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Abstract. In functional linear regression, a supervised version of functional principal
components analysis (FPCA) can automatically estimate the leading functional princi-
pal components (FPCs), which not only represent the major source of variation of the
functional predictor but also are simultaneously correlated with the response. How-
ever, the existing supervised FPCA (sFPCA) is only applicable to single modal func-
tional data. In this paper, we propose a weighted version of supervised FPCA (w-
sFPCA) by considering the adaptive weighting of multi-modal functional predictors.
The new w-sFPCA not only assigns corresponding weights to each modal of func-
tional predictors, but also automatically estimates the leading FPCs associated with
response variables, representing the main sources of variation in functional predictors.
The method is demonstrated to have a better prediction accuracy than the conven-
tional sFPCA method by using one real application on meteorological data and two
carefully designed simulation studies.
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1 Introduction

Functional data become widely used in various fields such as chemometrics, climatology,
economy, image analysis, linguistics, meteorology and other areas. As a consequence,
there is a recent interest in methods dealing with functional data that include functional
principal component analysis and functional linear models [1–3]. In the study of me-
teorological problems, functional statistical downscaling method is a new tool to catch
the statistical relationship between some regional predictable factors and the large-scale
circulation data from Global climate model (GCM) [4, 5].
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We study the following functional linear model [6]

Y=β0+
∫

β(t)[X(t)−µ(t)]dt+ε, (1.1)

where Y is a regional scalar response, β0 is the intercept, µ(t) is the mean function, and
X(t) stands for the functional large-scale predict factors. Model (1.1) has been used to
predict climate change scenarios in the future by linking a scalar response with an integral
form of a functional predictor [7].

Due to the presence of response variables, functional predictor and response variables
should have correlations [8, 9]. Functional partial least-squares regression is a important
method to solve this problem [10]. [11] proposed supervised sparse functional principal
component, which incorporate supervision information to recover the true functional
principal components (FPCs). An supervised functional principal components analy-
sis (sFPCA) has been proposed [12], which is able to borrow the information from the
response variable Y to estimate the leading FPCs. The estimated FPCs have a better
performance in functional regression work. Supervised FPCA can be applied to two-
dimensional functional data [13] as well.

However, a common limitation of the above methods is that when the functional pre-
dictors have different levels, the information form all these levels are totally separated
from each other [14]. For example, when predicting precipitation, many studies may
consider adding one or several humidity factors instead of considering the atmospheric
circulation as a predictor [15]. They may adding the specific humidity (hus) of 850hPa
or 500hPa only, when the factor has different observations on 17 pressure level [16, 17].
This may lead to the loss of information about this preparatory factor. For another exam-
ple, for predictors which are observed at only one pressure level, it may have simulated
data from different global climate models. Existing studies often use only a single global
climate model [18, 19]. There is great uncertainty in the use of climate models for future
scenario projections, so statistical downscaling simulations and projections using a sin-
gle climate model can no longer meet the needs of climate impact assessment. Ensemble
methods are beginning to be applied by meteorologists to statistical downscaling to re-
duce the uncertainty of the projections, thereby improving the level of regional climate
prediction [20–22].

In this paper, we proposed a weighted supervised functional principle components
analysis (w-sFPCA) method. Our target is to study different levels of predictors at the
same time. We use weight parameters to find the relationships between these levels to
obtain better prediction performance. The novelty of the paper is twofold. Firstly, we pro-
pose a framework to calculate weights to consider two or more types of functional pre-
dictors and utilize the scalar response variable, to obtain better prediction performance.
Secondly, our estimation algorithm is based on eigenvalue decomposition which is much
easier to implement.

The rest of the paper is organized as follows. Details of our method is described
in Section 2. Two carefully designed simulation studies are used to evaluate the finite
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sample performance of our proposed method in Section 3. Then we show one real data
application in Section 4. Section 5 provides concluding remarks.

