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Abstract. This paper investigates the comprehensive investigation of mixed convection 

flow and heat transfers analysis of Micropolar by considering porous medium and heat 

absorption. Subsequently, mathematical formulation was modeled using boundary 

conditions. Two major aspects, Brownian motion and thermophoresis are addressed in 

the energy and concentration equation which are coupled with momentum equation. 

By using similarity variables, the entire system of partial differential equations govern 

through momentum, energy, angular momentum and concentration are converted into 

system of nonlinear ordinary differential equations. Nonlinear systems are solved by 

using numerical approach with bvp4c function in MATLAB that is based on the 

collocation method, specifically the three-point Lobatto IIIa formula is directed to type 

of finite difference method. Results are obtained for various emerging parameters. It has 

been observed that skin friction decreases for increasing values of Hartmann number 

and Eckert number. Decreasing trend of bar graphs is observed against Nusselt number 

and Sherwood number against Brownian motion and thermophoresis parameters. 
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1   Introduction 

Research in exceptional areas has been offered by fluid mechanics. The continuing 

advancement of fluid mechanics theory and applications has been facilitated by 
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researchers. The most deep-rooted model of Navier-Stokes for classical fluids presents 

that the motions of Newtonian fluids seem to be incompressible. Nevertheless, Navier-

Stokes representation is insufficient to explain liquids like polar fluids, fluids with 

microstructural components. These fluids are fascinating on their own and essential from 

a practical one. Most of these consisting of the Polymeric suspensions, blood of animals, 

crystals of liquid characterize these fluids that are complex. Their constituent particles 

could enlarge and contract, their shapes might vary, and they can rotate independently. 

Several explanations have been proposed, even though basic deformable directed 

fluids, simple microfluid theories, and dipolar fluids all resemble the type of fluids 

containing microstructure. Eringen [1, 2] was the first to put out the theory of micro fluids, 

which thoroughly investigates the Navier-Stokes model. The microscopic movement and 

local structure for the fundamental elements of fluid are associated with microscopic 

effects that have been seen in micro fluids. Spin inertia has an impact on such fluids, 

which can withstand tension and bodily movements. Eringen [3] then advanced the 

notion of micropolar fluids. This theory contains established fluid medium that is under 

stress along with micro rotational effects, micro rotational inertia, and a couple stresses. 

He examined flow problems of one-dimensional micropolar fluids. He worked on one-

dimensional micropolar fluid flow problems. Furthermore particular, he examined the 

uniform flow of micropolar fluids in different channels like ducts, tubes, circular, and 

spherical. Specifically, and presented graphical representations for coupled stress, shear 

stress differences, velocity, and micro-rotation profiles. 

Physically, this category of bar-like elements in the same approach as the fluids that 

are isotropic fluids, e.g., crystals of liquids, that together with molecules resembling 

dumbbells, blood of animals, fluids containing polymers and those fluids which have 

additives. This theory has been predicted to also offer a mathematical explanation for 

non-Newtonian behavior seen in some synthetic liquids, such blood and polymers. 

Fundamental flow problems have been studied using Micropolar Fluid concepts 

framework. The research conducted in the field of micropolar fluid flow problems as well 

as its possible applications was first described by Ariman et al. [4, 5]. Turk et al. [6, 7], 

Hogen et al. [8], and Lee et al. [9] have tackled the blood flow models. In contrast, Allen 

et al. [11] proposed the idea of a lubrication of micropolar fluids. Tozeren et al. [10] used 

the concept of micropolar fluids for suspension. 

Making use of a finite difference method, Chapman and Bauer [12] were successful 

in finding a group of accurate solutions to the Navier-Stokes equations. For micropolar 

instance, this issue was investigated Agarwal [13], Takhar, and Soundalgekar [13,14] 

discussed the flow and heat transport of both micropolar fluids over a porous medium. 

