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Abstract. In recent years, high-dimensional fractional equations have gained promi-
nence as a pivotal focus of interdisciplinary research spanning mathematical physics,
fluid mechanics, and related fields. In this paper, we investigate a (4+1)-dimensional
time-fractional Kadomtsev-Petviashvili (KP) equation with variable coefficients. We
first derive the (4+1)-dimensional time-fractional KP equation with variable coefficients
in the sense of the Riemann-Liouville fractional derivative using the semi-inverse and
variational methods. The symmetries and conservation laws of this equation are an-
alyzed through Lie symmetry analysis and a new conservation theorem, respectively.
Finally, both exact and numerical solutions of the fractional-order equation are obtained
using the Hirota bilinear method and the pseudo-spectral method. The effectiveness
and reliability of the proposed approach are demonstrated by comparing the numerical
solutions of the derived models with exact solutions in cases where such solutions are
known.

AMS subject classifications: 22E47, 35G20, 35B10
Key words: Time fractional equation, Conservation laws, Hirota bilinear method, Pseudo-spectral
method.

1 Introduction

In recent years, the research on high-dimensional integrability has gradually become a
new hot topic [1, 2]. Many high-dimensional equations can describe extremely complex
physical phenomena in nature. The study of high-dimensional nonlinear equations plays
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an important role in helping us understand some facts that cannot be understood by
ordinary observation. In the previous study of nonlinear partial differential equation,
many scholars realized the importance of high-dimensional nonlinear partial differential
equation, and spent a lot of time to find the appropriate high-dimensional nonlinear partial
differential equations [3–5].

KP equation was discovered in the study of nonlinear wave theory in weakly dispersive
media by Kadomtsev and Petviashvili, physicists of the former Soviet Union. It possesses
a broad physical background and significant applications in plasma physics, gas dynamics,
and fluid mechanics. There are few studies on variable coefficient KP equation. The vari-
able coefficient KP equation can describe the actual surface wave better than the constant
coefficient KP equation. It can deal with the concrete situation of the surface wave enter-
ing the sea or ocean through the canyon when the width, depth and density change con-
stantly. In recent years, with the high-dimensional nonlinear problems gradually become
a hot topic, some (3+1)-dimensional KP equations [6–9] and (4+1)-dimensional KP equa-
tions have appeared. Fan et al. [10] first proposed a (4+1)-dimensional variable-coefficient
KP equation in 2021, deriving lump solutions and interaction solutions including rogue
waves and kink waves. Later, Zhu et al. [11] made some additions to the solutions of this
equation. The equation has the form

f(t)u2
x+f(t)uuxx+g(t)uxxxx+h7(t)uss+h6(t)uzz+h5(t)uyy

+h4(t)uxs+h3(t)uxz+h2(t)uxy+h1(t)uxx+uxt=0, (1.1)

where u=u(x,y,s,z,t). f(t) and g(t) represent the nonlinearity and dispersion, respec-
tively. h1(t)−h4(t) stand for the perturbed effects. h5(t)−h7(t) describe the disturbed
wave velocities.

While the above equation is of integer order, fractional-order phenomena exist in nat-
ural systems as fundamental physical manifestations. At present, growing people pay at-
tention to fractional equations, and the theory of fractional calculus is becoming more and
more mature. Therefore, in this article, we try to extend the integer order (4+1) dimen-
sional KP equation with variable coefficients to the fractional order form, and study the
fractional equation. The time fractional form of the equation mentioned above has been
derived for the first time using the semi-inverse method and the variational method [12].
This derivation has provided a more general significance to the equation. In our study,
we focus on analyzing the symmetry, conservation laws, exact solutions, and numerical
solutions of this equation.

Symmetry and conservation laws are very important for the study of partial differen-
tial equations. Recent advancements have been made in the investigation of non-classical
Lie symmetries associated with partial differential equations. It is obvious that studies
will be carried out on its application to fractional differential equations in the near future.
Li’s logarithmic method [13,14] provides a robust framework for deriving analytical solu-
tions to nonlinear partial differential equations. It was proposed by Markus Surface Li,
a Norwegian mathematician. Gulsen [15] applied the technique that corresponds to non-
classical symmetries to obtain new solutions to evolutionary-type equations. The nature
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of conservation comes from symmetry, and the conservation laws, as a generalization of
physically conserved quantities such as energy conservation and momentum conservation,
its important role in the development and research of nonlinear partial differential equa-
tions is mainly reflected in that the conservation laws can help solve and reduce nonlinear
partial differential equations, construct special solutions of nonlinear partial differential
equations, and help explain a large number of complex nonlinear physical phenomena de-
scribed by nonlinear partial differential equations. For the construction of the conservation
laws of integer-order PDEs, we are familiar with the method of Noether’s theorem [16]
and the new conservation theorem [17], and the new conservation theorem here is to con-
struct the conservation laws based on the Lie point symmetries. For fractional partial
differential equations, the conservation laws are usually constructed by using the extended
Noether’s theorem, but this method has its limitations [18,19]. Until recently, some schol-
ars proposed a method to construct the conservation laws of fractional partial differential
equations by using the extended Noether’s operator based on the new conservation theo-
rem [20]. In our research, we propose a method that overcomes the limitations of previous
approaches and no longer requires fractional partial differential equations to satisfy the
fractional Lagrangian form. This method is applicable to constructing conservation laws
for a wide range of fractional partial differential equations. Furthermore, the conservation
laws for high-dimensional fractional order equations have not been extensively investi-
gated. Therefore, in this paper, our focus is on constructing the conservation laws of the
(4+1) dimensional time fractional KP equation with variable coefficients. By applying our
method, we aim to provide new insights into the conservation properties of this specific
equation.

Finding exact solutions for nonlinear partial differential equations is crucial in the
field of mathematical physics as it allows us to gain a deeper understanding of the under-
lying nonlinear phenomena. The exact solutions of high-dimensional partial differential
equations are discussed in the following article [21–27]. Zhao [28] uses the semi-inverse
variational principle to obtain the soliton solutions of PDEs. In 2015, Ma [29] proposed a
method to construct the Lump solutions of JM equation directly by using the Hirota bi-
linear method, and gave the theoretical proof and derivation, which pushed the research of
Lump solutions to a new stage. Inspired by this, we employ Hirota bilinear method to solve
the exact solutions of the (4+1) dimensional time fractional KP equation with variable
coefficients. Hirota bilinear method is an effective method to construct exact solutions for
many nonlinear partial differential equations, which plays an important role in nonlinear
integrable systems. The key idea of this method is to convert the original nonlinear partial
differential equations into bilinear form by means of some variable transformations and
solve it by means of auxiliary functions. Some studies on this method can be found in the
literature [30,31]. In 2023, Yao [32] proposed Nucci’s reduction method to obtain the exact
solutions of the periodic Hunter–Suxon equation and got three separate families of vector
fields. For numerical solutions, the finite difference method and finite element method [33]
need a lot of computing costs and storage costs to deal with high-dimensional problems.
The pseudo-spectral method [34, 35] offers an efficient alternative for numerically solving
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high-dimensional PDEs. Some scholars explored the application of this method in the
numerical simulation of (3+1) dimensional seismic waves [36–38]. The advantage of this
method is that it can obtain higher calculation accuracy in the case of large grid spacing,
which will save a lot of calculation, reduce the burden of the computer, and is conducive to
the numerical solution of high-dimensional partial differential equations. In this paper, we
will apply the pseudo-spectral method to solve the (4+1)-dimensional time fractional KP
equation with variable coefficients. And we obtained the satisfactory numerical solutions
by the considered method.

