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_____________________________________________________________________________ 

Abstract. The popular Long Short-Term Memory (LSTM) based precipitation prediction 

models suffer from overfitting and time lag. Broad Learning System (BLS), which does 

not require multiple iterations, helps to solve the above disadvantages of LSTM. 

Weighted Broad Learning System (WBLS) reduces the impact of noise and outliers on 

precipitation prediction accuracy by introducing a weighted penalty factor constraint to 

assign sample weights in the BLS. Thus, a LSTM-WBLS daily precipitation prediction 

model is proposed in this paper. The daily precipitation at Badong station in Hubei 

province is selected for empirical study. And the influence of air pressure, temperature, 

humidity, wind speed and sunshine on precipitation is considered. The experimental 

results demonstrate that the LSTM-BLS model has significantly improved the prediction 

accuracy in the evaluation indexes of RMSE, MAE and R2 compared with existing 

prediction models. The prediction accuracy of the new model outperforms existing 

models at different time steps, proving its stability. In particular, the direct calculation 

of weights by WBLS does not make any reduction in operational efficiency of LSTM-

WBLS. 
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_____________________________________________________________________________ 

1   Introduction 

Short-term heavy rainfall can cause heavy rain and flood, and then cause secondary 
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disasters such as flash floods and mudslides, which seriously threaten people's life and 

property safety. Therefore, mastering the regularity of precipitation and accurately 

predicting daily precipitation are of great guiding significance for the research and 

control of flood disasters [1]. 

There are two kinds of precipitation prediction methods: process-based method and 

data-driven method. The advantage of process-based precipitation prediction method is 

that it can explain the physical process of precipitation clearly, but the complexity of the 

physical process increases the difficulty of modeling, and a series of hypotheses are 

needed to solve the model. The data-driven method is empirical, which does not need to 

analyze the physical process of precipitation, but only predicts the precipitation based 

on historical data, and the model is simple and easy to operate. 

Statistical methods and machine learning are the most common data-driven 

precipitation prediction methods. In terms of statistical methods, the most popular 

forecasting method in recent years is based on the Auto Regressive Integrated Moving 

Average (ARIMA) model [2-3]. The results show that when the precipitation time series 

is linear or close to linear, the statistical model can produce satisfactory prediction results, 

but when the time series is non-linear, the prediction results are often unsatisfactory. In 

view of this, machine learning methods suitable for complex nonlinear process modeling 

are widely used in precipitation prediction. Hartigan et al. [4] used Random Forest (RF) 

and Support Vector Regression (SVR) to predict precipitation and temperature in Sydney 

basin. Xiang et al. [5] predicted the data of 34 meteorological observation stations in 

Chongqing by using the dual-system cooperative influence model of decision tree and 

FR. Peng et al. [6] built a mixed model for daily precipitation prediction based on extreme 

learning machine and gene expression. Gou et al. [7] combined the advantages of genetic 

algorithm and BP neural network to study the prediction method of daily precipitation 

level in Tianjin. Rostam et al. [8] used a variety of optimization algorithms to optimize 

the multi-layer perceptron algorithm in order to explore any meaningful relationship 

between the large-scale climate index and precipitation in the Iranian capital. 

However, traditional machine learning methods cannot capture the long-term 

memory of the input sequence [9], thus affecting the prediction accuracy. Long Short-

Term Memory (LSTM) networks overcome these shortcomings. Wang Ziyue et al. [10] 

used the sentence state LSTM model to identify the speaker's intention. Wang Peng et al. 

[11] predicted the ultra-short-term probability of wind power based on small wavelength 

short-term memory network. Luo Jia et al. [12] combined LSTM and BLS to analyze 

public emotional tendency in sudden meteorological disaster events. In terms of 

precipitation forecast, Nguyen et al. [13] improved radar-based rainfall forecast by using 

LSTM. Shen Haojun et al. [14] used LSTM to study the summer precipitation in China. 

Ni et al. [15] put forward two kinds of improved LSTM models (WD-LSTM and CNN-

LSTM), and discussed their application in runoff and rainfall prediction respectively. 

Kang et al. [16] selected a multi-input variable LSTM model to forecast the daily 

precipitation in Jingdezhen, Jiangxi Province. 

Although the precipitation prediction model based on LSTM has shown strong 
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advantages, the existing models have not solved the problem of time lag in the prediction. 