Mathur and Ena [15] investigated laminar convective boundary layer flow for a thermo-

micropolar fluid using a non-isothermal vertical flat plate. A class of accurate solutions 

for the Magneto hydrodynamics flow for micropolar fluids trapped between parallel, 

non-coaxial, insulated, and infinite spinning discs were studied by Kasiviswanathan and 

Gandhi [16]. Lange [17],  Guram and Smith [18] researched an accurate solution for the 

uniform Magneto hydrodynamics flow for a micropolar fluid examined, together with 

the stationary flow for micropolar fluids with powerful and fragile contact. 
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Al-Sanea [19] examined mixed convection heat transfer with a constantly rotating 

heated vertical channel by investigating at suction or injection. Kumari and Nath [20] 

examined mixed convection boundary layer flow across a confined vertical cylinder 

along concentrated injection or suction and cooling or heating. Outside of a stretched 

empty cylinder, Wang [21] studied the flow in an acoustic fluid at rest that was viscous 

and incompressible. The effects of a shrinking sheet on Magneto hydrodynamic viscous 

flow were examined by Sajid and Hayat [22] using the homotopy analysis method. Sajid 

et al. [23] explored the magneto hydro-dynamic rotating flow of a viscous fluid over a 

contracting surface. To analyze Magneto hydrodynamics flow for non-Newtonian fluid 

across stretched sheet, Liao [24] developed an analytical solution. The two-dimensional 

boundary layer was examined by Vajravelu [25] and Tsai et al. [26] due to the non-

uniform stretching surface. Ishak et al. [27] examined the effects for a constant hydrostatic 

pressure of flow and heat transfer outside a stretched porous cylinder and used the 

Keller-box technique for numerical solutions. Wang [28] investigated the stagnation flow 

in the direction of a contracting plate. According to his discussions the axisymmetric and 

two-dimensional examinations of this study are under consideration. A unique class of 

solutions with exact similarity and reverse flow was examined in his study. Fang and 

Zhang [29] examined magneto hydrodynamics flow along a shrinking surface and 

provided an accurate solution to the problem. Khan and Pop [30] proposed a nanofluid 

model based upon Brownian motion and thermophoresis coupled with concentration 

and energy equations over a stretched flat surface. 

Rahman et al. [31] conducted computational modeling to study the effect of fluid 

electric conductivity and non-uniform source of heat or sink to a two-dimensional, 

uniform, hydromagnetic, and convective flow for a micropolar fluid in contrast to fluid 

layer flow with a slanted solid surface with a homogeneous surface heat flux. Hayat et 

al. [32] studied the two- dimensional Magnetohydrodynamics unsteady flow for an 

incompressible micropolar fluid through a nonlinear stretching sheet. Ishak et al. [33] 

examined the continuous Magnetohydrodynamics mixed convection stagnation flow for 

a vertical surface immersed in an incompressible micropolar fluid. Ishak et al. [34] 

investigated the stagnation flow for magnetohydrodynamics boundary layer flow in the 

presence of a changing magnetic field using a spike with a constant flux of surface heat 

covered in an incompressible micropolar fluid. The constant convective heat transfer 

boundary layer movement for a vertical surface immersed in an incompressible 

micropolar fluid is taken into consideration by Ishak et al [35] in the analysis. El-

Mistikawy [36] investigated flow through the boundaries of a micro-polar fluid caused 

by continuously extended surface in the case of decreasing coupled variables. Kumaran 

et al. [37] accurately solve for mixed convection flow for a liquid along an electrical 

conductivity through a nonlinearly extended and linear transparent surface. Nazar et al. 

[38] have investigated the movement of an incompressible micropolar fluid with the 

presence at a stable, two-dimensional stagnation flow when the sheet is extended inside 

the field with a speed proportionate the distance from the stagnation point. Noor et al. 

[39] examined micropolar fluid flow along a vertically moving surface. 
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Examining numerical solution of Micropolar fluids due to moving surfaces is the 

objective of this study. In Section 2 we have defined the mathematical model that is based 

upon energy, momentum, angular momentum, and concentration equations. In the same 

section physical quantity of interest is also defined.  In Section 3, methodology to solve 

the proposed model is defined. A result analysis of each parameter is described in Section 

4. In the final Section 5, the major findings of the entire study are described reflecting the 

behavior of fluid motion and its heat transfer. 

 

2   Mathematical Formulation of the Problem 
 

In this problem, we are considering cartesian coordinate system with a moving surface 

incompressible, stationary, two-dimensional, micropolar, and nano-fluid laminar flow. 

