma shows that *x is the minimum norm solution of (1) if and only if *
rλ is the stationary point of 

problem (6). The objective function f is once but not twice continuously differentiable, [5] employed a 
generalized Newton method to find the solution of problem (6). 

In what follows, we consider reformulating the problem into a smoothing unconstrained optimization 
and then employ the classical Newton to solve it. Firstly, we introduce the smoothing function used in this 
paper. Define the step function 

( )σ
>

=
≤

⎧
⎨
⎩

1 0

0 0

if x
x

if x
 

In the extensive neural network literature, the step function is very effectively approximated by the 
sigmoid function 

( ) 1, , 0
1 xs x

e αα α−= >
+
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In this work we utilize the integral of the sigmoid function as an approximation to the plus function 
( )x

+
 as follows: 

( ) ( ) ( ) 1, , log(1 e )
x x

yx p x s y d x αα α
α

−
+ −∞

≈ = = + +∫ (8) 

For even moderate value of α , the function ( ),p x α  is a good approximation to the plus function. As 

α approaches infinity, ( ),p x α approaches ( )x + from above and remains continuously differentiable as 
many times as we wish. Hence first order and second order gradient methods can be used to solve the 
reformulated problem involving the p function. We treat α as a parameter in the function (., x)p . Hence 

when we say p′  or -1p , we mean the derivative or inverse of p with respect to the first variable with the 
parameter α fixed. 

The basic properties of p(x,α) can be found in [8]. 
Lemma 2.2 The function of ( ), , 0p x α α > has the following properties: 

1. ( ),p x α  is k-times continuously differentiable for any positive integer k, with 
1

1 xp
e αα −

′
+

（x, ）=  

and 2(x, )
(1 e )

x

x

ep
α

α
αα

−

−
′′ =

+
 . 

2. ( ),p x α  is strictly convex and strictly increasing on R. 

3. ( ),p x xα +> , for all x R∈ . 

4. ( ) ( ) log 2max{ , } 0,
x R

p x x pα α
α+∈

− = =
 
 

5. ( )lim , 0
x

p x xα +→∞
− = , for all 0α >  . 

6. ( )lim ,p x x
α

α +→∞
= , for all x R∈ . 

7. ( ) ( ), ,p x oα ∈ ∞  for all , 0x R α∈ > .The inverse function 1p− is well defined for (0, )x∈ ∞ . 

8. (x, ) (x, )p pα β> , for , x Rα β< ∈ . 
This p function with a smoothing parameter α  is used here to replace the plus function of (6). Then we 

can rewrite the unconstrained minimization problem as (9), whose objective function is twice continuously 
differentiable. 

( ) 21f( ) : rc , ,
2

T T m
r r r rp A b Rλ λ α λ λ= − − ∈    (9) 

Lemma 2.3 Combining lemma 2.1 and the property 2 of lemma 2.2, we know that the objective 
function (9) is also convex. 

   In order to describe our Newton-type method we have to give the gradient and Hessian matrix of (9). For 
the sake of writing conveniently in our calculating, we use x instead of rλ , let 

, ,m n n mA R c R and b R×∈ ∈ ∈ , the objective function (9) is the following form:  

( ) 21 1( ) log(1 )
2

TT A x rc T mf x A x rc e b x x Rα

α
− −= − + + − ∈� � ，   

The gradient of ( )f x as well as its Hessian matrix is described as follows: 

1

2( )

n

t
t

f x A I T b

t

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟∇ = − −
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

O
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2 2

1
( )

n
T

i i
i

f x T T T T
=

∇ = ∇ + ∇∑          

Where ( )1( ) log(1 )
TT A x rcT x A x rc e α

α
− −= − + + and

1

( 1) 1

1 , 1,2,m

ij i i
i

j
a x rc

t j n

e
α

=

− + +
= =

∑
L . 

The calculate process is described as follows: 

Let ( )1( ) log(1 )
TT A x rcT x A x rc e α

α
− −= − + + , ( )T x  is a n dimensional vector  

1

2

( )
( )

( )

( )n

T x
T x

T x

T x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
                                                                            (10) 

Thus the objective function of (9) can be wrote as 
1( ) ( ) ( )
2

T Tf x T x T x b x= −                                                         (11) 

then ( ) Tf x T T b∇ = ∇ − , we need to calculate T∇  first. 