2 Method

2.1 The w-sFPCA model

Consider n independent samples {Xi(t)|i=1,.. .,n}, generated from an L2 stochastic pro-
cess X(t) at a sequence of random points on the domain [0, T] with measurement errors.
Under the classical FPCA, there is

X(t)=µ(t)+
∞

∑
k=1

τkϕk(t), (2.1)

where µ(t)=E[X(t)] is the mean function, and {ϕk(t)|k=1,.. .} are the eigenfunctions of
covariance function G(s,t) =Cov(X(s),X(t)) (t, s ∈ [0, T]), which are called FPCs. The
FPC score τk are uncorrelated random variables with mean 0 and variance λk. Assuming
that there is an orthogonal expansion of G in terms of eigenfunctions ϕk and decreasing
eigenvalues λk:

G(s,t)=
∞

∑
k=1

λkϕk(s)ϕk(t). (2.2)

The corresponding τk’s are called FPC scores, which are uncorrelated random variables
with mean 0 and variance λk, where λk ≥λk+1 and ∑k λk <∞ . Usually, X(t) is approxi-
mated by the first K leading FPCs:

X(t)=µ(t)+
K

∑
k=1

τkϕk(t). (2.3)

It can be calculated as τk =
∫

T (X(t)−µ(t))ϕk(t)dt. For the rest of this paper, we assume
µ(t)≡0 without loss of generality. Then it reduces to

X(t)=
K

∑
k=1

τkϕk(t)=τ⊤ϕ(t), (2.4)

in which τ=(τ1,...,τK)
⊤ and ϕ(t)=(ϕ1(t),...,ϕK(t))⊤.

When each subject has q observations, i.e., X i(t)= (X(1)
i (t),. . .,X(q)

i (t))⊤, a weighted
stochastic processes Wi(t) can be expressed as

Wi(t)=
q

∑
j=1

wjX
(j)
i (t)=w⊤X i(t), (2.5)

in which w=(w1,...,wq)⊤.
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Substituting (2.5) into (1.1) forms an weighted scalar-on-function linear regression

Y=β0+
∫

T
β(t)W(t)dt+ε. (2.6)

The functional slope β(t) can be written in terms of ϕ1,...,ϕK as

β(t)=
K

∑
k=1

bkϕk(t)=b⊤ϕ(t), (2.7)

where b=(b1,...,bK)
⊤ is an unknown coefficient vector to be estimated from the data.

The leading p functional principal components (FPCs) ϕ̂1(t),. . ., ϕ̂p(t) can be estimated
by maximizing

Q(ϕ)=
θ⟨ϕ,Ĉ ϕ⟩+(1−θ)cov2(Y,⟨W(t),ϕ⟩)

∥ϕ∥2
λ

, (2.8)

subject to ∥ϕ∥λ = 1,
〈
ϕi,ϕ̂j

〉
= 0, for i ̸= j, and 0≤ θ ≤ 1. Here ∥ϕ∥λ =

√
∥ϕ∥2+λ∥D2ϕ∥2

with D2ϕ=
∫

T ϕ′′(t)dt, the norm ∥ϕ∥=
√
∥ϕ∥2=

√
⟨ϕ,ϕ⟩, ⟨ f ,g⟩ denotes the usual L 2 inner

product ⟨ f ,g⟩=
∫

T f (t)g(t)dt and Ĉ denotes the empirical covariance operator [12].
The w-sFPCA is suitable for both functional regression and classification. Specifically,

the value of cov2(Y,⟨W(t),ϕ⟩) in equation (2.8) is computed as ⟨W(t),ϕ⟩L⟨W(t),ϕ⟩⊤. For
scalar-on-function regression, the matrix L is equal to YY⊤. For multi-classification, the
entries of the matrix L are computed as follows: Lij = 0 when Yi ̸=Yj, Lij = 1/nk when
Yi =Yj = k, where nk is the sample number of the k-th class.

