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_____________________________________________________________________________ 

Abstract. The performance of traditional Acoustic Echo Cancellation (AEC) is restricted 

due to the double-talk detector it used to determine the double-talk and single-talk 

scenarios. While Blind Source Separation (BSS) signal model is a full duplex model with 

both far-end and near-end signals, thus the BSS-based AEC does not need the double-

talk detector. This paper adopts Auxiliary function based Independent Component 

Analysis (Aux-ICA) algorithm to realize acoustic echo cancellation in frequency domain, 

in which the object function is minimizing the mutual information, and the auxiliary 

function technique is used for optimization. Simulation results show that this method 

has lower computational complexity and better performance in acoustic echo 

cancellation under continuous double-talk scenarios. 
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1   Introduction 
 

In network conference, hands-free call and other applications, there are different degrees 

of acoustic echo problems. The existence of echo affects the quality of communication, 

and the communication system cannot work normally if it is serious. Therefore, effective 
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measures must be taken to suppress the echo and eliminate its influence. Echo 

cancellation is a method usually used. Its basic idea is to estimate the echo path, get the 

estimate of the echo signal, subtract the estimated signal from the microphone signal, 

and realize the echo cancellation. 

Adaptive filtering [1] is one of the common methods of acoustic echo cancellation. 

Normalized Least Mean Square (NLMS) algorithm [2-3] is a typical algorithm for echo 

cancellation, which minimizes the mean square error between the estimated echo and 

the microphone signal through gradient descent. To prevent filter divergence, additional 

use of a Double-Talk Detector (DTD) [4] or an adaptive step strategy [5] is required to 

slow or stop adaptive filter adjustment during double-ended talk. Recursive Least Square 

(RLS) [6] is also an AEC algorithm, and compared to the NLMS algorithm, the RLS 

algorithm has a faster convergence rate, but its computational complexity is also higher. 

Speex MDF [7] is a widely used adaptive filter echo cancellation algorithm. Based on 

NLMS algorithm, it is implemented by Multi Delay block Frequency domain (MDF) 

filtering algorithm, and the optimal step size estimation is derived. The advantage is that 

the filter coefficient is based on block update. 

The AEC method mentioned above has some shortcomings. The method based on 

gradient descent has a balance problem between convergence speed and stability [8]. 

Although DTD and adaptive step strategies work well in both one-way and occasionally 

two-ended call scenarios, their performance can degrade in continuous two-ended call 

scenarios where the near-end signal is always present [9]. Blind source separation [10-11] 

is a technique that separates the desired signal from the observed mixed signal to achieve 

signal separation or enhancement. Independent Component Analysis (ICA) [12] and 

Independent Vector Analysis (IVA) [13] are typical BSS techniques. AEC can be thought 

of as a semi-blind source separation problem, where the goal is to separate the echo from 

the near-end signal from the microphone (microphone) signal. 

In recent years, although the echo cancellation method based on Deep Learning [14-

15] has shown good performance, this data-driven method has two main shortcomings: 

First, it needs enough data for training. Although there are some open-source audio 

databases, these databases are usually not enough to build robust neural networks; The 

second is that the parameters of the deep neural network cannot be interpreted, which is 

unacceptable to engineers or actual users who want to manipulate and adjust the 

performance of the echo cancellation system to their own needs. 

Compared with the traditional AEC algorithm, because the BSS signal model is a 

full-duplex model with both remote and near-end signals, the BSS based AEC algorithm 

has better echo cancellation capability in the continuous two-end call scenario. At the 

same time, the excellent performance of Speex MDF algorithm shows that the 

implementation of AEC in frequency domain has certain advantages. Therefore, this 

paper adopts independent component analysis based on auxiliary function to realize 

acoustic echo cancellation in frequency domain. Based on full-duplex characteristics, 

auxiliary function technology is used to avoid explicit step parameter selection and 

reduce the computational complexity of the algorithm. 
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2   Problem Description 
 

2.1   Signal model 
 

Regardless of nonlinear echoes, the signal model used in this paper is shown in Figure 1. 