The rest of this article is organized as follows. In Section 2, the (4+1)-dimensional
time fractional KP equation with variable coefficients is derived by using the semi-inverse
method and the variational approach. In Section 3, we employ Lie symmetry analysis to
study the symmetry properties of the obtained time fractional KP equation with variable
coefficients and utilize the new conservation theorem to construct the conservation laws
associated with the equation [39–42]. In Section 4, the exact solutions of the time frac-
tional KP equation with variable coefficients are given by using Hirota bilinear method.
In Section 5, the numerical solutions of the time fractional KP equation with variable
coefficients can be given by pseudo-spectral method. Finally, in Section 6, we present our
conclusions based on the findings from our analysis of the exact and numerical solutions.
These conclusions provide insights into the behavior and properties of the equation under
study.

2 Derivation of the (4+1)-dimensional time fractional KP
equation with variable coefficients

The (4+1)-dimensional KP equation with variable coefficients has the form

f(t)u2
x+f(t)uuxx+g(t)uxxxx+h7(t)uss+h6(t)uzz+h5(t)uyy

+h4(t)uxs+h3(t)uxz+h2(t)uxy+h1(t)uxx+uxt=0, (2.1)

where u=u(x,y,s,z,t). f(t) and g(t) represent the nonlinearity and dispersion, respec-
tively. h1(t) to h4(t) stand for the perturbed effects. h5(t) to h7(t) describe the disturbed
wave velocities.

Introducing a potential function v(x,y,s,z,t) as u(x,y,s,z,t) = vx(x,y,s,z,t), we can
rewrite the (4+1)-dimensional KP equation with variable coefficients as

f(t)

2 (u2)xx+g(t)vxxxxx+h7(t)vxss+h6(t)vxzz+h5(t)vxyy+h4(t)vxxs

+h3(t)vxxz+h2(t)vxxy+h1(t)vxxx+vxxt=0, (2.2)
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The functional of the potential Eq. (2.2) is

J(v)=
∫

R
dx

∫
Y

dy

∫
S

ds

∫
Z

dz

∫
T

dt{v[c1
f(t)

2 (u2)xx+c2g(t)vxxxxx

+c3h7(t)vxss+c4h6(t)vxzz+c5h5(t)vxyy+c6h4(t)vxxs+c7h3(t)vxxz

+c8h2(t)vxxy+c9h1(t)vxxx+c10vxxt]},

(2.3)

where ci(i=1,2,3,···,10) is Lagrangian multipliers. Considering conditions that (u2)xx is
fixed function and vx|R=vx|S=vx|Z=vx|Y =vx|T=0, then integrating the above equation by
parts. Using the variational of the above functional and the variational optimal condition
δJ(v)=0, we have

c1
f(t)

2 (u2)xx+2c2g(t)vxxxxx+2c3h7(t)vxss+2c4h6(t)vxzz+2c5h5(t)vxyy

+2c6h4(t)vxxs+2c7h3(t)vxxz+2c8h2(t)vxxy+2c9h1(t)vxxx+2c10vxxt=0.
(2.4)

We know Eq. (2.4) equals Eq. (2.2), so we obtain these constant coefficients: c1 =
1,cj =

1
2 (j = 2,3,4,···,10). We can obtain the following Lagrangian form of Eq. (2.1) by

substituting the values of ci(i=1,2,···,10) into Eq. (2.3):

L(v,vx,vy,vs,vz,vt,vxx,vxy,vxs,vxz,vxxxx)

=
f(t)

2 (u2)xxv− 1
2g(t)vxvxxxx− 1

2h7(t)vsvxs− 1
2h6(t)vzvxz − 1

2h5(t)vyvxy

− 1
2h4(t)vsvxx− 1

2h3(t)vzvxx− 1
2h2(t)vyvxx− 1

2h1(t)vxvxx− 1
2vtvxx.

(2.5)

Similarly, the Lagrangian form of the (4+1)-dimensional time fractional KP equation with
variable coefficients can be obtained as

F (v,vx,vy,vs,vz,Dα
t v,vxx,vxy,vxs,vxz,vxxxx)

=
f(t)

2 (u2)xxv− 1
2g(t)vxvxxxx− 1

2h7(t)vsvxs− 1
2h6(t)vzvxz − 1

2h5(t)vyvxy

− 1
2h4(t)vsvxx− 1

2h3(t)vzvxx− 1
2h2(t)vyvxx− 1

2h1(t)vxvxx− 1
2Dα

t vvxx,

(2.6)

where the Dα
t is Riemann-Liouville fractional derivative operator [43].

Consequently, the functional form of the equation with variable coefficients can be
given as

J(v)=
∫

R
dx

∫
Y

dy

∫
S

ds

∫
Z

dz

∫
T
(dt)αF (v,vx,vy,vs,vz,Dα

t v,vxx,vxy,vxs,vxz,vxxxx), (2.7)

where
∫ t

a(dτ )αf(τ )=α
∫ t

a dτ (t−τ )αf(τ ).
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Integrating by parts for Eq. (2.7) with making use of the following relation [44] and
variational optimal condition δJ(v)=0:∫ b

a
(dτ )αf(x)Dα

x g(x)=Γ(1+α)

[
g(x)f(x)|ba−

∫ b

a
(dx)αg(x)Dα

x f(x)

]
,

f(x),g(x)∈ [a,b], (2.8)

we can obtain the Euler-Lagrangian equation of the equation with variable coefficients(
∂F

∂v

)
·v+

(
∂F

∂vx

)
·vx+

(
∂F

∂vy

)
·vy+

(
∂F

∂vs

)
·vs+

(
∂F

∂vz

)
·vz+

(
∂F

∂Dα
t v

)
·Dα

t v

+

(
∂F

∂vxx

)
·vxx+

(
∂F

∂vxy

)
·vxy+

(
∂F

∂vxs

)
·vxs+

(
∂F

∂vxz

)
·vxz+

(
∂F

∂vxxxx

)
·vxxxx=0.

(2.9)

Substituting Eq. (2.6) into Eq. (2.9) and making use of the fractional potential func-
tion Dα

x v(x,y,s,z,t)=u(x,y,s,z,t), we can obtain the equation with variable coefficients

Dα
t ux+

f(t)

2 (u2)xx+g(t)uxxxx+h7(t)uss+h6(t)uzz+h5(t)uyy

+h4(t)uxs+h3(t)uxz+h2(t)uxy+h1(t)uxx=0.
(2.10)

Eq. (2.10) is the (4+1)-dimensional time fractional KP equation with variable coefficients.
And Dα

t u can be defined as

Dα
t u=


1

Γ(n−α)
∂n

∂tn

∫ t
0 (t−s)n−α−1u(x,s)ds, n−1<α<n,

∂nu
∂tn , α=n,

where Γ(x) is Gamma function.

