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Abstract. In this paper, we present a method for numerical solution of linear Volterra integro - differential 
equations with boundary conditions. First, we obtain variational form of the problem, and then, finite element 
method and basis functions will be used. Also, the error analysis of the method is considered. Furthermore, 
the efficiency of the proposed method will be considered through numerical examples. 
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1. Introduction  
    Many authors have studied finite element methods for integral equations. See, Atkinson[2] , Ikebe [7], 
Nedelec [12], Sloan [16], and Wendland [19]. Adaptive finite element methods for integral equations have 
been considered more recently. See,[13,19]. 
     Integro-differential equations have been discussed in many applied fields, such as biological, physical and 
engineering problems. They are usually difficult to solve analytically, so it is required to obtain an efficient 
approximate solution. There are several methods for solving integro-differential equations, Yanik and 
Fairweather in [20], used finite element methods for solving integro-differential equation of parabolic type 
and obtained an 1 2( ( ) )rO h t+ + Δ  order estimate for 2L  norm of the error. 
     In [9], Leroux and Thomee analyzed a Galerkin approximation in space with the Euler method in time for 
a semilinear integro-differential equations of parabolic type with non smooth data. The stability of Ritz-
Volterra projections and error estimates for finite element methods for a class of integro-differential 
equations of  parabolic type is studied by Lin and Zhang [10]. Sloan and Thomée, used time discretization of 
an integro-differential equation of parabolic type [17]. Brunner applied a collocation-type method to 
Volterra-Hammerstein integral equation as well as integro-differential equations, [3]. Volk used projection 
method to solve linear integro-differential equations, [18]. High order nonlinear Volterra Fredholm integro-
differential equations has been solved in [11] by using Taylor polynomial. Sabri-Nadjafi [15] proposed He's 
variational iteration method for two systems of Volterra integro-differential equations. 
     In this paper, we use Lagrange polynomials with Finite element method to obtain an approximate solution 
of the problem. To illustrate the basic approach, we consider the following volterra integro-differential 
equation 

( ) ( ) ( ) ( ) = ( ) ( , ) ( ) ( ) = 0, ( ) = 0, = [ , ]
x

a
u b x u x c x u x f x K x t u t dtu a u b a b′′ ′− + + + Ω∫  (1)

 
     We assume that ( , )K x t  and ( )f x  are continuous functions respect to their arguments, and ( )b x  and 

( )c x  are nonnegative functions and belong to 1( )C Ω . First, for using finite element method, by suitable 
linear transform, we convert the essential boundary condition to homogeneous one, and then we define 

                                      
1 1
0= ( ) = { ( ), ( ) = ( ) = 0}V H v H v a v bΩ ∈ Ω  

where V  is a Sobolev space together with following norm:  

                                      
2 2 2

2 2( ) ( )
|| || =|| || || || .V L L
u u u

Ω Ω
′+

 
     For obtaining varational form, we let :B V V R× →  and :L V R→  be bilinear form and linear 
functional, respectively. 

The varational form of the problem is given as follows  
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                                        ( , ) = ( ), ,B u v L v v V∀ ∈  (2) 
 where  

 .

( , ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ( , ) ( ) ) ( ) = ( ) ( )
b

a

B u v u x v x dx b x u x v x dx c x u x v x dx

v x K x t u t dt dxL v f x v x dx

Ω Ω Ω

Ω Ω

′ ′ ′+ + −∫ ∫ ∫
∫ ∫ ∫ . (3) 

 where ( )v x V∈  is an arbitary function.  