This is mainly due to the need for cyclic weight adjustment in LSTM training. It is noted 

that the new Broad Learning System (BLS) has the advantages of direct weight 

calculation, simple and fast operation, and can be used to improve LSTM. However, 

noise and outliers have adverse effects on the model, so Weighted Broad Learning 

System (WBLS) is proposed by applying the weighted penalty factor to the BLS. By 

automatically assigning appropriate weights to each sample, highly reliable samples are 

given higher weights, while suspicious outliers get lower weights. Therefore, the 

influence of abnormal samples on modeling is reduced. Combining the advantages of 

the two algorithms, the LSTM-WBLS daily precipitation prediction model is proposed in 

this paper. 

In order to verify the new model effectively, this paper selected Badong Station in 

Hubei province to conduct an empirical study of daily precipitation prediction. In terms 

of prediction accuracy, compared with existing precipitation prediction models, this 

model has the best performance in three evaluation indexes: root mean square error 

(RMSE), mean absolute error (MAE) and determination coefficient (𝑅2 ). In terms of 

stability, by analyzing the influence of time step size of 1, 3 and 5 d on the prediction 

accuracy of each model, it is proved that although the prediction accuracy of all models 

will decrease with the increase of time step size, the model in this paper still performs 

best in three evaluation indexes of RMSE, MAE and R2 under different time step size. In 

terms of operational efficiency, the LSTM-WBLS model added with WBLS has no 

decrease in operational efficiency compared with the LSTM model because of its 

convenient and fast computation. 

 

2   Model principle and structure 
 

In this paper, the basic structure and principle of LSTM and WBLS are presented first, 

and then the LSTM-WBLS prediction model based on multiple factors is presented. 

 

2.1   LSTM principle and structure 
 

The structure of LSTM is shown in Figure 1 [17]. 

In Figure 1, 𝒙𝑡  is the input vector, 𝒊𝑡  is the input state in time step 𝑡 , 𝒇𝑡  is the 

forgotten state in time step 𝑡 , 𝒐𝑡  is the output state in time step 𝑡 , 𝒉𝑡  and 𝑪𝑡  are 

respectively the hidden state and cell state in time step 𝑡 , and ℎ𝑡−1  and 𝑪𝑡−1  are 

respectively the hidden state and cell state in time step 𝑡 − 1. Nonlinearity is added in 

the form of tanh and sigmoid activation functions 𝜎. 

The LSTM principle is as follows: 

 
𝒇𝑡 = 𝜎(𝑾𝑓 ⋅ [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑓),

 
(1)

 

 
𝒊𝑡 = 𝜎(𝑾𝑖 ⋅ [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑖),

 
(2) 

 
𝑪̃𝑡 = tanh(𝑾𝑐 ⋅ [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑐),

 
(3) 
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Figure 1: Structure principle of LSTM 

 
𝑪𝑡 = 𝒇𝑡 ∗ 𝑪𝑡−1 + 𝒊𝑡 ∗ 𝑪̃𝑡,

 
(4) 

 
𝒐𝑡 = 𝜎(𝑾𝑜 ⋅ [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑜),

 
(5) 

 
𝒉𝑡 = 𝒐𝑡 ∗ tanh(𝑪𝑡),

 
(6) 

where 𝑾𝑓 , 𝑾𝑖 , 𝑾𝑐 , 𝑾𝑜 represent the corresponding weight vectors of the forgetting gate, 

input gate, memory unit and output gate respectively; 𝒃𝑓 , 𝒃𝑖, 𝒃𝑐 , 𝒃𝑜  represent the 

deviation variables of the forgetting gate, input gate, memory unit and output gate 

respectively;  ∗ is the Hadamard product of the matrix. 

 

2.2   WBLS principle and structure 
 

Chen et al. [18] proposed BLS in early 2019 and WBLS in 2020 to reduce the impact of 

abnormal samples on modeling [19]. 

Suppose 𝑿 contains 𝑁 samples, each with 𝑀 dimensions, and 𝒀 is the output matrix 

belonging to 𝐑𝑁×𝑄, where 𝑄 is the dimension of the output. The structure of WBLS is 

shown in Figure 2[19]. 