Microphone signal x  consists of two parts: linear echo e and near-end signal s : 

 e.sx +=  (1) 

 
Figure 1: Signal model 

 

If there is only one reference signal r  in the system, the linear echo e  can be 

regarded as the convolution of the reference signal r  and the unknown echo path a , as 

shown in equation (2), where   represents the linear convolution. 

 r.ae =  (2) 

As shown in the dotted box in Figure 1, AEC calculates the echo estimate ê  from the 

reference signal r  and the estimated echo path b . Then subtract ê  from x  to get the 

signal y , which is the estimated near-end signal. As shown in equations (3) and (4): 

 𝑒̂ = 𝑏 ∗ 𝑟, (3) 

 𝑦 = 𝑥 − 𝑒̂. (4) 

After the short-time Fourier transform, the time-domain signal can be converted into the 

frequency-domain signal model in equations (5) and (6): 

 𝑿(𝜏) = 𝑺(𝜏) + 𝑨(𝜏)𝑹(𝜏), (5) 

 𝒀(𝜏) = 𝑿(𝜏) − 𝑩(𝜏)𝑹(𝜏), (6) 
where τ  is the frame index, and 𝑿, 𝑺, 𝑹, 𝒀, 𝑨 and 𝑩 represent the microphone signal in the 

frequency domain, the near end signal, the reference signal, the estimated near end signal, 

the unknown echo path, and the estimated echo path, respectively. 
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2.2   BSS model 
 

The signal model in equations (5) and (6) can also be expressed as the BSS mixing and 

separation model in equations (7) and (8), where L  is the order of the filter and ( )H  is 

the conjugate transpose. 

 [
𝑿(𝜏)

𝑹𝐻(𝜏)
] = [

𝟏
𝟎𝐿×1

𝑨1(𝜏),⋯ , 𝑨𝐿(𝜏)
𝑰𝐿×𝐿

]
⏟              

𝐸(𝜏)

[
𝑺(𝜏)

𝑹𝐻(𝜏)
], (7) 

 [
𝒀(𝜏)

𝑹𝐻(𝜏)
] = [

𝟏
𝟎𝐿×1

[𝑩1(𝜏),⋯ ,𝑩𝐿(𝜏)]
𝑰𝐿×𝐿

]
⏟                

𝐹(𝜏)

[
𝑿(𝜏)

𝑹𝐻(𝜏)
], (8) 

where 𝟎 is the zero matrix, 𝑰 is the identity matrix, 𝑬 is the mixed matrix, and 𝑭 is the 

separation matrix. Unlike traditional AEC algorithms, BSS can be viewed as a full-duplex 

model in which both remote and near-end signals coexist, with 𝑺 as an independent 

component in the BSS signal model. 

 

3   Aux-ICA algorithm 
 

3.1   Algorithm derivation 
 

According to Aux-ICA algorithm [8,16], the weighted correlation matrix 𝑪 [17] is first 

updated by nonlinear β  in equation (10), as shown in equation (9) and equation (10). 

Where γ  is the sparse parameter, α  is the forgetting factor, and δ  is a small number set 

to prevent the denominator from being zero. 

 𝑪(𝜏) = 𝛼𝑪(𝜏 − 1) + 𝛽(𝜏)𝑿(𝜏)𝑿𝐻(𝜏), (9) 

 𝛽(𝜏) = (1 − 𝛼)(‖𝒀(𝜏)‖2 + 𝛿)(𝛾−2) 2⁄ . (10) 

The separation filter 𝒘 = 𝑭𝐻𝒊1 = [1,𝑩
𝑇]𝑇 can be calculated according to equations (11) 

and (12), where 𝒊1 = [1,0,⋯ ,0]
𝑇 is the 𝐿 + 1 dimensional vector and ( )T  represents the 

transpose. Unlike the blind source separation problem, there is no ambiguity problem in 

BSS based AEC. Therefore, 𝒘 is normalized according to equation (12) to ensure that the 

separation matrix 𝑭 maintains the structure in equation (8). 

 𝒘(𝜏) = [𝑭(𝜏 − 1)𝑪(𝜏)]−1𝒊1 = 𝑪
−1(𝜏)𝑭−1(𝜏 − 1)𝒊1, (11) 

 𝒘 ← 𝒘 𝒘1⁄ . (12) 
As can be seen from equation (8), the separation matrix 𝑭 is an upper triangular matrix 

with diagonal elements 1, the first-row elements non-zero, and other elements 0, so 𝑭−1 

and the separation matrix 𝑭 have the same structure. And because 𝒊1 = [1,0,⋯ ,0]
𝑇, the 

calculation of the matrix in equation (11) is only related to the first column elements of 