Two-dimensional coordinate system is considered to developed the geometry of the 

model (see Figure 1).  

 
Figure 1: Geometry of the model. 

The governing equations that represent boundary layer flow for equations of 

continuity, momentum, angular momentum, energy, and concentration can be defined 

by using the approximate boundary conditions: 
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In the above system of equations, 𝑢̃ and 𝑣̃ are velocities of fluid molecules, 𝑁̃ is the 

angular momentum, 𝑇̃ is the temperature and 𝐶̃ is the concentration of fluid. Equation (1) 

represents the conservation of mass know as continuity equation, Equation (2) represents 

the momentum equation, Equation (3) represents the angular momentum equation, 

Equation (4) represents the energy equation and Equation (5) represents the 

concentration equation of fluid molecules. Boundary conditions take the following way: 

𝑢̃ =  𝑏𝑥∗ + 𝐿𝑢̃𝑦 , 𝑣̃ = 0,   𝑁̃ = 0,   𝑇̃ =  𝑇̃𝑤 , 𝐶̃ =  𝐶̃𝑤               𝑎𝑡   𝑦̃ = 0,       (6a) 

𝑢̃ =  0, 𝑁̃ = 0, 𝑇̃ =  𝑇̃∞  ,   𝐶̃ =  𝐶̃∞                                         𝑎𝑡   𝑦̃  →  ∞.       (6b) 

By introducing the similarity transformation 

𝜂 =  √𝑏
𝜈𝑓

⁄  𝑦, 𝑢̃ = 𝑏𝑥𝑓′(𝜂),  𝑣̃ =  −√𝑏𝑣𝑓𝑓(𝜂), 𝑁̃ =  √𝑏3
𝑣𝑓

⁄ 𝑥𝑔(𝜂),       (7a) 
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𝑇̃−𝑇̃∞

𝑇̃𝑤−𝑇̃∞
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, 𝐶̃ =  𝐶̃∞  + 𝐵𝑥𝜙(𝜂).     (7b) 

Stream function 𝜓 can be expressed as: 

𝑢̃=𝜓̃𝑦,    𝑣̃= − 𝜓̃𝑥 . 

Making use of these transformations, identically continuity equation is satisfying and 

Equations (2)–(5) along with the conditions on boundary (7a) and (7b) takes the following 

expressions: 

(1 + 𝐾)𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 + 𝐾𝑔′ − 𝑀𝑓′ +
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The parameters of thermophoresis and Brownian motion are defined as 
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𝜈𝑓 𝑇̃∞
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𝜏𝐷𝐵(𝑇̃𝑤− 𝑇̃∞)

𝜈𝑓 
, 

while the rest of the parameters are defined as 
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2
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2
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𝜅𝑓(𝜌𝑐𝑝)𝑓 𝑏
 . 

By using similarity transformations (7), conditions (6) take the form 

𝑓(𝜂) = 0,   𝑓′(𝜂) = 1 + 𝑠𝑓′′(𝜂), 𝜃(𝜂) = 𝜙(𝜂) = 1             𝑎𝑡 𝜂 = 0,     (12a) 

𝑓′(𝜂) = 𝑔(𝜂) = 𝜃(𝜂) = 𝜙(𝜂) = 0                                            𝑎𝑡 𝜂 → ∞.     (12b) 

For very small values of slip parameter (𝑠 ≈ 0), surface flux is defined by 

𝑞̃𝑤(𝑥) =  −𝑘𝑓(𝑇̃𝑦)
𝑦=0

= −𝑘𝑓(𝑇̃𝑤 − 𝑇̃∞)√𝑏𝑣𝑓𝜃′(0),                      (13) 

the surface heat flux transfer coefficient can be expressed as 
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ℎ̃𝑥 = 
𝑞̃𝑤(𝑥)

(𝑇̃𝑤−𝑇̃∞)
,             (14) 

Nusselt number is written as 

𝑁̃𝑢𝑥 =
𝑥ℎ̃(𝑥)

𝑘𝑓(𝑇̃𝑤−𝑇̃∞)
,   

or 

  𝑁̃𝑢𝑥 =
𝑥𝑞̃𝑤(𝑥)