 
Figure 2: Structure principle of WBLS 

The 𝑛-TH feature is mapped by equation (7) to generate p nodes: 

 
𝒁𝑖 = 𝜙(𝑿𝑾𝑒𝑖 + 𝜷𝑒𝑖), 𝑖 = 1,2, ⋯ , 𝑛,

 
(7) 

where 𝑾𝑒𝑖 and 𝜷𝑒𝑖 are randomly generated weights and biases. Finally, the WBLS model 

can be expressed as 

 
𝒀 = [𝑿|𝒁1, ⋯ , 𝒁𝑚]𝑾 = 𝑯𝑾.

 
(8) 
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2.3   LSTM-WBLS daily precipitation prediction model 
 

Through the above analysis, combining the advantages of deep learning and weighted 

width learning, this paper proposes the LSTM-WBLS daily precipitation prediction 

model. The overall architecture of the model is shown in Figure 3. 

The detailed operation steps of LSTM-WBLS multi-factor daily precipitation 

prediction model are as follows: 

1) Input of precipitation series data 

There are some problems in the collection process of daily precipitation data, such 

as human error or machine failure, which leads to abnormal values in the collected data. 

In order to reduce the impact of deleting outliers on the model prediction results, the 

operation of filling 0 values for outliers is carried out in this paper. The daily precipitation 

data of multiple factors has the problem of inconsistent index data scale, and the value 

range of each dimension is too different, which will not easily converge in the training 

process and affect the learning process of the algorithm. Therefore, data need to be 

normalized. In this paper, maximum and minimum normalization is selected as shown 

in equation (9): 

 

𝑥scaled =
𝑥−𝑥min

𝑥max
,

 

(9) 

𝑥min indicates the minimum value and 𝑥max indicates the maximum value of the 

current data. 

The normalized data is divided into training set, verification set and test set, and the 

training set is taken as the input of the LSTM model. 

2) LSTM-based training 

LSTM has five layers. The first four layers are LSTM network layer, which aims to 

fully extract the timing features of the input sequence. The fifth layer is a fully connected 

layer, which aims to convert the features extracted from the first-time step to the last time 

step of the LSTM network layer into fixed feature vectors. To prevent LSTM from 

overfitting during training, Dropout processing is performed after each layer of LSTM. 

3) Forecasts based on WBLS 

First, the output of the fully connected layer is taken as the first 𝑛 group mapping 

feature set 𝒁𝑛 = [𝒁1, 𝒁2, ⋯ , 𝒁𝑛]. Each group contains 𝑝 nodes, then the number of hidden 

layer nodes of the mapping feature is 𝑛𝑝. Equation (8) can be obtained by combining with 

input 𝑿. 

Secondly, the WBLS connection weight can be calculated through the weighted 

ridge regression algorithm, and the solution problem is shown in equation (10): 

 
min

𝑊
 𝑓(𝑾) = min

𝑊
 ‖𝜃𝑯𝑾 − 𝜃𝒀‖𝐹

2 ,
 

(10) 

where ‖⋅‖𝐹 refers to the 𝐹 norm, 𝜃 is the weighted penalty factor of the sample weight, 

and 𝑯 is the hidden layer, represented by equation (11). 

 
𝑯 = [𝑿|𝑬𝑚] = (𝒉1, 𝒉2, ⋯ , 𝒉𝐿) ∈ 𝐑𝐾×𝐿 ,

 
(11) 

where: 𝒉𝑗 ∈ 𝐑𝐾 , 𝑗 = 1, ⋯ , 𝐿 is the j-th node of hidden layer 𝑯, 𝐿 = 𝑛𝑝 + 𝑚𝑞 is the number 

of hidden layer nodes, 𝐾 is the number of input time series. 
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Equation (10) is a least squares problem, which is a convex optimization estimate of 

𝐖, aiming to find the output weight 𝐖 that minimizes the training error. It is solved, and 

the results are shown in equation (12): 

 𝑾 = 𝑯+𝒀, (12) 

 
Figure 3: Overall framework of the LSTM-WBLS model 

where 𝑯+ is the pseudo inverse of 𝑯. But in general, the generalization error of the above 

solution may be large, especially for some pathological problems. In order to improve 

the generalization ability of the network, the 𝐹 norm regular term is introduced into the 

original formula to prevent the network from overfitting, and the formula (13) is obtained: 

 
min 

𝑊
𝑓(𝑾) = min 

𝑊
‖𝜃𝑯𝑾 − 𝜃𝒀‖𝐹

2 + 𝐶‖𝑾‖𝐹
2 ,

 
(13) 