𝑪−1 and 𝑭−1, so the inverse process of separating matrix 𝑭 is avoided in equation (11), as 

shown in 

 𝒘(𝝉) = 𝑪−𝟏(𝝉)𝒊𝟏.  (13) 
Thus, the separation filter 𝒘 can be written in the form of 
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 𝒘 = [𝟏,𝑩T]T = 𝑪−1𝒊1. (14) 
The correlation matrix 𝑪 in equations (9) and (11) can be converted to the representation 

of equations (15) to (18), where 𝑽 is the autocorrelation matrix of the reference signal and 

𝑷 is the cross-correlation matrix of the microphone signal and the reference signal: 

 𝑪 = [
𝑪11
𝑷

  𝑷
𝐻

𝑽
], (15) 

 𝑪11(𝜏) = 𝛼𝑪11(𝜏 − 1) + 𝛽(𝜏)𝑿(𝜏)𝑿
𝐻(𝜏), (16) 

 𝑷(𝜏) = 𝛼𝑷(𝜏 − 1) + 𝛽(𝜏)𝑹(𝜏)𝑿𝐻(𝜏),  (17) 

 𝑽(𝜏) = 𝛼𝑽(𝜏 − 1) + 𝛽(𝜏)𝑹(𝜏)𝑹𝐻(𝜏). (18) 

According to the inversion of the partitioned matrix, 𝑪−1 can be expressed in the form of  

 𝑪−1 = [

1

𝑪11−𝑷H𝑽−1𝑷

−𝑽−1𝑷

𝑪11−𝑷H𝑽−1𝑷

     

−𝑷H

𝑪11
(𝑽 −

𝑷𝑷H

𝑪11
)

(𝑽 −
𝑷𝑷H

𝑪11
)
−1 ]. (19) 

Substituting equation (19) into equation (14) gives a solution as shown in  

 [
𝟏
𝑩T
] = [

1

𝑪11−𝑷H𝑽−1𝑷

−𝑽−1𝑷

𝑪11−𝑷H𝑽−1𝑷

]. (20) 

The simplified solution shown in equation (21) below is obtained by simplifying equation 

(20): 

 𝑩(𝜏) = 𝑽−1(𝜏)𝑷(𝜏). (21) 
Because the BSS separation model in equation (8) can be interpreted as adding a negative 

echo estimate to the microphone signal, the negative sign in equation (20) through 

equation (21) can be omitted, instead of subtracting it as in the traditional AEC model. 

 

3.2   Discussion 
 

The objective function of Aux-ICA AEC is obtained by minimizing mutual information 

measured by KL divergence (Kullback-Leibler divergence) [18] and optimized by 

auxiliary function technique. In the ICA model, the near-end signal is explicitly modeled 

as an independent component, with the nonlinear parameter β in ICA as the weighted 

value. The use of nonlinear parameter β improves the performance of speech separation. 

Because the BSS signal model is a full-duplex model in which both remote and near-end 

signals coexist, Aux-ICA AEC has good echo cancellation capability in continuous two-

end call scenarios. Since equation (21) includes matrix inversion and is not suitable for 

online application, QRD-RLS (QR Decomposition-RLS) algorithm [19] can be used to 

reduce the computational complexity. 

During signal processing in the frequency domain, in order to prevent large errors 

in the front end of the signal due to the zero matrix of the echo path of the first frame, the 

first frame of the microphone signal needs to be preprocessed in the simulation, that is, 

all points of the first frame are iterated according to the algorithm in this paper, so that 
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the echo path of the first frame is a non-zero matrix. The remaining frames are iterated 

according to the first frame. The echo elimination process of Aux-ICA AEC algorithm is 

shown in Table 1. 
Table 1: The Aux-ICA AEC algorithm 

 
 

4   Simulation experiment 
 

4.1   Experimental environment 
 

In the simulation, a 5 m × 7 m × 2.4 m  room was established, and the position and 

direction of the sound source and microphone were randomly simulated. Room Impulse 

Response (RIR) is generated according to the mirror source method [20]. A set of signals 

is randomly selected from a dataset of 100 sound sources and reference signals with a 

sampling rate of 16 kHz, with a time length of approximately 24 s. The reference signal 

includes both music and speech types (that is, the echo signal can be either music or 

speech) and is always present during the experiment to simulate a continuous two-

terminal call scenario. According to equations (1) and (2), the reference Signal is 

convolved with the simulated Echo path, and then mixed according to the Signal to Echo 

Radio (SER) ratio to obtain the experimental data. In this experiment, two algorithms are 

compared: Speex MDF and Aux-ICA AEC. Among them, the filter length of Speex MDF 

algorithm is set to 512, and the frame length is set to 256. In Aux-ICA AEC algorithm, the 

length of short-time Fourier transform is 8 192, and the frame shift is 4 096. In this paper, 

several experiments are conducted by setting different values of reverberation time 

( 60RT , representing the time from sudden sound stop to sound pressure level reduction 

of 60 dB) and signal echo ratio (SER). The algorithm running time 𝑇 under the same 

hardware platform is used to compare the computational complexity of different 

algorithms, and the near-end Speech Quality after echo cancellation is evaluated by 

Perceptual Evaluation of Speech Quality (PESQ) [21]. The simulation parameter Settings 

of the experiment are shown in Table 2. 