3 The symmetry analysis and conservation laws for the
(4+1)-dimensional time fractional KP equation with vari-
able coefficients

In this section, we study the Lie symmetry and conservation laws of the (4+1)-dimensional
time fractional KP equation with variable coefficients. Some studies on Lie symmetry
analysis and conservation laws of partial differential equations with variable coefficients
may refer to these articles [45–47].

3.1 Lie symmetry analysis of the (4+1)-dimensional time fractional KP
equation with variable coefficients

The (4+1)-dimensional time fractional KP equation with variable coefficients here has five
variables x,y,s,z,t, the infinitesimal transformations are as follows.
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Infinitesimal transformation of each variable:

x∗=x+ϵξ1(x,y,s,z,t,u)+o(ϵ2),
y∗=y+ϵξ2(x,y,s,z,t,u)+o(ϵ2),
s∗=s+ϵξ3(x,y,s,z,t,u)+o(ϵ2),
z∗=z+ϵξ4(x,y,s,z,t,u)+o(ϵ2),
t∗= t+ϵτ (x,y,s,z,t,u)+o(ϵ2),
u∗=u+ϵη(x,y,s,z,t,u)+o(ϵ2),

(3.1)

where ϵ≪1, ξ1,ξ2,ξ3,ξ4,τ ,η are infinitesimal parameters. And the infinitesimal transfor-
mation of the partial derivatives of u with respect to different variables are

∂u∗

∂x∗ =
∂u

∂x
+ϵηx(x,y,s,z,t,u)+o(ϵ2),

∂u∗

∂y∗ =
∂u

∂y
+ϵηy(x,y,s,z,t,u)+o(ϵ2),

∂αu∗
x

∂t∗α
=

∂αux

∂tα
+ϵηα,t(x,y,s,z,t,u)+o(ϵ2),

∂2u∗

∂x∗2 =
∂2u

∂x2 +ϵηxx(x,y,s,z,t,u)+o(ϵ2),

∂2u∗

∂y∗2 =
∂2u

∂y2 +ϵηyy(x,y,s,z,t,u)+o(ϵ2),

∂2u∗

∂s∗2 =
∂2u

∂s2 +ϵηss(x,y,s,z,t,u)+o(ϵ2),

∂2u∗

∂z∗2 =
∂2u

∂z2 +ϵηzz(x,y,s,z,t,u)+o(ϵ2),

∂2u∗

∂x∗∂y∗ =
∂2u

∂x∂y
+ϵηxy(x,y,s,z,t,u)+o(ϵ2),

∂2u∗

∂x∗∂s∗ =
∂2u

∂x∂s
+ϵηxs(x,y,s,z,t,u)+o(ϵ2),

∂2u∗

∂x∗∂z∗ =
∂2u

∂x∂z
+ϵηxz(x,y,s,z,t,u)+o(ϵ2),

∂4u∗

∂x∗4 =
∂4u

∂x4 +ϵηxxxx(x,y,s,z,t,u)+o(ϵ2),

(3.2)

where ϵ≪1, ηx,ηy,ηxx,ηyy,ηss,ηzz,ηxxxx,ηxy,ηxs,ηxz,ηα,t are extend infinitesimal parame-
ters.
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According to the reference [43], we can give ηx,ηy,ηxx,ηxxxx,ηxy,ηxs,ηxz,ηα,t as

ηx=Dx(η)−uxDx(ξ1)−uyDx(ξ2)−usDx(ξ3)−uzDx(ξ4)−utDx(τ ),
ηxx=Dx(η

x)−uxxDx(ξ1)−uyxDx(ξ2)−usxDx(ξ3)−uzxDx(ξ4)−utxDx(τ ),
ηxy =Dy(η

x)−uxyDy(ξ1)−uyyDy(ξ2)−usyDy(ξ3)−uzyDy(ξ4)−utyDy(τ ),
ηxs=Ds(η

x)−uxsDs(ξ1)−uysDs(ξ2)−ussDs(ξ3)−uzsDs(ξ4)−utsDs(τ ),
ηxz =Dz(η

x)−uxzDz(ξ1)−uyzDz(ξ2)−uszDz(ξ3)−uzzDz(ξ4)−utzDz(τ ),
ηyy =Dy(η

y)−uxyDy(ξ1)−uyyDy(ξ2)−usyDy(ξ3)−uzyDy(ξ4)−utyDy(τ ),
ηss=Ds(η

s)−uxsDs(ξ1)−uysDs(ξ2)−ussDs(ξ3)−uzsDs(ξ4)−utsDs(τ ),
ηzz =Dz(η

z)−uxzDz(ξ1)−uyzDz(ξ2)−uszDz(ξ3)−uzzDz(ξ4)−utzDz(τ ),
ηα,t=Dα

t (η
x)+ξ1Dα

t (uxx)−Dα
t (ξ1uxx)+ξ2Dα

t (uxy)−Dα
t (ξ2uxy)

+ξ3Dα
t (uxs)−Dα

t (ξ3uxs)+ξ4Dα
t (uxz)−Dα

t (ξ4uxz)+Dα
t (Dt(τ )ux)

−Dα+1
t (τux)+τDα+1

t (ux),
ηxxxx=Dx(η

xxx)−uxxxxDx(ξ1)−uyxxxDx(ξ2)−usxxxDx(ξ3)−uzxxxDx(ξ4)

−utxxxDx(τ ),

(3.3)

in which Dx,Ds,Dz and Dt are total derivative operators

Dt=
∂

∂t
+ut

∂

∂u
+utt

∂

∂ut
+utx

∂

∂ux
+uty

∂

∂uy
+uts

∂

∂us
+utz

∂

∂uz
+···,

Dx=
∂

∂x
+ux

∂

∂u
+uxx

∂

∂ux
+uxy

∂

∂uy
+uxs

∂

∂us
+uxz

∂

∂uz
+uxt

∂

∂ut
+···,

Dy =
∂

∂y
+uy

∂

∂u
+uyy

∂

∂uy
+uyx

∂

∂ux
+uys

∂

∂us
+uyz

∂

∂uz
+uyt

∂

∂ut
+···,

Ds=
∂

∂s
+us

∂

∂u
+uss

∂

∂us
+usx

∂

∂ux
+usy

∂

∂uy
+usz

∂

∂uz
+ust

∂

∂ut
+···,

Dz =
∂

∂z
+uz

∂

∂u
+uzz

∂

∂uz
+uzx

∂

∂ux
+uzy

∂

∂uy
+uzs

∂

∂us
+uzt

∂

∂ut
+···.

(3.4)

The infinitesimal generators X has the following form:

X =ξ1(x,y,s,z,t,u) ∂

∂x
+ξ2(x,y,s,z,t,u) ∂

∂y
+ξ3(x,y,s,z,t,u) ∂

∂s

+ξ4(x,y,s,z,t,u) ∂

∂z
+τ (x,y,s,z,t,u) ∂

∂t
+η(x,y,s,z,t,u) ∂

∂u
.