𝑘𝑓
 =  −√

𝑏

𝑣𝑓 
 𝑥𝜃′(0) ⟹

𝑁̃𝑢̃𝑥

√𝑅𝑒𝑤
= −𝜃′(0),                                             (15) 

Sherwood number can be defined as 

𝑆̃ℎ𝑥 = 
𝑗𝑤 𝑥

𝐷𝑓(𝐶̃𝑤−𝐶̃∞)
= −√

𝑏

𝑣𝑓 
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= −𝜙′(0).                      (16) 

 

3   Methodology 
 

By employing the built-in bvp4c approach after conversion of the given PDEs to the first 

order ODEs using MATLAB program for the solution. The detailed procedure of this 

method is mentioned by Noor et al. [39]. For numerical results we have considered  

𝑓 =  𝑦1,                        𝑔 =  𝑦4 ,                             𝜃 =  𝑦6,             𝜙 = 𝑦8, 

𝑓′ = 𝑦2,                      𝑔′ = 𝑦5 ,                            𝜃′ = 𝑦7,              𝜙
′ = 𝑦9, 

𝑓′′ = 𝑦3,                    𝑔′′ = 𝑦11 ,                           𝜃′′ = 𝑦12,           𝜙
′′ = 𝑦13, 

𝑓′′′ = 𝑦10. 

Equation (8) becomes 

(1 + 𝐾)𝑦10 + 𝑦1𝑦2 − 𝑦2
2 + 𝐾𝑦5 − 𝑀𝑦2 +

1

𝐷𝑎
𝑦2 ± 𝐺𝑟1𝑦6 ± 𝐺𝑟2𝑦8  = 0, 

or 

 𝑦10 =
1

1 + 𝐾
[−𝑦1𝑦2 + 𝑦2

2 − 𝐾𝑦5 + 𝑀𝑦2 −
1

𝐷𝑎
𝑦2 ± 𝐺𝑟1𝑦6 ± 𝐺𝑟2𝑦8]. 

Equation (9) becomes 

(1 +
𝐾

2
) 𝑦11 + 𝑦1𝑦5 − 𝑦2𝑦4 − 𝐾(2𝑦4 + 𝑦3) = 0, 

or 

𝑦11 = 2(
−𝑦1𝑦5 + 𝑦2𝑦4 + 𝐾(2𝑦4 + 𝑦3 )

2 + 𝐾
). 

Equation (10) becomes 

𝑦12 + 𝑃𝑟𝑦1𝑦7 + (1 + 𝐾)𝑃𝑟𝐸𝑐𝑦3
2 + 𝑃𝑟𝐸𝑐𝑀𝑦2

2 + 𝑃𝑟𝑁𝑏𝑦7𝑦9 + 𝑃𝑟𝑁𝑡𝑦7
2 +  𝑃𝑟𝑄𝑦6 = 0, 

or 

𝑦12 = −𝑃𝑟𝑦1𝑦7 − (1 + 𝐾)𝑃𝑟𝐸𝑐𝑦3
2 − 𝑃𝑟𝐸𝑐𝑀𝑦2

2 − 𝑃𝑟𝑁𝑏𝑦7𝑦9 −  𝑃𝑟𝑁𝑡𝑦7
2 − 𝑃𝑟𝑄𝑦6. 

Equation (11) becomes 

  𝑦13 + 𝑆𝑐𝑦1𝑦9 − 𝑆𝑐𝑦2𝑦8 +
𝑁𝑇

𝑁𝑏
𝑦12 = 0, 

or 
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𝑦13 = −𝑆𝑐𝑦1𝑦9 +  𝑆𝑐𝑦2𝑦8 − 
𝑁𝑇

𝑁𝑏
𝑦12. 