2.2 Parameter estimation

Refer to sFPCA, we can estimate the smooth supervised FPCs ϕ(t) given a set of value
for (θ, λ). In this subsection, we give the computational details on how to estimate the
parameters w. We consider to minimize

(Y−
∫

T
W(t)β(t)dt)⊤(Y−

∫
T

W(t)β(t)dt). (2.9)

We update w and β(t) based on Lagrange multiplier method, which can be obtained by
minimizing

(Y−Zw)⊤(Y−Zw), (2.10)

subject to 1⊤q w=1, where

Z=
∫

T
X(t)β(t)dt. (2.11)

The detailed algorithm is outlined as follows:

(1) Set the initial value of w(0), which satisfies 1⊤q w(0)=1;
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(2) Given the current value of X(t), Y, we can obtain the estimated β(l)(t) and ϕ(l)(t)
by sFPCA [12].

(3) Calculate Z (Equation (2.11)) to update w(l) to w(l+1) by minimizing

(Y−Zw(l+1))⊤(Y−Zw(l+1)), (2.12)

subject to 1⊤q w(l+1)=1. Considering Lagrange multiplier method, there is

f (w,ζ)=1/2(Y−Zw)⊤(Y−Zw)+ζ(1⊤q w−1). (2.13)

Calculate the partial derivative of w according equation (2.13) and make it be zero:

∂ f
∂w

=ZT(Y−Zw)+ζ(l+1)1q =0, (2.14)

then we have
w(l+1)=

(
Z⊤Z

)−1(
Z⊤Y+ζ(l+1)1q

)
. (2.15)

Multiply both sides of the equation by 1⊤q to update the value of ζ(l+1):

1⊤q
(

Z⊤Z
)−1(

Z⊤Y+ζ(l+1)1q

)
=1. (2.16)

Then we obtain the updated value of w by

w(l+1)=
(

Z⊤Z
)−1

Z⊤Y+
1−1⊤q

(
Z⊤Z

)−1
Z⊤Y

1⊤q
(

Z⊤Z
)−1

1q

1q

. (2.17)

(4) Repeat Steps 2 and 3 until convergence.

We transform multimodal functional covariates into a unimodal functional covariate
through weighting. It is because both the weighting parameter and functional principal
components (FPCs) are all need to be estimated. We obtain their estimated values by
alternating iterations. We estimate the FPCs of the weighting functional covariate. Then
we use the estimated FPCs to update the weights. These two steps are implemented
alternately.

3 Simulation studies

Different simulations are designed to evaluate the proposed w-sFPCA. We briefly intro-
duce the generation mechanism for the functional predictor X(t) in the beginning of this
section. Then we discuss each simulation in details. We use FPCs to generate samples.
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They are the leading FPCs estimated based on Canadian weather data, which includes
daily temperature measurements from 35 weather stations across Canada [14].

The functional predictor Xi(t),i=1,.. .,n, is simulated as: Xi
(
tq
)
=w1xi1

(
tq
)
+w2xi2

(
tq
)
,

q=1, ..., 365. Then each functional predictor Xi(t),i = 1,...,n is simulated as Xij(tq) =
τ1ijϕ1(tq)+τ2ijϕ2(tq)+τ3ijϕ3(tq)+τ4ijϕ4(tq), where ϕk(tq) is the k-th true FPCs, k=1,.. .,4.

The simulated FPC score is simulated as τ⊤
ij =

(
τ1ij,τ2ij,τ3ij,τ4ij

)⊤, where τij∼MVN(0, Σj),
in which Σ1 = diag(100, 80, 50, 30) and Σ2 = diag(120, 70, 45, 20).

The response variable Y is generated using the functional linear regression model
(1.1) with β(t) being specified as β(t)=b1ϕ1(t)+b2ϕ2(t)ϕj(t)+ b3ϕ3(t)+b4ϕ4(t)=b⊤ϕ(t),
where b=(b1,b2,b3,b4)

⊤ and ϕ(t)=(ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t))⊤. Without loss of generality
we set β0=0.