( )1 log(1 )
TT A x rcT A e α

α
− −∇ = + ∇ +                                            (12) 

 

1 1 1
1 1 1

1 1 1

( )

11 21 1
( 1) ( 1) ( 1)

1 2
( 1) ( 1) ( 1)

1

2

log(1 )
1 1 1

1 1 1

T

m m m

i i i i i i i i i
i i i

m m m

in i n in i n in i n
i i i

A x rc

n
a x rc a x rc a x rc

n n mn
a x rc a x rc a x rc

e

a a a

e e e

a a a

e e e
t

t

t

α

α α α

α α α

α

α

= = =

= = =

− −

− + − + − +

− + − + − +

∇ +

⎛ ⎞
⎜ ⎟

∑ ∑ ∑⎜ ⎟
⎜ ⎟

= − ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∑ ∑ ∑⎜ ⎟
⎝ ⎠

= −

L

M M M

L

O
T

n

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                     (13) 

with 

1

( 1) 1

1 , 1,2,m

ij i i
i

j
a x rc

t j n

e
α

=

− + +
= =

∑
L .Consider both (12) and (13), we can get  

1

2T T

n

t
t

T A A

t

⎛ ⎞
⎜ ⎟
⎜ ⎟∇ = −
⎜ ⎟
⎜ ⎟
⎝ ⎠

O
                                                       (14) 

So the gradient of ( )f x  is  
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1

2

1

2

( )

T

T T

n

n

t
t

f x A A T b

t

t
t

A I T b

t

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟∇ = − −
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= − −
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

O

O

                                             (15) 

Now we compute the Hessian matrix of ( )f x . 

Since 

1 1 1

1 2

1 2

( ) ( ) ( )

( )
( ) ( ) ( )

n

n n n

n

T x T x T x
x x x

T x
T x T x T x

x x x

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∇ =
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠

L

M M M

L

                                             (16)  

so its transposition can be noted as  

1 2

1 1 1

1 2

( ) ( ) ( )

( )
( ) ( ) ( )

n

T

n

n n n

T x T x T x
x x x

T x
T x T x T x

x x x

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∇ =
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠

L

M M M

L

                                                (17) 

Using (16) and (17) we kwon  
2 2 2

2
1 1 11 1 1 2 1 1 2 1 1

2 2 2

2
1 1 11 1 2 1

( ) ( ) ( )

( )

( ) ( ) ( )

n n n
i i i i i i i i i

i i i
i i i n n

T

n n n
i i i i i i i i i

i i i
i i in n n n n n n

T T T T T T T T TT T T
x x x x x x x x x x x

T T
T T T T T T T T TT T T
x x x x x x x x x x x

= = =

= = =

⎛ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +⎜ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∇ ∇ =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝

∑ ∑ ∑

∑ ∑ ∑

L

M M M

L

2

1

n
T

i i
i

T T T T
=

⎞
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

= ∇ + ∇∑

    where 

1

1

1 log 1

m

ji j
j

a x rcm

i ji j i
j

T a x rc e
α

α
=

⎛ ⎞
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

=

⎡ ⎤∑⎢ ⎥= − + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ . 

As we know ( ) Tf x T T b∇ = ∇ − , so the Hessian matrix of ( )f x  is  

2 2

1
( )

n
T

i i
i

f x T T T T
=

∇ = ∇ + ∇∑ . 

Since we get the Hessian matrix of the objective function (9), our next theorem is supposed to prove 
that it’s positive definite.                 

Theorem 2.2 Let assume the matrix A has row full rank, then the Hessian matrix of (x)f is positive 
definite. 

Proof The Hessian matrix of ( )f x is the form of  
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2 2

1
( )

n
T

i i
i

f x T T T T
=

∇ = ∇ + ∇∑  

where 1

1

1 log 1

m

ji j
j

a x rcm

i ji j i
j

T a x rc e
α

α
=

⎛ ⎞
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

=

⎡ ⎤∑⎢ ⎥= − + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ . 

It is obviously that TT T∇  is positive definite, thus we only need to prove 2

1

n

i i
i

T T
=

∇∑  is at least positive 

semidefinite. 
We calculate iT∇ which is the form as we show next. 

 

( )
1

1

1

1

1

1 1

2 2

( )

1( )

2

( )

1

( )

1 1 ( )

1

1

1

1

1

m
a x rcji j i

j

m

ji j i
j

m

ji j i
j

m

ji j i
j

m

ji j i
j

i i

i i
i

a x rc

mi mi

ia x rc

i

a x rc

mi

i

a x rc

a a
a a

T e

ea a

a
ae

e a

a
a

e

α

α

α

α

α

α
α

− −∑
=

=

=

=

=

− −

− −

− −

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟∇ = + −
⎜ ⎟ ⎜ ⎟∑⎜ ⎟ ⎜ ⎟+
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎡ ⎤∑ ⎜ ⎟⎢ ⎥ ⎜ ⎟= −⎢ ⎥ ⎜ ⎟∑⎢ ⎥⎜ ⎟+⎢ ⎥⎣ ⎦ ⎝ ⎠

=
∑

+

M M

M

2i

mia

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M

 

Now we need to compute 2
iT∇  , which is necessary for our proof. 