(3.5)

Infinitesimal invariant criterion obtained under infinitesimal transformation is

pr(α)X(∆)|∆=0=0, (3.6)

where
∆=Dα

t ux+
f(t)

2 (u2)xx+g(t)uxxxx+h7(t)uss+h6(t)uzz

+h5(t)uyy+h4(t)uxs+h3(t)uxz+h2(t)uxy+h1(t)uxx=0,
(3.7)
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and the prolongation operator pr(α)X is

pr(α)X =X+ηα,t ∂

Dα
t ux

+ηx ∂

∂ux
+ηxx ∂

∂uxx
+ηxy ∂

∂uxy
+ηxs ∂

∂uxs

+ηxz ∂

∂uxz
+ηyy ∂

∂uyy
+ηss ∂

∂uss
+ηzz ∂

∂uzz
+ηxxxx ∂

∂uxxxx
. (3.8)

The structure of the fractional derivative remains invariant under the transformations
given by Eqs.(3.1) and (3.2). It is worth noting that the lower limit of the integral in
Eq. (2.10) is fixed and should also remain invariant under these transformations. The
invariant condition yields τ (x,y,s,z,t,u)|t=0=0.

Besides, the generalized chain rule and generalized Leibnitz rule are defined as [40,41]:

dmg(y(t))

dtm
=

m∑
k=0

k∑
r=0

(
k

r

)
1
k!
[−y(t)]r

dm

dtm

[
(y(t))k−r

] dkg(y)

dyk
, (3.9)

Dα
t (f(t)g(t))=

∞∑
n=0

(
α

n

)
Dα−n

t (f(t))Dn
t (g(t)),α>0, (3.10)

where (α
n)=

−1(n−1)αΓ(n−α)
Γ(1−α)Γ(n+1) .

Now, making use of Eqs.(3.3)-(3.9) and Eq. (3.10) with f(t)= 1, so we can get the
specific expression of the extended infinitesimal. Take ηx,ηy,ηxx,ηyy,ηxy,ηα,t for example
to demonstrate

ηx=ηx+uxηu−u2
xξ1u−uyξ2x−uyuxξ2u−usξ3x

−usuxξ3u−utτx−utuxτu−uzξ4x−uzuxξ4u,
ηy =ηy+uyηu−uxξ1y −uxuyξ1u−uyξ2y −u2

yξ2u−usξ3y

−usuyx2ξ3u−utτy −utuyτu−uzξ4y −uzuyξ4u,
ηxx=ηxx+uxxηu+2uxηux−2uxxξ1x−uxξ1xx−3uxuxxξ1u−2u2

xξ1ux

−2uyxξ2x−uyξ2xx−uxxuyξ2u−2uxuyxξ2u−2uxuyξ2ux−2usxξ3x

−usξ3xx−2usxuxξ3u−usuxxξ3u−2usuxξ3ux−2uzxξ4x−uzξ4xx

−2uzxuxξ4u−uzuxxξ4u−2uzuxξ4ux−2utxτx−utτxx−2utxuxτu

−utuxxτu−2utuxτux+u2
xηuu−u3

xξ1uu−u2
xuyξ2uu−u2

xusξ3uu

−u2
xuzξ4uu−u2

xutτuu,
ηyy =ηyy+uyyηu+2uyηuy −2uxyξ1y −uxξ1yy −2uxyuyξ1u−uxuyyξ1u

−2uxuyξ1uy −2uyyξ2y −uyξ2yy −3uyuyyξ2u−2u2
yξ2uy −2usyξ3y −usξ3yy

−2usyuyξ3u−usuyyξ3u−2usuyξ3uy −2uzyξ4y −uzξ4yy −2uzyuyξ4u

−uzuyyξ4u−2uzuyξ4uy −2utyτy −utτyy −2utyuyτu−utuyyτu−2utuyτuy

+u2
yηuu−uxu2

yξ1uu−u3
yξ2uu−usu2

yξ3uu−uzu2
yξ4uu−utu

2
yτuu,
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ηxy =ηxy+uxyηu+uxηuy −uxyξ1x−uxξ1xy −2uxuxyξ1u−u2
xξ1uy −uyyξ2x

−uyξ2xy −uxyuyξ2u−uxuyyξ2u−uxuyξ2uy −usyξ3x−usξ3y −usyuxξ3u

−usuxyξ3u−usuxξ3uy −uzyξ4x−uzξ4xy −uzyuxξ4u−uzuxyξ4u−uzuxξ4uy

−utyτx−utτxy −utyuxτu−utuxyτu−utuxτuy+uyηxu+uxuyηuu

−uxuyξ1u−u2
xuyξ1uu−u2

yξ2xu−uxu2
yξ2uu−usuyξ3xu−usuxuyξ3uu

−uzuyξ4xu−uzuxuyξ4uu−utuyτxu−utuxuyτuu−uxyξ1y −uxyuyξ1u

−uyyξ2y −uyyuyξ2u−usyξ3y −usyuyξ3u−uzyξ4y −uzyuyξ4u−utyτy

−utyuyτu,
ηα,t=∂α

t (η
x)+[(ηx)u+αDt(τ )]∂

α
t u−u∂α

t (η
x)u+µ

+
∞∑

n=1

[(
α

n

)
∂n

t (η
x)u−

(
α

n+1

)
Dn+1

t (τ )

]
∂α−n

t u−
∞∑

n=1

(
α

n

)
Dn

t (ξ1)∂
α−n
t (uxx)

−
∞∑

n=1

(
α

n

)
Dn

t (ξ2)∂
α−n
t (uxy)−

∞∑
n=1

(
α

n

)
Dn

t (ξ3)∂
α−n
t (uxs)

−
∞∑

n=1

(
α

n

)
Dn

t (ξ4)∂
α−n
t (uxz),

where

µ=
∞∑

n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1
k!

tn−α

Γ(n+1−α)
[−u]r

∂m

∂tm
[uk−r]

∂n−m+k

∂tn−m∂uk
.

Substituting Eqs.(3.6),(3.5),(3.7) into Eq. (3.8), we have

τf
′
(t)u2

x+τf
′
(t)uuxx+τg

′
(t)uxxxx+τh

′
7(t)uss+τh

′
6(t)uzz+τh

′
5(t)uyy

+τh
′
4(t)uxs+τh

′
3(t)uxz+τh

′
2(t)uxy+τh

′
1(t)uxx+ηf(t)uxx+ηα,t

+2ηxf(t)ux+ηxx[f(t)u+h1(t)]+h2(t)η
xy+h4(t)η

xs+h3(t)η
xz

+h5(t)η
yy+h7(t)η

ss+h6(t)η
zz+g(t)ηxxxx=0.