Formula (13) is a ridge regression problem. 𝐶 represents a further constraint on the 

sum of squares of weights, which can be finally solved by equation (14) to obtain the 

weight 𝑾: 

 𝑾 = (𝐶𝑰 + 𝑯𝑇𝜃2𝑯)—1𝑯𝑇𝜃2𝒀. (14) 

4) Output forecast results 

The weight 𝑾 obtained by calculation in equation (14) is combined with the hidden 

layer 𝑯 to get the final prediction result. 

 

3   Case Analysis 
 

3.1   Study area and data set description 
Badong County, which belongs to the Tujia and Miao Autonomous Prefecture of Enshi, 

Hubei Province, is located in the southwest of Hubei Province. It has a subtropical 

monsoon climate, warm and rainy, hot and humid and foggy, with four distinct seasons. 

The average temperature of the hottest month is generally higher than 22 ℃, and the 

temperature of the coldest month is between 0 ℃  and 15 ℃ . Most of the annual 

precipitation in Padang ranges from 800 mm to 1 600 mm. The weather in Padang is 
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aperiorical and the seasonal variation of precipitation is very significant, so it is difficult 

to predict its daily precipitation. 

Data for this article were obtained from the website of the National Meteorological 

Center. The data range is the observed precipitation observation data of meteorological 

observation station in Badong Region from 2000 to 2020. A total of 7 671 days of data 

were set as the training set, verification set and test set with the ratio of 7∶2∶1, and the 

test set was the precipitation data of recent years. 

 

3.2   Parameter setting and evaluation index 

 

Daily precipitation is mapped to 𝑆 × 𝜏 × 𝐷 tensor data as input to the model. Where 𝑆 is 

the samples, 𝜏 is the time steps, and 𝐷 is the features. The model in this paper is the input 

of six dimensions of air pressure, temperature, humidity, wind speed, sunshine and 

precipitation, and the output of one dimension of precipitation. So 𝐷 is 6. 

Dropout is used to exit some neurons to prevent overfitting, and the P-value of 

random discard ratio is determined. Then through the fully connected layer, its output 

is taken as the mapping feature of WBLS layer, and together with the input 𝑋, the hidden 

layer 𝐻  is formed. Finally, the output weight 𝑊 . 𝑁1  is the number of each mapping 

feature node, 𝑁2 is the number of mapping feature, and 𝐶 is 𝐿2 regularization parameter. 

In this paper, the validation set is used to test the hyperparameters of this model, and the 

value is the optimal value selected after several experiments. The parameters used in this 

article are shown in Table 1. 
Table 1: Main parameters of LSTM-WBLS model 

 
RMSE, MAE and 𝑅2 were selected to evaluate the accuracy of the algorithm. RMSE 

is very sensitive to the error of predicted value and can reflect the accuracy of prediction. 

MAE can avoid the problem of error canceling each other, and can accurately reflect the 

actual prediction error. 𝑅2  is often used to determine the degree of fit of regression 

equations, with a value between 0 and 1, with a larger value indicating better predictive 

performance of the model. 
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𝐸RMSE = √
1

𝑛
∑ (𝑦̃(𝑖) − 𝑦(𝑖))

2𝑛
𝑖=1 ,

 

(15) 

 

𝐸MAE = ∑ |(𝑦̃(𝑖) − 𝑦(𝑖))|𝑛
𝑖=1 ,

 

(16) 

 

𝑅2 = 1 −
∑ (𝑦̃(𝑖)−𝑦(𝑖))

2𝑛
𝑖=1

∑ (𝑦̄(𝑖)−𝑦(𝑖))
2𝑛

𝑖=1

,

 

(17) 

where 𝑦𝑖  represents true monthly precipitation, 𝑦̃  represents predicted monthly 

precipitation, and 𝑦̄ represents average monthly precipitation. 
 

3.3   Comparison and analysis with existing models 
 

The existing model and the model in this paper were compared and analyzed, taking the 

prediction length 1 d as an example, and the comparison results were shown in Table 2. 