Lemma 1.1   Let B  be bilinear form defined by (3). If 1 2( )M c x M≤ ≤  and 1 2( )P b x P≤ ≤  , then 

B  is continuous.  
Proof. For B , we can write,  

| ( , ) |=| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( , ) ( ) ) |
x

a
B u v u x v x dx b x u x v x dx c x u x v x dx v x K x t u t dt dx

Ω Ω Ω Ω
′ ′ ′+ + −∫ ∫ ∫ ∫ ∫

 
 Using the Cauchy-Schwarz inequality and Sobolev norm, we have  

 

1 1 2 1 1 2 1 1 1 1

2 2 1 1 1 1( ) ( ) ( ) ( )

| ( , ) | || || || || || || || || || || || || || || || || =

(1 ) || || || || = || || || ||
H H H H H H H H

H H H H

B u v u v P u v M u v K R u v

P M K R u v C u v
Ω Ω Ω Ω

≤ + + +

+ + +
 

 
which | ( , ) |maxa x b

a t x
K K x t≤ ≤

≤ ≤
= , 2

2 ( )
=||1||

L
R

Ω
 and 2 2= 1C P M K R+ + + . So B  is continous.         

     In addition of the hypothesis of lemma 1.1, suppose 20 ( )b x T′≤ ≤ . Now we consider the V -ellipticity of 

B. For this purpose we write 

 
2 2

1
1( ) ( ) ( ) ( ) ( ) ( ) || || ,

1 H
v x v x dx c x v x v x dx v x dx v

cΩ Ω Ω
′ ′ ′+ ≥ ≥

+∫ ∫ ∫
 (4) 

 and  
2 2 22 2

1
1( ) ( ) ( ) = ( )( ( )) ( ( )) || || ,

2 2 2
b b

Ha a

T Tb x v x v x dx b x v x dx v x dx v
Ω

− −−′ ′ ≥ ≥∫ ∫ ∫
 (5) 

 also  
   

2 2
2 1( )( ( , ) ( ) ) | ( )( ( , ) ( ) ) | || || || || .

x x

L Ha a
v x K x t v t dt dx v x K x t v t dt dx K R v K R v

Ω Ω
− ≥ − ≥ − ≥ −∫ ∫ ∫ ∫  (6) 
 By ((4)), ((5)), ((6)), we have  

                 
22

1
1( , ) ( ) || || ,

1 2 H

TB v v K R v
c

≥ − −
+  (7) 

 or  

                 
2

1( , ) || || ,
H

B v v vα≥
 (8) 

 where 21= ( )
1 2

T K R
c

α − −
+

, c  is poincare's constant. So, the following lemma can be expressed.  

Lemma 1.2  If > 0α , B is V-elliptic.  
By using Lax-Milgram theorem and lemmas 1.1, 1.2, the problem ((1)) has a unique solution. 

 

2. Finite element method 
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    Now, we explain how to solve the problem with finite element method. Since V is a infinite dimensional 
space, we choose a subspace of V with finite dimension and call it hV . So the problem is converted to find 

h hu V∈  so that ( , ) = ( ),h h h h hB u v L v v V∀ ∈ . We consider a set of basis continuous piecewise 

polynomials functions of degree at most m  such as =1{ }n
i iφ , which 1 2= { , ,..., }h nV span φ φ φ . Let =1{ }M

e eΩ  be 

a regular partition of = [ , ]a bΩ . We choose 1m +  nodes in each subinterval and denote nodes by 

1 2{ , ,..., }Nx x x . Corresponding to each node, we construct a basis function, such that satisfies the following 

properties:  

     ) ( ) = , , = 1, 2,...,i j iji x i j Nφ δ  

    
( ) ( )) | = ( ) = , , = 1, 2,...,e e

i i i j ije
ii x i j Nφ ψ ψ δΩ  

where ( )e
iψ  are called local functions. we can write ( )hu x  and ( )hv x  as a linear combinations of the basis 

functions of hV , so we have  

 =1 =1
( ) = ( ) ( ) = ( )

n n

h i i h j j
i j

u x a x v x b xφ φ∑ ∑
 (9) 

 Hence, by substituting ((9)) in variational formulation of the problem, we have  

 