3.1 The first simulation study

The first simulation study is designed to evaluate the proposed method when the re-
sponse variable is binary. We generate 1000 sample curves, Xi(t),i = 1,...,1000. The re-
sponse variable Y is generated as:

Yi∼Bernoulli(pi),

logit(pi)=
∫

T
β(t)Xi(t)dt,i=1,...,1000,

(3.1)

in which β(t) = ϕ4(t). That is the binary response Y is only related to the fourth FPC
ϕ4(t). We randomly select 800 samples as the training set and used the other 200 samples
as test set. For un-weighted sFPCA, we let one of the predictors have a weight of 0. For
weighted sFPCA, set the weight to w0 =(0.25,0.75) or w0 =(0.75,0.25). For un-weighted
sFPCA, weight parameters w0 can be considered as (0, 1) or (1, 0). The smoothing and
weighting parameters of the sFPCA are both selected by five-fold cross-validation.

We compare the prediction performance of w-sFPCA with un-weighted sFPCA in
terms of classification accuracy on the test data in 100 simulation. Figure 1 summarizes
the classification accuracy estimated by weighted sFPCA and un-weighted sFPCA. As
shown in Figure 1(a), when the weight parameters of the weighted sFPCA are set to
(0.25, 0.75), its average classification accuracy reaches 0.671, and the highest of classifi-
cation accuracy is more than 0.75. For the un-weighted sFPCA, when we only use the
first predictor, the maximum classification accuracy is slightly higher than 0.725, and
the average classification accuracy is 0.66. Also, the deviation range is large. When we
only use the second predictor, neither the average classification accuracy nor the highest
classification accuracy is not more than 0.6. As can be seen from Figure 1(b), when the
weight parameters of the weighted sFPCA are set to (0.75, 0.25), its average classification
accuracy reaches 0.675, and the highest is more than 0.735. For the un-weighted sFPCA,
when only the first predictor is used, the maximum is slightly higher than 0.735, and the
average classification accuracy is 0.655, which is a large deviation range. When only the
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(a) (b)

Figure 1: Boxplots of the predicted classification accuracy for 100 simulation runs when using the first 2
FPC scores estimated by weighted sFPCA and un-weighted sFPCA. (a):w0=(0.25, 0.75), (0, 1) and (1, 0).
(b):w0=(0.75, 0.25), (0, 1) and (1, 0).

Figure 2: The leading FPC estimated by the weighted and un-weighted sFPCA of the first study.
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second predictor is used, neither the average classification accuracy nor the maximum
prediction accuracy is not more than 0.575.

To gain some insight, in Figure 2, we compare the leading FPC estimated by the
weighted and un-weighted sFPCA in one simulation run, along with the true FPC used
to simulate the response variable. We can see that the first FPC estimated by w-sFPCA
method is much closer to the true FPC.

3.2 The second simulation study

The simulation data X(t) is generated in the same way as the first simulation study. This
section discusses the performance of the proposed method when the response variables
are continuous. 800 samples are randomly selected as the training set, and the remaining
200 samples are used as the test set. We compare the prediction performance of weighted
and un-weighted sFPCA through 100 simulation runs. The prediction error is using the
mean square error (RMSE). It is defined as:

RMSE=
∑n

ℓ=1(ŷℓ−yℓ)
2

∑n
ℓ=1(ȳ−yℓ)

2 . (3.2)

Here yℓ and ŷℓ denote the observed ℓ th response in the test set, respectively, and ȳ rep-
resents the average of those observed responses the training set.

(a) (b)

Figure 3: Boxplots of RMSE for 100 simulation runs when using the first 2 FPC scores estimated by weighted
sFPCA and un-weighted sFPCA. (a):w0=(0.25, 0.75), (0, 1) and (1, 0). (b):w0=(0.75, 0.25), (0, 1) and (1,
0).