Therefore, we get 

[
 
 
 
 
 
 
 
 
 
 
𝑓′

𝑓′′

𝑓′′

𝑓′′′

𝑔′

𝑔′′

𝜃′

𝜃′′

𝜙

𝜙′′ ]
 
 
 
 
 
 
 
 
 
 

  =    

[
 
 
 
 
 
 
 
 
𝑦2

𝑦3

𝑦10

𝑦5

𝑦11

𝑦7

𝑦12

𝑦9

𝑦13]
 
 
 
 
 
 
 
 

   

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑦2

𝑦3

(
−𝑦1𝑦2 + 𝑦2

2 − 𝐾𝑦5 + 𝑀𝑦2 −
1
𝐷𝑎

𝑦2 ± 𝐺𝑟1𝑦6 ± 𝐺𝑟2𝑦8

1 + 𝐾
)

𝑦5

2 (
−𝑦1𝑦5 + 𝑦2𝑦4 + 𝐾(2𝑦4 + 𝑦3 )

2 + 𝐾
)

𝑦11

−𝑃𝑟𝑦1𝑦7 − (1 + 𝐾)𝑃𝑟𝐸𝑐𝑦3
2 − 𝑃𝑟𝐸𝑐𝑀𝑦2

2 − 𝑃𝑟𝑁𝑏𝑦7𝑦9  −  𝑃𝑟𝑁𝑡𝑦7
2  − 𝑃𝑟𝑄𝑦6

𝑦9

−𝑆𝑐𝑦1𝑦9 +  𝑆𝑐𝑦2𝑦8 − 
𝑁𝑇

𝑁𝑏

𝑦12

  

]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

4   Results and Discussions 

 

For the sake of the required results of the above boundary value problems, we first 

transform all the PDEs of momentum, angular momentum, energy, and concentration 

into non-linear ODEs by similar transformation with their corresponding boundary 

conditions. One very interesting behavior is observed that the energy equation is being 

transformed into two cases. The first solution associated with positive (+) part of the eq. 

(8) represents assisting flow while second solution associated with negative (−) part of 

eq. (8) represents opposing flow. The results of these two cases are shown in graphs 

where solid lines indicate assisting flow while dotted lines indicate opposing flow. The 

effects are apparent for all physical parameters involved and the nonlinear ODEs are 

illustrated to velocity profile, temperature profile, angular velocity profile, and 

concentration profiles. The impacts for some of parameters are seen in graphs where the 

arrow in the figure indicates the increasing/decreasing in assisting flow.  

 
Table 1: Results validation for Nusselt number and the Sherwood number in the absence of Micropolar 

rotation effects, 𝐾 = 𝑀 = 𝐺𝑟1   = 𝐺𝑟2 = 𝐸𝑐 = 𝑄 = 𝑠 = 𝑆𝑐 = 0 when Pr=10, 𝑆𝑐 = 1 and 𝑁𝑏 = 0.1. 

Present Present 
 Khan and Pop [30]

results results

(0) (0) (0) (0)

0.1 0.9524 2.1294 0.9524 2.1294

0.2 0.6932 2.2732 0.6932 2.2740

0.3 0.5201 2.5286 0.5201 2.5286

0.4 0.4026 2.7952 0.4026 2.7952

0.5 0.3211 3.0351 0.3

Nt

211 3.0351
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For the sake of validation, in Table 1, we have made comparisons of existing 

available literature and limiting case of our model for various values of emerging 

parameters. 

Figures 2-5 demonstrate the fluctuation of velocity profile, angular velocity profile, 

temperature profile and concentration profiles variation upon magnetic parameter for 

both assisting and opposing flow.  Figure 2 demonstrates that Lorentz force, which 

decreases the velocity profile for both assisting and opposing flows, causes resistance in 

the path of fluid flow because of the influence of the magnetic field. The impact of 

magnetic numbers upon angular velocity is seen in Figure 3. This is evident that larger 

values of magnetic numbers may lower angular velocity profile for both assisting and 

opposing flows. In Figure 4, It has been observed that increasing values of M correspond 

to increasing temperatures distributions. Higher values of M produce a resistive type of 

force on the motion, reacting in the reverse direction of motion and decreasing the 

velocity field as a result. The fluid motion simultaneously produced some thermal energy, 

increasing the fluid temperature for assisting and opposing flows. Figure 5 illustrates the 

effect of magnetic number upon concentration profile and variation in magnetic number 

may affect both solutions as a result concentration profile is observed to decrease as M 

rises. 

 

Figure 2: Effects of magnetic number M on 

Velocity profile. 

Figure 3: Effects of magnetic number M on 

Angular velocity profile. 

 

Figure 4: Effects of magnetic number M on 

temperature profile. 