=1 =1
{ { '( ) '( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ( , ) ( ) ) } ( ) ( ) } =0

n n

j i i j i j i j
j i

x

j i ja

b a x x dx b x x x dx c x x x dx

x K x t t dt dx f x x dx

φ φ φ φ φ φ

φ φ φ

′Ω Ω Ω

Ω Ω

+ +

− −

∑ ∑ ∫ ∫ ∫

∫ ∫ ∫  (10) 
 Since, the jb 's are arbitrary, we have  

     

=1
{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ( , ) ( ) ) ( ) ( ) } = 0

n

i i j i j i j
i

x

j i ja

a x x dx b x x x dx c x x x dx

x K x t t dt dx f x x dx

φ φ φ φ φ φ

φ φ φ

′ ′ ′Ω Ω Ω

Ω Ω

+ +

− −

∑ ∫ ∫ ∫

∫ ∫ ∫  (11) 
 Now, we define  

    

, = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ( , ) ( ) ) , = 1,2,..., .

i j i j i j i j

x

j ia

C x x dx b x x x dx c x x x dx

x K x t t dt dx i j n

φ φ φ φ φ φ

φ φ

′ ′ ′Ω Ω Ω

Ω

+ +

−

∫ ∫ ∫
∫ ∫  (12) 

 and  

       
= ( ) ( ) = 1,2,..., .j jF f x x dx j nφ

Ω∫  (13) 
 In this case, the following system is obtained  

 =1

= = 1, 2,..., .
n

ij i j
i

C a F j n∑
 (14) 

 We assume, 1 2= [ , ,..., ]T
na a a a , 1 2= [ , ,..., ]T

nF F F F  and = ( )ijC C , then system ((14)) can be 

written as =TC a F . Let ( )e
ijC  and ( )e

jF  are restriction of ijC  and jF  respectively. So, we have  

 

( ) ( ) ( )

=1

( ) ( ) ( )

=1

= , = ( ) , = 1, 2,..., .

= , = ( ) = 1, 2,..., .

M
e e e

ij
e

M
e e e

j
e

C C C C i j n

F F F F j n

∑

∑
 (15) 
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Now, by solving the system =TC a F , the coefficients ia  is obtained, and with these coefficients, we can 
obtain the approximate solution. 

   

3. Error Analysis  
    Suppose u  is the exact solution of the problem and hu  be its approximate solution, then we have  

 ( , ) = ( ) ,h h h hB u v l v v V∀ ∈  (16) 
 and also we have  

( , ) = ( )h h h h hB u v l v v V∀ ∈  (17) 
 If = he u u− , then  

 ( , ) = 0 .h h hB e v v V∀ ∈  (18) 
Definition 3.1  Let V  be a Hilbert space, and suppose B  be a symmetric and V -elliptic bilinear form. We 
define an inner product as follows  

                             
(.,.) :
( , ) = ( , )B

V V R
u v B u v

× →
 

 which is called the inner product energy. Also we define energy norm as follows  

                                    
2|| || = ( , )E Bu u u  

 By Schwarz inequality, we have the following relation between energy norm and inner product,  

                    | ( , ) | || || || || , .E EB v w v w v w V≤ ∀ ∈  (19) 
 So, from ((18)) we obtain  

                                                ( , ) = ( , ) = 0.h B he v B e v  
Therefore e  is orthogonal to each hv  .  

                          ( , ) = 0h hu u v−  (20) 
 According to [4] , we have the following theorem and lemma.  

Theorem 3.2  || || = {|| || ; }h E h E h hu u min u v v V− − ∈ . 

Lemma 3.3 (Cea's Lemma) 
Suppose V  is a Hilbert space, and B  is a continuous bilinear form and V -elliptic, and l  is a continuous 

linear functional on V . Then, there is a constant c  independent of h  such that  

 
|| || || || .infh V h V

v Vh h

u u c u v
∈

− ≤ −
 

Definition 3.4 (projection operator) 
Projection operators are defined as follows:  

                           

=1

:

= = ( )

h

n

h i i
i

V V

u u a xφ

Π →

Π ∑% %
 

In other words, each member of V , correspond to its interpolated function by projection operator. Since for 
each particular hv%  in hV , we have  

 inf || || || ||h V h Vu v u v− ≤ − %  
for finding an upper bound for hu u− , we can take hv%  equal to hu% . Then  

 || || || || .h V h Vu u c u u− ≤ − %  
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Therefore it is sufficient to get an upper bound for the interpolation error. If the bilinear form is 
symmetric, then from theorem 3.2, we have  

 
|| || = || ||minh E h E

v Vh h

u u u v
∈

− −
 

then  

 

2 2 1|| || ( , ) =|| || || || || || ,h V h h h E h V h Eu u B u u u u u u u u u uα
α

− ≤ − − − ⇒ − ≤ −
 (21) 

 by continuity of B , we have                   
2|| || = ( , ) || || || || || || || ||h E h h h V h V h E h Vu v B u v u v C u v u v u v C u v− − − ≤ − − ⇒ − ≤ −  (22) 

 and from ((21)) and ((22))  

               || || || || .minh V h V
v Vh h

Cu u u v
α ∈

− ≤ −  (23) 

 The above inequality is a special case of  lemma 3.3. [4] 
Let the basis functions be piecewise quadratic polynomial, we define  

 ( ) = ( ) ( ) (interpolation error)hE x u x u x− %  

First, we examine the error on eΩ , we have  

 
( ) ( ) ( )
1 2 3( ) = ( ) = ( ) = 0e e eE x E x E x  

so, according to Rolle's theorem there exists ( ) ( )
1 1 2( , )e ex xξ ∈  and ( ) ( )

2 2 3( , )e ex xξ ∈ , such that 1( ) = 0E ξ′  and 

2( ) = 0E ξ′ , and so there exists ( ) ( )
1 3( , )e ex xη ∈ , such that ( ) = 0E η′′  and note that ( ) = ( ) ( )hE x u x u x′′ ′′ ′′− , 

then  

                                     
( ) = ( ) .

x
E x E t dt

η
′′ ′′′∫  

Since the polynomial interpolation is piecewise quadratic polynomial,  

          

( )
3
( )
1

| ( ) |=| ( ) | | ( ) | | ( ) |
ex x x

ex
E x u t dt u t dt u t dt

η η
′′ ′′′ ′′′ ′′′≤ ≤∫ ∫ ∫

 
and by using the Cauchy - Schwarz inequality, we have  

                        2 2| ( ) | ||1|| || ||
L L

E x u′′ ′′′≤
 

or  

                                     

1
2

3 ( )
| ( ) | | |

H e
E x h u

Ω
′′ ≤

 
then  

 
2 2 2 2 2 2

3 2 2 3( ) ( ) ( ) ( )
| ( ) | | | || || =| | | |

H L H He e e ee e
E x dx h u dx E E h u

Ω Ω Ω ΩΩ Ω
′′ ′′≤ ⇒ ≤∫ ∫

 
 Now, we can obtain an upper bound on Ω , as follows:  

 

2 2 2 2 2
2 2 2( ) ( ) ( )

=1 =1

2 2 2 2 2 2 2 2
3 3( ) ( )

=1 =1

|| || =| | = | ( ) | = | ( ) | = | |

| | = ( ( )) = | ( ) | = | |

M M

L H H eee e

M M

H He ee e

E E E x dx E x dx E

h u h u x dx h u x dx h u

Ω Ω ΩΩ Ω

Ω ΩΩ Ω

′′ ′′ ′′ ≤

′′′ ′′′

∑ ∑∫ ∫

∑ ∑∫ ∫
 

 thus  

                    2 3( ) ( )
| ( ) | | |

H H
E x h u

Ω Ω
≤

 (24) 
 Similarly, we can write  
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2 2 2