Figure 3 summarizes the prediction RMSEs for 100 repeated runs. It can be found that
the prediction mean square error of the weighted sFPCA is significantly smaller than
that of the un-weighted sFPCA, regardless of the weight setting. As can be seen from
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Figure 4: The leading FPC estimated by the weighted and un-weighted sFPCA of the second study.

Figure 3(a), when the weight parameters of the weighted sFPCA are set to (0.25, 0.75),
the maximum prediction mean square error is less than 0.5, and the average prediction
mean square error is less than 0.25. For the un-weighted sFPCA, when only the first
predictor is used, the minimum prediction mean square error is also more than 0.6, and
the average prediction mean square error is more than 1.7. Also, the deviation range is
large. When only the second predictor is used, the average prediction mean square error
is close to 0.5, and the deviation range is also large. As shown in Figure 3(b), when the
weight parameters of weighted sFPCA are set to (0.75, 0.25), the prediction mean square
error is less than 0.5, and the average prediction mean square error is less than 0.2. For
un-weighted sFPCA, when only the first predictor is used, the mean square error of the
average prediction exceeds 0.5, which is a large deviation range. When only the second
predictor is used, the lowest mean square error of the prediction is also more than 1, and
the average mean square error of the prediction is higher than 1.5, with a wide range of
deviations.

To gain some insight, Figure 4 displays the true FPC estimated by weighted and un-
weighted sFPCA. We can see the first FPC estimated by w-sFPCA is much more closer
to the true FPC compared with the first FPC estimated by un-weighted sFPCA. This in-
dicates that w-sFPCA is able to detect the FPC that is truly related to the continuous
response variable.
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4 Application

In this section, we use the proposed method to analyze the summer temperature in the
Yangtze-Huaihe region. When we do data predictions, the selection of climate prediction
factors has an extremely important impact on the construction of the model, and it has
the ability to determine the feather of future climate prediction scenarios in the studied
area. Therefore, the selected factors should have an important physical relationship with
the climate under study, be strongly correlated with the local climate, and be able to be
accurately simulated by the model. In addition, there must be a weak correlation between
factors. Firstly, the meteorological prediction factors are selected to construct a weighted
sFPCA of monthly temperature in the Yangtze-Huaihe region, and the robustness of the
model is tested based on independent verification.

In order to determine the combination of prediction factors with the best statistical
down-scaling effect, multiple groups of factor combination down-scaling experiments
are carried out. According to Figure 5, four factors with significant and strong correla-
tion between summer temperature in the Yangtze-Huaihe region are selected, they are
850hPa air temperature, 500hPa geopotential altitude, 500hPa zonal wind and sea level
pressure. The prediction performance of each group of experiments will be compared
by the root mean square error (RMSE) and the time correlation coefficient (Cor) between
the prediction results and the observations. Table 1 and 2 shows the effects of different
factor combination model from 1961 to 2007. Except for the 850hPa air temperature, the
RMSE is greater than or equal to 0.51°C in all other one-factor tests, and the correlation
coefficient is also relatively small, all of which are below 0.8, and fail the test with a sig-
nificance level of 0.01. When the estimation factor is a combination of multiple factors,
the corresponding RMSE decreases, and when the combination of 850hPa air tempera-
ture and 500hPa geopotential height field is used as the estimation factor, the minimum
RMSE is 0.32°C and the large correlation coefficient is 0.9. Therefore, the combination of
500hPa height field and 850hPa temperature field is used as the prediction factor for the
statistical down-scaling of summer temperature in the Yangtze-Huaihe region.