 
Figure 5: Effects of magnetic number M on 

concentration profile. 
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Figures 6-9, Show that changes in the material parameter cause changes in the 

velocity profile, angular velocity profile, temperature profile, and concentration profile. 

Figures 6 and 7 illustrate that K varies with velocity and angular velocity profile, 

respectively. As a result, angular velocity and velocity are increased for assisting and 

opposing flows and Figures 8 and 9 show the reverse behavior. 

 

 
Figure 6: Effects of material number K on velocity 

profile. 
Figure 7: Effects of material number K on Angular 

velocity profile. 

Figure 8: Effects of material number K on 

Temperature profile. 

Figure 9: Effects of material number K on 

Concentration profile 

 

The temperature profile and concentration profile decrease as K increases. Figure 10 

shows the fluctuation of the temperature profile examined for Prandtl numbers. The 

curves clearly show that the increase in Pr causes a lower in temperature. Figure 11 

demonstrates that raising Eckert number Ec leads to a decline in temperature on both 

assisting and opposing flows. Figure 12 illustrates the impact of Schmidt numbers upon 

concentration profile, the curves show that as Schmidt numbers increase, the 

concentration profile becomes lower. Figure 13 represents the variation in the 

concentration profiles of Nt. For assisting and opposing flows, concentration rises as the 

thermophoresis parameter increases and decreasing for the values of the Brownian 

motion increase. 



10   R. U. Haq et al. / J. Info. Comput. Sci., 2024, 19(1): 1-14 

 

 
Figure 10: Effects of Prandtl number Pr on 

Temperature profile. 

 
Figure 11: Effects of Eckert number Ec on 

Temperature profile. 

 
Figure 12: Variation of Sc on Concentration 

profile. 

Figure 13: Variation of Nt on Concentration 

profile. 

Figures 14-19 depict the variations in skin-friction, the Nusselt number and the 

Sherwood number for different values of Eckert number, magnetic number, Brownian 

motion number, thermophoresis parameter, microrotation and Schmidt number. Figures 

14-19 show a variation in the Sherwood number and the Nusselt number, but no change 

shown for the skin friction because these parameters do not appear in the momentum 

equation. However, there are some fluctuations in the Sherwood number, but Nusselt 

number retain its position for these emerging parameters. Figure 19 indicates the slight 

change in skin-friction along with Sherwood number and Nusselt number. 

 
Figure 14: Variation in skin-friction, Nusselt 

number and Sherwood number for various 

values of M. 

 
Figure 15: Variation in skin-friction, Nusselt 

number and Sherwood number for various 

values of Ec. 
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Figure 16: Variation in skin-friction, Nusselt 

number and Sherwood number for various 

values of Nb. 

 
Figure 17. Variation in skin-friction, Nusselt 

number and Sherwood number for various 

values of Nb. 

 
Figure 18: Variation in skin-friction, Nusselt 

number and Sherwood number for various 

values of Nt. 

 
Figure 19. Variation in skin-friction, Nusselt 

number and Sherwood number for various 

values of Sc. 

 

 

5   Conclusions 
 

Based upon the entire results, the following findings are established: 

• Higher values of magnetic parameters will decrease the flow field profile, angular 

velocity and concentration profile for both assisting and opposing flow whereas 

temperature profile remain low. 

• It has been observed that for assisting and opposing flows, the effects of the 

physical parameter K in the values of the velocities, temperatures, and 

concentration profiles are opposite of that of the magnetic field parameter. 

• Higher numbers of Pr have a greater influence on heat transfer since the Prandtl 

number rises with temperature.  

• As Eckert number increases, the temperature effect also increases. Therefore, with 

higher values of Ec, their heat transfer properties are enhanced. 

• Increasing Schmidt numbers lowers the dimensionless concentration 

distributions. 
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• The dimensionless concentration distributions and thermophoresis parameters 

are increasing. 

• Brownian motion parameters are increasing whereas the dimensionless 

concentration profiles are decreasing. 

•  Skin friction does not change with increasing values of magnetic number, Eckert 

number, thermophoresis parameter, Brownian motion parameter, Schmidt 

number, or micro-rotation, however for higher values of magnetic number, 

Nusselt and Sherwood numbers are also rising. 
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