1

1

1

1

( )

2

2 2 ( )

( )

1

1

1

m

ji j i
j

m

ji j i
j

m

ji j i
j

i

a x rc

i

a x rc
i

mi

a x rc

a

e
a

T e

a

e

α

α

α

=

=

=

− −

− −

− −

⎛ ⎞
⎜ ⎟

∑⎜ ⎟+⎜ ⎟
⎜ ⎟
⎜ ⎟

∑∇ = ∇ ⎜ ⎟+⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∑⎜ ⎟+⎝ ⎠

M

 

1

1

1 1 1 2 1( )

2 1 2 2 2
2

( )

1 21

m

ji j i
j

m

ji j i
j

i i i i i mia x rc

i i i i i mi

a x rc

mi i mi i mi mi

a a a a a a
a a a a a ae

e a a a a a a

α

α

α =

=

− −

− −

⎛ ⎞
∑ ⎜ ⎟

⎜ ⎟=
⎜ ⎟⎡ ⎤∑ ⎜ ⎟⎢ ⎥+ ⎝ ⎠⎢ ⎥

⎣ ⎦
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( )
1

1

1( )

2
1 22

( )

1

m

ji j i
j

m

ji j i
j

ia x rc

i
i i mi

a x rc

mi

a
ae a a a

e a

α

α

α =

=

− −

− −

⎛ ⎞
∑ ⎜ ⎟

⎜ ⎟=
⎜ ⎟⎡ ⎤∑ ⎜ ⎟⎢ ⎥+ ⎝ ⎠⎢ ⎥

⎣ ⎦

L
M

 

We can easily find 2 0iT∇ ≥ , consider the description of lemma 2.2 for all x R∈ , ( ),p x xα +> , so 

( ), 0p x α > . Now we can conclude 2

1
0

n

i i
i

T T
=

∇ ≥∑ , i.e. 2

1

n

i i
i

T T
=

∇∑  is positive semidefinite. Then the 

Hessian matrix of ( )f x  is positive definite. 
Since the Hessian matrix of ( )f x  is positive definite, we can use a Newton-type algorithm with an 

Armijo stepsize. We next describe our Newton-type algorithm for the objective function f( )rλ , which is refer 
to the algorithm in [9]. 

Algorithm 2.1(Newton-type method) 
(S.0) choose parameters 0 1, (0,1), (0,0.5), 1, r 1ε δ σ α≤ ∈ ∈ ≥ ≥� , and a starting point 0 n

r Rλ ∈ . Set 
: 0k . 

(S.1) calculate ( )k
k rg f λ= ∇ , if kg ε≤� � , stop, set * k

r rλ λ≈ . 

(S.2) compute 2 ( )k
k rG f λ= ∇ , and solving the following linear system of equations to get the solution 

kd : 

k kG d g= −  

(S.3) let km is the smallest non-negative integers satisfying the under inequation. 

( ) ( )k m k m T
r k r k kf d f g dλ δ λ σδ+ ≤ +  

(S.4) let 1, , : 1km k k
k r r k kd k kβ δ λ λ β+= = + = +  , go to (S.1) 

Considering the twice differentiability of the objective function of problem (9) as well as an Armijo 
stepsize, our algorithm can be described as global quadratic convergence. The next work we’ll do is to show 
this property of Algorithm 2.1. 

Theorem 2.3 Let { }k
rλ  be a sequence generated by Algorithm 2.1 and **

rλ  be the unique solution of 

problem (9). 
(i) The sequence { }k

rλ  converges to the unique solution **
rλ  from any initial point 0

rλ  in nR . 

(ii) For any initial point 0
rλ , there exists an integer k  such that the stepsize kβ  of Algorithm 2.1 equals 1 for 

k k≥  and the sequence { }k
rλ converges to **

rλ quadratically. 

The proof is similar to the Theorem 3.2 in [10], we omit it here. 
 

3. Numerical results  
    In this section we consider some numerical results obtained with the approach described in the previous 
section. The Algorithm 2.1 were coded in MATLAB2013b and run on a PC with 2.50 GHz CPU processor. 
We implement MATLABV2013b to solve the following two examples. In the numerical experiments, we 
choose parameters =0.55 =0.4δ σ， , *x is the minimum norm solution of the primal linear program (1), kg� � 
denotes the Euclidean norm of the gradient. 
Example1. 
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1 2

1 2

1 2

1 2

max 2
3 5 15

. . 6 2 24
, 0

z x x
x x

s t x x
x x

= +
+ ≤⎧

⎪ + ≤⎨
⎪ ≥⎩

 

We choose the initial point 0 (0,0)T
rλ = and let 1 10eε = − . 

 
Tab.1 Results for Example 1 

 
Example2. 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

max 3 2 2.9
8 2 10 300
10 5 8 400

. .
2 13 10 420

, , 0

z x x x
x x x
x x x

s t
x x x

x x x

= + +
+ + ≤⎧

⎪ + + ≤⎪
⎨ + + ≤⎪
⎪ ≥⎩

 

We choose the initial point 0 (0,0 0)T
rλ = ， and let 1 20eε = −  . 
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Tab.2 Results for Example 2 

 
In summary, the results from table1 and table2 show that the performance of our smoothing method is 

quite effective. The parameter r and the smoothing parameterα effects our results as they changed.  
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