(3.11)

By substituting the specific expression of the extended infinitesimal parameters into
Eq. (3.11), we can derive the determining equations by equating the coefficients of the
partial derivatives of u of different orders to zero. This step allows us to obtain a set of
equations that determine the form of the solution u. Then simplifying these equations,
we have

τf
′
(t)+2f(t)(ηu−ξ1x)=0,

τh
′
1(t)+ηf(t)+h1(t)(ηu−2ξ1x)=0,

τh
′
2(t)+h2(t)(ηu−ξ1x)=0,

τh
′
3(t)+h3(t)(ηu−ξ1x)=0,
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τh
′
4(t)+h4(t)(ηu−ξ1x)=0,

h5(t)(ηu−2ξ2y)−h2(t)ξ2y+τh′
5(t)=0,

h6(t)(ηu−2ξ4z)−h3(t)ξ4z+τh′
6(t)=0,

h7(t)(ηu−2ξ3s)−h4(t)ξ3s+τh′
7(t)=0,

g(t)(ηu−4ξ1x)+τg′(t)=0,
ξ1u=ξ1y =ξ1s=ξ1z =ξ1t=0,
ξ2u=ξ2x=ξ2s=ξ2z =ξ2t=0,
ξ3u=ξ3x=ξ3y =ξ3z =ξ3t=0,
ξ4u=ξ4x=ξ4y =ξ4s=ξ4t=0,
τu=τx=τy =τs=τz =0,
ηu=ηx=ηyy =ηss=ηzz =0,(

α

n

)
∂n

t (η
x)u−

(
α

n+1

)
Dn+1

t (τ )=0.

Solving the above equations, we can get a set of nontrivial solutions:

η=λ(y,s,z),ξ1=A1x+d1,ξ2=A2y+d2,ξ3=A3s+d3,

ξ4=A4z+d4,τ = 2A1f(t)

f ′(t)
. (3.12)

where Ai,dj(i=1,2,3,4,j=1,2,3,4) are arbitrary constants, λ(y,s,z) satisfies λyy =λss =
λzz =0 and f(t),g(t),h1(t)−h7(t) satisfy

τf
′
(t)−2A1f(t)=0,

τh
′
1(t)−2A1h1(t)=0,

τh
′
2(t)−A1h2(t)=0,

τh
′
3(t)−A1h3(t)=0,

τh
′
4(t)−A1h4(t)=0,

τh′
5(t)−2A2h5(t)−A2h2(t)=0,

τh′
6(t)−2A4h6(t)−A4h3(t)=0,

τh′
7(t)−2A3h7(t)−A3h4(t)=0,

τg′(t)−4A1g(t)=0.

(3.13)

According to Eq. (3.5), the corresponding infinitesimal generator can be written as
follows:

X =(A1x+d1)
∂

∂x
+(A2y+d2)

∂

∂y
+(A3s+c3)

∂

∂s

+(A4z+d4)
∂

∂z
+

(2A1f(t)

f ′(t)

)
∂

∂t
+λ(y,s,z) ∂

∂u
,

(3.14)
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thus, we can get the corresponding Lie algebra that can be spanned by the following six
vector fields:

X1=
∂

∂x
,X2=

∂

∂y
,X3=

∂

∂s
,X4=

∂

∂z
,X5=

2A1f(t)

f ′(t)

∂

∂t
+λ(y,s,z) ∂

∂u
,

X6=x
∂

∂x
+y

∂

∂y
+s

∂

∂s
+z

∂

∂z
.

(3.15)

3.2 Conservation laws of the (4+1)-dimensional time fractional KP
equation with variable coefficients

In this section, the conservation laws of (4+1)-dimensional time fractional KP equation
with variable coefficients can be constructed by the new conservation laws theorem.

Definition 3.1. A conservation laws for Eq. (2.10) can be expressed by the following
conservation equation:

Dt(C
t)+Dx(C

x)+Dy(C
y)+Ds(C

s)+Dz(C
z)|(10)=0, (3.16)

where C =(Ct,Cx,Cy,Cs,Cz) is conserved vector. According to the Noether operators,
we can obtain the components Ct,Cx,Cy,Cs and Cz of conserved vector C as

Ct=τL+
n−1∑
k=0

(−1)kDα−1−k
t (W )Dk

t

(
∂L

∂(Dα
t u)

)
−(−1)nJ

(
W ,Dn

t

(
∂L

∂(Dα
t u)

))
, (3.17)

and Ci(i stands for x,y,s,z) can be defined as

Ci=ξi+Wβ

 ∂L
∂uβ

i

−Dj

 ∂L
∂uβ

ij

+DjDk

 ∂L
∂uβ

ijk

−···


+Dj(Wβ)

 ∂L
∂uβ

ij

−Dk

 ∂L
∂uβ

ijk

+···

+DjDk(Wβ)

 ∂L
∂uβ

ijk

−···

+···,

(3.18)

where n= [α]+1, W = η−ξ1ux−ξ2uy −ξ3us−ξ4uz −τut is Lie characteristic function of
X =ξ1∂x+ξ2∂y+ξ3∂s+ξ4∂z+τ∂t+η∂u, and J is defined as

J(f ,g)= 1
Γ(n−β)

∫ t

0

∫ T

t

f(x,s)g(x,r)
(r−s)β+1−n

drds. (3.19)

Now, based on Lie point symmetry, we start to construct the conservation laws of Eq.
(2.10). A formal Lagrangian for Eq. (2.10) is given in the form

L=q(x,y,s,z,t)(Dα
t ux+

f(t)

2 (u2)xx+g(t)uxxxx+h7(t)uss+h6(t)uzz+h5(t)uyy

+h4(t)uxs+h3(t)uxz+h2(t)uxy+h1(t)uxx),
(3.20)
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where q(x,y,s,z,t) is a new dependent variable. Considering the case where the variable
q is constant, we integrate the above equation using the Agrawal fractional variational
method. This allows us to determine the Euler-Lagrange operator [42] with respect to
u. By applying this operator to the Lagrangian, we can obtain the corresponding Euler-
Lagrange equations that govern the behavior of u in the given system

δ

δu
=

∂

∂u
+(Dα

t )
∗Dx

∂

∂Dα
t ux

−Dx
∂

∂ux
+Dxx

∂

∂uxx
+Dxy

∂

∂uxy
+Dxs

∂

∂uxs

+Dxz
∂

∂uxz
+Dxxxx

∂

∂uxxxx
+Dyy

∂

∂uyy
+Dss

∂

∂uss
+Dzz

∂

∂uzz
,

(3.21)

where (Dα
t )

∗ is the adjoint operator of Dα
t

(Dα
t )

∗=(−1)nIn−α
T (Dn

t )=
C
t Dα

T ,

in which, the time-fractional integral with order n−α can be given by ( [38])

In−α
T f(t,x)= 1

Γ(n−α)

∫ T

t

f(τ ,x)
(τ −t)1+α−n

dτ , n=[α]+1. (3.22)

The adjoint equation of Eq. (2.10) can be given as

F ∗=
δL
δu

=0. (3.23)

Expanding the above formula to obtain

F ∗=(Dα
t )

∗qx−f(t)uxxq−2f(t)uxqx+h1(t)qxx+h2(t)qxy+h3(t)qxz

+h4(t)qxs+h5(t)qyy+h6(t)qzz+h7(t)qss+g(t)qxxxx.
(3.24)