 

4.2   Results and discussion 
 

Tables 3 and 4 show the algorithm running time obtained when SER values are different 

in the continuous two-terminal call scenario under different reverberation environments 

(RT60 = 0.2 s, 0.4 s, 0.8 s), when the echo signal is music and voice respectively. 
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Table 2: Simulation environment parameters setting 

 
In Tables 3 and 4, 𝑇Aux represents the running time of Aux-ICA AEC algorithm, and 

𝑇Speex represents the running time of Speex MDF algorithm. It can be observed from 

Tables 3 and 4 that in a continuous two-terminal call scenario with the same degree of 

reverberation, the running time of Aux-ICA AEC algorithm is about 6.87% lower than 

that of Speex MDF algorithm on average when the echo signal is music, and the running 

time of AUX-ICA AEC algorithm is about 6.87% lower than that of SPEEX MDF 

algorithm when the echo signal is voice. The running time of Aux-ICA AEC algorithm is 

about 11.91% lower than that of Speex MDF algorithm, which shows that Aux-ICA AEC 

algorithm has lower computational complexity. Compared with Speex MDF algorithm, 

Aux-ICA AEC algorithm is based on the full-duplex characteristics of BSS and does not 

require additional use of DTD, so Aux-ICA AEC algorithm has lower computational 

complexity, which is also verified by simulation experiments. 
 

Table 3: Algorithm running time in different degrees of reverberation environment when echo signal is 

music 

 
 

Table 4: Algorithm running time in different degrees of reverberation environment when echo signal is 

voice 

 
 

In this paper, PESQ is used to evaluate the signal after echo cancellation in the 
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experiment, as shown in Figures 2-7 (Figures 2-4 is the experimental result when the echo 

is music, Figures 5-7 is the experimental result when the echo is speech). The higher the 

PESQ score, the better the echo cancellation ability of the algorithm. As can be seen from 

Figure 2 and Figure 5, when RT60 = 0.2s, SER=10dB,  compared with RT60 =

0.2𝑠, SER=− 10dB , Aux-ICA AEC algorithm has a higher PESQ score due to the 

reduction of feedback amplitude. As the degree of reverberation intensifies, RT60 = 0.8s 

and SER=− 10dB in Figure 4. Compared with RT60 = 0.2s and SER=− 10dB in Figure 2, 

the echo cancellation capability of Aux-ICA AEC algorithm decreases, but its echo 

cancellation performance is still significantly better than that of Speex MDF algorithm. 

As can be seen from the data of each group in Figures 2-7, in the same continuous 

two-terminal call scenario, the PESQ score of Speex MDF algorithm is lower than that of 

Aux-ICA AEC algorithm, which proves that Aux-ICA AEC algorithm has better echo 

cancellation performance in continuous two-terminal call scenario. 

 
Figure 2: PESQ score of the algorithm when RT60 is 0.2 s (the echo signal is music) 

 

 
Figure 3: PESQ score of the algorithm when RT60 is 0.4 s (the echo signal is music) 
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Figure 4: PESQ score of the algorithm when RT60 is 0.8 s (the echo signal is music) 

 

 
Figure 5: PESQ score of the algorithm when RT60 is 0.2 s (the echo signal is voice) 

 

 
Figure 6: PESQ score of the algorithm when RT60 is 0.4 s (the echo signal is voice) 
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Figure 7: PESQ score of the algorithm when RT60 is 0.8 s (the echo signal is voice) 

 

5   Conclusions 
 

In this paper, an ICA algorithm based on auxiliary function is studied to realize acoustic 

echo cancellation in frequency domain. Based on the full-duplex feature, the explicit step 

parameter selection and the double-ended call detector can be omitted by using the 

auxiliary function technique, which reduces the computational complexity of the 

algorithm. Simulation results show that the proposed method has lower computational 

complexity and better echo cancellation performance. 
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