Table 1: The performance of different factor combination model from 1961 to 2007. a, h, u, and s represent
the site‘s average results of the 850hPa air temperature field, 500hPa geopotential height field, 500hPa zonal
wind field, and the sea level pressure field.

factor combination a h u s a+h a+u
Cor 0.76 0.72 0.68 0.70 0.90 0.81

RMSE 0.51 0.60 0.55 0.56 0.32 0.42

We use a 500hPa height field and an 850hPa temperature field as prediction factors.
Considering that the 850hPa height field and 850hPa temperature field also have a high
correlation with the summer temperature in the Yangtze-Huaihe region (Figure 5), for the
weighted sFPCA, the 500hPa height field, the 850hPa height field, the 500hPa tempera-
ture field and the 850hPa temperature field are used as prediction factors. We calculate
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Figure 5: Spatial distribution of the temporal correlation between regional mean time series and influencing
factors. (a) involving a 500 hPa air temperature field, (b) involving an 850 hPa air temperature field, (c)
involving a 500 hPa geopotential height field, (d) involving a 850 hPa geopotential height field, (e) involving a
500 hPa relative humidity field, (f) involving an 850 hPa relative humidity field, (g) involving a 500 hPa specific
humidity field, (h) involving an 850 hPa specific humidity field, (i) involving a 500 hPa zonal wind field, (j)
involving an 850 hPa zonal wind field, (K.) ) involves a 500 hPa meridional wind field, (l) involves an 850 hPa
meridional wind field, and (m) involves a sea level pressure field
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Table 2: The performance of different factor combination model from 1961 to 2007.

factor combination a+s a+h+u a+h+s a+u+s a+h+u+s
Cor 0.80 0.87 0.86 0.91 0.92

RMSE 0.46 0.41 0.39 0.42 0.44

Table 3: Results of BMA, FPCA, sFPCA, and w-sFPCA. Cor: correlation coefficient; r(%): RMSE error ratio.

method
BMA FPCA sFPCA w-sFPCA

Cor r(%) Cor r(%) Cor r(%) Cor r(%)

train 0.65 5.72 0.48 7.21 0.59 6.18 0.67 5.68
test 0.60 8.35 0.52 8.85 0.57 7.63 0.60 7.92

their weights to obtain the optimal combination of them to estimate the summer temper-
ature in the Yangtze-Huaihe region. For the un-weighted sFPCA, without loss of gener-
ality, we combine 500hPa height field, 850hPa height field, 500hPa temperature field and
850hPa temperature field in pairs, and select the combination with the best performance
as the prediction factors of un-weighted sFPCA.

We use data from 1961-2007 as the training set and data from 2008-2019 as the test
set. Table 3 shows the average fitting results of Bayesian Model Averaging (BMA) [23],
FPCA, sFPCA, and w-sFPCA. The correlation coefficient between the prediction and the
observed and the RMSE error ratio are listed in the table. The number of functional
principal components is 2. The results of BMA, FPCA, and sFPCA are the averages of the
optimal factor combination for each site. The fitting result of w-sFPCA is better than that
of un-weighted sFPCA and traditional FPCA model. The result of test set, compared with
other methods, the correlation coefficient of w-sFPCA maintains a leading advantage,
and the RMSE error ratio also has a certain advantages.

5 Conclusions

In this paper, we consider the problem of predicting scalar response variables using mul-
tiple types of function predictors. FPC scores estimated by sFPCA are related to the re-
sponse variable, but only one type of predictors are used. We propose a weighted version
that it considers the effects of different types of predictors on the response variables. Nu-
merical simulations and application of summer temperature data in the Yangtze-Huaihe
region confirm that the proposed method has better performance than the un-weighted
sFPCA method. Although our example demonstrates that the proposed weighted method
is better than the Bayesian model average, more research is still needed to compare them.
Our experience is that the new weighted method may achieve better interpretability in
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some applications compared to Bayesian model averaging.
The weighting method that we proposed focuses only on revealing the correlation

between predictors and regional climate at two levels. In fact, traditional predictors have
17 or more levels, and in fact the levels themselves can be considered as functional data.
In addition, future temperature prediction will involve a variety of levels and models for
weighted predictors. Incorporating more layers and more patterns into the model will
greatly improve the predictability of the model, but it can also be a great challenge to
calculate in this case.
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