According to Eq. (3.12), we get the Lie characteristic function

W1=−ux,W2=−uy,W3=−us,W4=−uz,W5=λ(y,s,z)− 2f(t)

f ′(t)
ut,

W6=−xux−yuy −sus−zuz.
(3.25)

Taking an example of W6 to obtain the conservation laws for Eq. (2.10). By definition
1, substituting W6 into Eq. (3.17) and Eq. (3.18), the conserved components with respect
to x,y,s,z,t of conserved vector C can be got as

Ct=Dα−1
t (W6)

∂L
∂(Dα

t ux)
+J

(
W6,Dt

∂L
∂Dα

t ux

)
=qDα−1

t (−xux−yuy −sus−zuz)+J [(−xux−yuy −sus−zuz),qt],
(3.26)
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Cx=W6

(
∂L
∂ux

−Dx
∂L

∂uxx
−Dy

∂L
∂uxy

−Ds
∂L

∂uxs
−Dz

∂L
∂uxz

−D3
x

∂L
∂uxxxx

)

+Dx(W6)

(
∂L

∂uxx
+DxDx

∂L
∂uxxxx

)
+Dy(W6)

∂L
∂uxy

+Ds(W6)
∂L

∂uxs

+Dz(W6)
∂L

∂uxz
+D3

x(W6)
∂L

∂uxxxx

=(−xux−yuy −sus−zuz)(2f(t)q−f(t)uxq−f(t)uqx−h1(t)qx

−h2(t)qy −h4(t)qs−h3(t)qz −g(t)qxxxx)

+(−ux−xuxx−yuyx−susx−zuzx)(f(t)uq+h1(t)q+g(t)qxx)

+(−xuxy −uy −yuyy −susy −zuzy)(h2(t)q)

+(−xuxs−yuys−us−suss−zuzs)(h4(t)q)

+(−xuxz −yuyz −susz −uz −zuzz)(h3(t)q)

+(−3uxxx−xuxxxx−yuyxxx−susxxx−zuzxxx)(g(t)q),

(3.27)

Cy =W6

(
−Dx

∂L
∂uxy

−Dy
∂L

∂uyy

)
+Dx(W6)

(
∂L

∂uxy

)
+Dy(W6)

∂L
∂uyy

=(xux+yuy+sus+zuz)(h1(t)qx+h5(t)qy)

−(ux+xuxx+yuyx+susx+zuzx)(h2(t)q)

−(xuxy+uy+yuyy+susy+zuzy)(h5(t)q),

(3.28)

Cs=W6

(
−Dx

∂L
∂uxs

−Ds
∂L

∂uss

)
+Dx(W6)

(
∂L

∂uxs

)
+Ds(W6)

∂L
∂uss

=(xux+yuy+sus+zuz)(h4(t)qx+h7(t)qs)

−(ux+xuxx+yuyx+susx+zuzx)(h4(t)q)

−(xuxs+yuys+us+suss+zuzs)(h7(t)q),

(3.29)

Cz =W6

(
−Dx

∂L
∂uxz

−Dz
∂L

∂uzz

)
+Dx(W6)

(
∂L

∂uxz

)
+Dz(W6)

∂L
∂uzz

=(xux+yuy+sus+zuz)(h3(t)qx+h6(t)qz)

−(ux+xuxx+yuyx+susx+zuzx)(h3(t)q)

−(xuxz+yuyz+susz+uz+zuzz)(h6(t)q)

(3.30)

4 Exact solutions for the (4+1)-dimensional time fractional
KP equation with variable coefficients

Definition 4.1. Suppose the functions f(x,y,z,t) and g(x,y,z,t) are differentiable, Hirota
bilinear derivative operator can be written as

Dα
x Dβ

y Dγ
z Dη

t (f ·g)=
(

∂

∂x
− ∂

∂x′

)α( ∂

∂y
− ∂

∂y′

)β( ∂

∂z
− ∂

∂z′

)γ( ∂

∂t
− ∂

∂t′

)η

·
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f(x,y,z,t)g(x′,y′,z′,t′)|x=x′,y=y′,z=z′,t=t′ . (4.1)

where α,β,γ,η are non-negative integer. With respect to the expansion of the bilinear
operator mth in the above formula, the result is a binomial expression of the following
formula:

Dm
x (f ·g)=

m∑
r=0

(−1)r

(
m

r

)
∂r

x∂m−r
x′ =

m∑
r=0

(−1)r

(
m

r

)
∂m−r

x ∂r
x′ , (4.2)

where the binomial coefficient: (m
r )=

m!
r!(m−r)! ,0≤r≤m. So we have a compact form of the

bilinear derivative operator

Dm
x (f ·g)=

m∑
r=0

(−1)r

(
m

r

)
f(m−r)x ·grx. (4.3)

Common Hirota bilinear derivative operators are

D1
x(f ·g)=fxg−fgx,

D2
x(f ·g)=fxxg−2fxgx+fgxx,

D3
x(f ·g)=fxxxg−3fxxgx+3fxgxx−fgxxx,

D4
x(f ·g)=fxxxxg−4fxxxgx+6fxxgxx−4fxgxxx+fgxxxx. (4.4)

We introduce the fractional transform

T =
mtα

Γ(1+α)
. (4.5)

Using the Eq. (4.5) with m=1, we can write the Eq. (2.10) as

uxT +
f(t)

2 (u2)xx+g(t)uxxxx+h7(t)uss+h6(t)uzz+h5(t)uyy

+h4(t)uxs+h3(t)uxz+h2(t)uxy+h1(t)uxx=0.
(4.6)

Considering the transformation

u(x,y,s,z,T )=Rln(f)xx, (4.7)

where f(x,y,s,z,T ) is an auxiliary function, and substituting Eq. (4.7) into Eq. (4.6),
we can get R= 12g(t)

f (t) . Under the specified transformation Eq. (4.7), the Hirota’s bilinear
form of Eq. (4.6) can be obtained as

(g(t)D4
x+h7(t)D

2
s+h6(t)D

2
s+h5(t)D

2
y+h4(t)DxDs+h3(t)DsDz

+h2(t)DxD(y)+h1(t)D
2
x+DxDT )f ·f =0.