1 2( ) ( )
| | | |

H H
E h E

Ω Ω
≤

 (25) 
 And so, we can obtain  

                  2 1( ) ( )
|| || | |

L H
E h E

Ω Ω
≤

 (26) 
 From ((24)), ((25)) and (26), we have  

                 
2 2 2 2 2 6 2

2 3 3( ) ( ) ( )
|| || | | = | |

L H H
E h h h u h u

Ω Ω Ω
≤

 (27) 
By using Sobolev norm, we have  

2 2 2 6 2 2
1 2 2 3 1( ) ( ) ( ) ( ) ( )

6 2 4 2 4 2 2
3 3 3 1 3( ) ( ) ( ) ( ) ( )

|| || =|| || || || | | | |

| | | | 2 | | || || 2 | |

Upper bound for the interpolation error

H L L H H

H H H H H

E E E h u E

h u h u h u E h u
Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω

′+ ≤ +

≤ + ≤ → ≤                                          (28) 

Since the variational form has a unique solution, therefore 2 ( )
| |

H
u

Ω
 is a constant number. 

However, according to Lemma 3.3  

 
|| || || ||h V h V

Cu u u u
α

− ≤ − %
 

where C  is the continuity constant and α  is the V -ellipticity constant. Then  

 
2

1 1 3 1( ) ( )
|| || 2 | | , := .h H H

Cu u C h u C
αΩ Ω

− ≤
 

By the above error bounded, one can see that the order of method is 2( )O h . As, we observe, since 

3 ( )
| |

H
u

Ω
 is constant, the norm of error tends to zero as 0h → , and the convergence of the method is 

demonstrated. 
  

4. Numerical Examples  
Example 4.1  Consider the following Volterra Integro-Differential Equation:  

 0
( ) 4 ( ) = ( ) ( ) ( ) , (0) = (1) = 0

x
u x u x f x xt u t dt u u′′− + − − ∫  

where  

 

3 2

( ) = (1) (2 1) (2 1) (1) 4 (1)
2 2 4 4

x x x xf x cosh sinh x cosh x cosh cosh− − + − − +
 

and , [0,1]t x ∈  , with the exact solution ( ) = (2 1) (1)u x cosh x cosh− − . 
For = 20M  and using polynomials of degree 2, exact and approximate values at some points 

are given in Table 4.1, and approximation error is shown in Figure 4.1.  
 

Table  1: Comparison of exact and approximate solutions in some points for example 4.1 
x  0.1  0.3  0.5  0.7  0.9  

( )hu x%  0.20564574−  0.46200834− 0.54308068− 0.46200832−  0.20564572−

( )u x  0.20564568−  0.46200826− 0.54308063− 0.46200826−  0.20564568−
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Figure  1: graph of error example 4.1 
 

 As Figure 4.1 shows the maximum error is less than 69 10−× .  
 

Example 4.2  Consider the following Volterra Integro-Differential Equation:  

 0
( ) 3 ( ) = ( ) ( ) ( ) (0) = (1) = 0,

x
y x y x f x sin x t y t dt y y′′− − − +∫  

where  

 
2 2( ) = 2 3 3 ( 2) (2 ) (2 1) (2 ) ( ) 2 ( )f x x x x x cos x x sin x sin x cos x− + + − − − − − +  

with exact solution 2( ) =y x x x−  . For = 20M  and = 2m  graph of error is shown in Figure 4.2.  

As it can be seen the maximum error is less than 63 10
2

−× .  

Example 4.3  Let us consider the following linear Volterra Integro-Differential Equation  

 

2
2 2

2 0

1( ) ( 1) ( ) = (1 ) ( ) ( )
( )

x x xy x y y x t y t dt x cos x sinxcos

π π π
π π π

π

′′ ′− + − − + + −∫
 

 with boundary condition (0) = 0y , 1(1) = ( )y sin a
π

 and the exact solution ( ) = ( )xy x sin
π

. At first, 

we convert the boundary condition at = 1x  such that to be homogeneous. For = 30M  and = 2m  
graph of error is shown in Figure 4.3. 
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Figure  2: graph of error example 4.2 

 
                                        Figure  3: graph of error example 4.3 

 As Figure 4.3 shows the maximum error is less than 
81 10−× . 
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