Compared with the existing SVM [4], EEMD-ARIMA [3], LSTM [13], CNN-LSTM [15] 

and LSTM-BLS models, the RMSE value of the proposed model is reduced by 50.20%, 

47.58%, 37.00%, 34.80% and 17.54%, respectively. The MAE value decreased by 55.29%, 

53.19%, 49.20%, 48.00% and 22.72%, respectively. 𝑅2 values increased by 0.209, 0.189, 

0.078, 0.058 and 0.015, respectively. Obviously, the model presented in this paper is 

optimal in the three indexes, which proves the effectiveness and accuracy of the model 

presented in this paper. 
Table 2: Comparison of evaluation indicators of each model 

 
 

 
Figure 4: Visualized comparison of prediction results by LSTM series related models 
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In order to further verify the validity of the model in this paper, the prediction of 

LSTM series related models is visualized. The precipitation series of the test set was fitted 

with the predicted values of each model, and the comparison and visualization were 

shown in Figure 4. For the convenience of mapping, the first day corresponds to the true 

and predicted precipitation value on November 26, 2018, and has lasted for 767 days until 

December 31, 2020. 

As can be seen from Figure 4, the prediction results of the model in this paper are 

significantly better than all existing models at the date of precipitation abrupt change. It 

should be noted that the existing LSTM-based models (Figure. 4a, 4b) have an inevitable 

lag in prediction, so they cannot be accurately predicted. Figure 4c basically solves the 

problem of lag due to the addition of BLS, but the adverse effects of noise and outliers on 

prediction still exist. In this paper, a weighted penalty factor is added to the model based 

on Figure 4c, and the prediction results are optimal (Figure 4d). 

 

3.4   Comparison with single factor model 
 

In order to further verify the effectiveness of the model presented in this paper, a 

comparison was made with the model with single-factor precipitation input, and the 

results were shown in Table 3. It can be seen that the prediction of multi-factor input is 

much higher than that of single-factor input model. The reason is that there are too many 

zeros in the data for the single-input model to accurately predict. Some of the data sets 

are shown in Table 4. Considering the influence of various meteorological factors, the 

model in this paper can accurately predict precipitation. 

 
Table 3: Comparison with single factor model 

 
 

Table 4: Part of the dataset in January 2001 
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3.5   Stability Analysis 
 

Without changing the parameters in the model, the prediction length was set to 3 days 

and 5 days respectively, and the daily precipitation was predicted, as shown in Table 5. 

Combined with the prediction results with prediction length of 1 d, it can be seen that 

the prediction accuracy of all prediction models decreases with the increase of prediction 

length. However, the prediction accuracy of LSTM-WBLS model is still better than other 

models under different prediction lengths. This result verifies the stability of the 

proposed model. 
 

Table 5: Comparison of evaluation indicators for each model under different prediction lengths 

 
 

3.6   Calculation efficiency analysis 
 

Operation efficiency is also the main evaluation index of the algorithm. When both 

LSTM-WBLS and LSTM training are guaranteed to achieve optimal results, the operation 

efficiency pair is shown in Table 6. As can be seen from Table 6, the training time of 

LSTM-WBLS is only about 2 s longer than that of LSTM, and the efficiency is not 

significantly reduced. The reason is that WBLS does not require a large number of 

operations, directly calculate the weight characteristics, so that LSTM-WBLS compared 

with LSTM, the operation efficiency will not have much decline. 
Table 6: Comparison of operation efficiency between LSTM-WBLS and LSTM

 
 

4   Conclusions 
 

In view of the shortcomings of existing daily precipitation prediction models, a new 

LSTM-WBLS daily precipitation prediction model is proposed in this paper. Through 

empirical research, the model in this paper solves the lag problem in LSTM prediction by 

means of the characteristics of WBLS, which does not require a lot of training and 
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calculates weights directly by pseudo-inverse, and the operation efficiency does not 

decrease. By automatically assigning appropriate weights to each sample, the samples 

with high reliability are given higher weights, while the suspicious outliers are given 

lower weights, which reduces the influence of abnormal samples and improves the 

prediction accuracy and stability. This paper discusses the possibility of combining the 

advantages of deep learning and width learning in precipitation prediction, which 

provides a new idea for precipitation prediction. In this model, only historical 

meteorological data and specific daily precipitation data are considered, and 

geographical and geomorphic features will be added in the future to further improve the 

forecast accuracy of daily precipitation. 
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