(4.8)
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4.1 Single soliton solutions and double soliton solutions

To get the single soliton solutions of Eq. (4.6), we assume f(x,y,s,z,T ) as the following
form:

f(x,y,s,z,T )=1+eθ(x,y,s,z,T ), (4.9)
where θ(x,y,s,z,T )=kx+py+qs+rz+wT+c, k,p,q,r,c are constants and w is dispersion
relation to be determined. Substituting Eq. (4.9) into Eq. (4.8), the dispersion relation
can be obtained as

w=−k3g(t)−qh4(t)−rh3(t)−ph2(t)−kh1(t)−
q2h7(t)+r2h2(t)+p2h5(t)

k
, (4.10)

A direct substitution of Eq. (4.10) into Eq. (4.9), then substituting Eq. (4.9) into Eq.
(4.7) with R= 12g(t)

f (t) , the single soliton solutions can be obtained as

u(x,y,s,z,t)= 3g(t)

f(t)
k2sech2

e
kx+py+qs+rz+w tα

Γ(1+α)
+c

2

. (4.11)

For double soliton solution, we assume f(x,y,s,z,T ) as the form

f(x,y,s,z,T )=1+eθ1(x,y,s,z,T )+eθ2(x,y,s,z,T )+h12eθ1(x,y,s,z,T )+θ2(x,y,s,z,T ), (4.12)

where θ1(x,y,s,z,T )=k1x+p1y+q1s+r1z+w1T+c1,θ2(x,y,s,z,T )=k2x+p2y+q2s+r2z+
w2T +c2. According to Eq. (4.10), we have the dispersion relations

w1=−k3
1g(t)−q1h4(t)−r1h3(t)−p1h2(t)−k1h1(t)−

q2
1h7(t)+r2

1h2(t)+p2
1h5(t)

k
,

w2=−k3
2g(t)−q2h4(t)−r2h3(t)−p2h2(t)−k2h1(t)−

q2
2h7(t)+r2

2h2(t)+p2
2h5(t)

k
.

(4.13)

Substituting Eq. (4.13) into Eq. (4.12), then substituting Eq. (4.12) into Eq. (4.8),
we can get the interaction coefficient

h12=
M

N
, (4.14)

where

M =3k2
1k2

2(k1−k2)
2g(t)−[(k1q2−k2q1)

2h7(t)+(k1r2−k2r1)
2h6(t)+(k1p2−k2p1)

2h5(t)],

N =3k2
1k2

2(k1+k2)
2g(t)−[(k1q2−k2q1)

2h7(t)+(k1r2−k2r1)
2h6(t)+(k1p2−k2p1)

2h5(t)].
So, according to Eqs.(4.7),(4.12)-(4.14), the double soliton solutions can be obtained

as the form

u(x,y,s,z,t)=12g(t)

f(t)
[k2

1eθ1(x,y,s,z,t)+h12(k
2
2eθ1(x,y,s,z,t)+k2

1eθ2(x,y,s,z,t))

eθ1(x,y,s,z,t)+θ2(x,y,s,z,t)+k2
2eθ2(x,y,s,z,t)+((k1−k2)

2+h12(k1+k2)
2)

eθ1(x,y,s,z,t)+θ2(x,y,s,z,t)]/(1+eθ1(x,y,s,z,t)+eθ2(x,y,s,z,t)

+h12eθ1(x,y,s,z,t)+θ2(x,y,s,z,t))2,

(4.15)
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where θ1(x,y,s,z,t),θ2(x,y,s,z,t) can be written as

θi(x,y,s,z,t)=kix+piy+qis+riz+wi
tα

Γ(1+α)
+ci, i=1,2. (4.16)

With the help of mathematical software, we can obtain the 3D plots of the single soliton
solution (4.11) and double soliton solution (4.15) by selecting the appropriate parameters.
Figures 1 and 2 display 3D plots of the single and double soliton solutions in the(x,t)-
plane. In 1(a)-(c), we can see the bell-shaped solitary wave under different fractional order
α. When α is smaller, the shape of the bell-shaped solitary wave is more affected by the
variable coefficient h2(t), and the shape of the wave is more curved. In addition, as α
decreases, the wave’s width is wider, and as α increases, the bell-shaped solitary wave
moves closer to the x−direction. In 2(a)-(c), with the decrease of fractional order α, some
similar conclusions can be got for the bell-shaped solitary wave of double soliton as shown
in 1. When α is smaller, the shape of the wave is more curved, the wave is gentler, and
the wave is more and more deviated from the x−direction.
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Figure 1: Evolution plots of the solution (4.11) with parameters selected as k=0.5,p=0.1,q=0.5,r=0.1,c=
10,y = s= z = 0,g(t) = 1,f(t) = 12,h1(t) = h4(t) = h5(t) = h6(t) = h7(t) = 1,h2(t) = cos(t),h3(t) = t−3 for
different α: (a) α=0.5; (b) α=0.75; (c) α=1.
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Figure 2: Evolution plots of the solution (4.15) with parameters selected as k1 = k2 = 0.5,p1 = p2 = 0.1,q1 =
0.5,q2=1,r1=0.5,r2=1,c1=c2=y=s=z=0,g(t)=0.1,f(t)=1.2,h3=h4=h5=h6=h7=1,h1=cos(t),h2=t−5
for different α: (a) α=0.5; (b) α=0.75; (c) α=1.

5 Numerical results

In this section, by combining the Grünwald-Letnikov method for the time fractional deriva-
tive and the Fourier spectral method for the spatial derivative, numerical solutions can be
obtained for problems involving both time and space fractional derivatives.

Considering the (4+1)-dimensional KP equation with variable coefficients

Dα
t ux+

f(t)

2 (u2)xx+g(t)uxxxx+h7(t)uss+h6(t)uzz+h5(t)uyy

+h4(t)uxs+h3(t)uxz+h2(t)uxy+h1(t)uxx=0, (x,y,s,z)∈Ω⊂R4,t∈ (0,T ], (5.1)
u(x,y,s,z,0)=u0(x,y,s,z), (x,y,s,z)∈∂Ω∪Ω,t∈ (0,T ], (5.2)
u(x,y,s,z,t)=ϕ(x,y,s,z,t), (x,y,s,z)∈∂Ω,t∈ (0,T ]. (5.3)
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5.1 Time discretization

To discretize the Riemann-Liouville time fractional derivative operator Dα
t using the

Grünwald-Letnikov method, we can define the time-step τ = T
N , where N is a positive

integer. We also introduce the time points tn = nτ (0 ≤ n ≤ N). Using the Grünwald-
Letnikov approximation, the fractional derivative can be expressed as

Dα
t pn ≈τ−α

n∑
k=0

w
(α)
k pn−k, (5.4)

where w
(α)
k =(−1)k(α

k), and (α
k)=

Γ(α+1)
Γ(k+1)Γ(α−k+1) . By applying this approximation, we can

discretize the fractional derivative operator and obtain the grid function p={pn|0≤n≤N},
which represents the values of the function u at the time points tn. This discretization
allows us to numerically solve the fractional differential equation.

5.2 Space discretization

In space, we suppose the space domain Ω=[0,a]×[0,b]×[0,c]×[0,d] and spatial mesh size
h1 =

a
M1

,h2 =
b

M2
,h3 =

c
M3

,h4 =
d

M4
, where h1 =h2 =h3 =h4, and M1,M2,M3,M4 are both

integral powers of 2. The gird points can be given as xj = jh1(0≤ j ≤M1), yk =kh2(0≤
k ≤M2), sl= lh3(0≤ l≤M3), zm=mh4(0≤m≤M4).

Denote the index sets:

h̄={(j,k,l,m)|0<j <M1,0<k <M2,0<l<M3,0<m<M4},
ℓ={j,k,l,m)|0≤j ≤M1,0≤k ≤M2,0≤ l≤M3,0≤m≤M4}, (5.5)

£={(j,k,l,m)|j=0,or j=M1;or k=0,or k=M2;or l=0,
or l=M3;or m=0,or m=M4}.

So, each grid point can be represented by its coordinate (j,k,l,m), which corresponds
to the specific time point in the discretized time domain. The grid function can be given
as v={vjklm|(j,k,l,m)∈ℓ}.

Denote Sh={v|v={vjklm|(j,k,l,m)∈ℓ} is the grid function}.

5.3 The numerical scheme

Taking x-direction as an example, in the spectral method, the space derivative in the
x-direction can be approximated using the Fourier series expansion. Denoting kx =

2πr1
a ,

where r1=−M1
2 ,−M1

2 +1,···, M1
2 −1, and there are M1 grid points in the x- direction when

fixed y,z,s and t.
Step 1: Taking out the value of u at each grid node in the x-direction(there are M2∗M3∗

M4 columns in totals, one column has M1 values) and taking the Fast Fourier transform
for each column of data. We know that when y,s,z and t are fixed, the u(x,yk,sl,zm,tn)
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is a one-dimensional function of x. So the Fast Fourier transform for u(x,yk,zl,sm,tn) can
be given as

Fx[uj ]=
M1−1∑
j=0

uje−ikxxj , (5.6)

where kx=
2πr1

a , −M1
2 ≤r1 ≤ M1

2 −1.
When performing the Fast Fourier Transform on each column of data, we obtain the

Fast Fourier transform of u(x,y,z,w,t) in the x-direction, denoted as Fx[u].
Step 2: The derivative of the Fourier transform for u(x,yk,sl,zm,tn) is

F [(uxxxx)j ]=k4
xF [uj ], (5.7)

so, we have

Fx[uxxxx]=k4
xF [u]. (5.8)

Step 3: Inverse Fast Fourier transform of u(x,yk,sl,zm,tn) can be given as

F −1[uj ]=
1

M1

M1
2 −1∑

r1=
−M1

2

F [uj ]e
ikxxj ,0≤j ≤M1−1, (5.9)

where kx=
2πr1

a , −M1
2 ≤r1 ≤ M1

2 −1.
Similarly, by taking the Inverse Fast Fourier Transform of each column of data, we can

obtain the Inverse Fast Fourier Transform of u(x,y,s,z,t) in the x-direction, denoted as
F −1

x [u]. So, for uxxxx(x,y,s,z,t), we have uxxxx=F −1
x {k4

xFx[u]}.
Similarly, we have

uxx=F −1
x {−k2

xFx[u]},uxy =F −1
y {−ikyFy{F −1

x {−ikxFx[u]}}},
(u2)xx=F −1

x {−k2
xFx[(u)

2]},uxs=F −1
s {−iksFs{F −1

x {−ikxFx[u]}}}, (5.10)
uxz =F −1

z {−ikzFz{F −1
x {−ikxFx[u]}}},uyy =F −1

y {−k2
yFy[u]},

uss=F −1
s {−k2

sFs[u]},uzz =F −1
z {−k2

zFz [u]},

where ky =
2πr2

b ,ks =
2πr3

c ,kz =
2πr4

d , r2 = −M2
2 ,−M2

2 +1,···, M2
2 −1, r3 = −M3

2 ,−M3
2 +1,··

·, M3
2 −1, r4=−M4

2 ,−M4
2 +1,···, M4

2 −1. F y[u], Fs[u] and Fz [u] are Fast Fourier transform
of u(x,y,s,z,t) in y-direction, s-direction and z-direction respectively.

Consider the Eqs. (5.1)-(5.3) at the point (xj ,yk,sl,zm,tn). Denoting grid function
{Un

jklm=u(xj ,yk,sl,zm,tn)|(j,k,l,m)∈ℓ,0≤n≤N}, and taking v=Dα
t u, V n

jklm=Dα
t Un

jklm,
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we have

(Vx)
n
jklm=−f(t)

2 F −1
x {−k2

xFx[(U
n
jklm)2]}−g(t)F −1

x {k4
xFx[U

n
jklm]}

−h7(t)F
−1
s {−k2

sFs[U
n
jklm]}−h6(t)F

−1
z {−k2

zFz [U
n
jklm]}

−h5(t)F
−1
y {−k2

x1Fy[U
n
jklm]}−h4(t)F

−1
s {−iksFs{F −1

x {−ikxFx[U
n
jklm]}}}

−h3(t)F
−1
z {−ikzFz{F −1

x {−ikxFx[U
n
jklm]}}}

−h2(t)F
−1
y {−ikyFy{F −1

x {−ikxFx[U
n
jklm]}}}

−h1(t)F
−1
x {−k2

xFx[U
n
jklm]}, (j,k,l,m)∈ h̄,1≤n≤N ,

(5.11)

U0
jklm=u0(xj ,yk,sl,zm), (j,k,l,m)∈ℓ, (5.12)

Un
jklm=ϕ(xj ,yk,sl,zm,tn), (j,k,l,m)∈£,0≤n≤N . (5.13)

For the sake of simplicity, we have

An=−f(t)

2 F −1
x {−k2

xFx[(U
n
jklm)2]}−g(t)F −1

x {k4
xFx[U

n
jklm]}

−h7(t)F
−1
s {−k2

sFs[U
n
jklm]}−h6(t)F

−1
z {−k2

zFz [U
n
jklm]}

−h5(t)F
−1
y {−k2

x1Fy[U
n
jklm]}

−h4(t)F
−1
s {−iksFs{F −1

x {−ikxFx[U
n
jklm]}}}

−h3(t)F
−1
z {−ikzFz{F −1

x {−ikxFx[U
n
jklm]}}}

−h2(t)F
−1
y {−ikyFy{F −1

x {−ikxFx[U
n
jklm]}}}

−h1(t)F
−1
x {−k2

xFx[U
n
jklm]}, (j,k,l,m)∈ h̄,1≤n≤N ,

(5.14)

So

(Vx)
n
jklm=An, (j,k,l,m)∈ h̄,1≤n≤N , (5.15)

U0
jklm=u0(xj ,yk,sl,zm), (j,k,l,m)∈ℓ, (5.16)

Un
jklm=ϕ(xj ,yk,sl,zm,tn), (j,k,l,m)∈£,0≤n≤N . (5.17)

By applying the Fast Fourier Transform and the Inverse Fourier Transform to both
sides of Eq. (5.1) with respect to the x-direction, we obtain

−ikxFx[V
n

jklm]=Fx[A
n], (j,k,l,m)∈ h̄,1≤n≤N , (5.18)

V n
jklm=F −1

x

{
Fx[An]

−ikx

}
, (j,k,l,m)∈ h̄,1≤n≤N , (5.19)

Un
jklm ≈

(
ταV n

jklm−
n∑

k=1
w
(α)
k Un−k

ijlm

)/
w
(α)
0 , (j,k,l,m)∈ h̄,1≤n≤N , (5.20)

U0
jklm=u0(xj ,yk,sl,zm), (j,k,l,m)∈ℓ, (5.21)
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Un
jklm=ϕ(xj ,yk,sl,zm,tn),i=0, (j,k,l,m)∈£,0≤n≤N . (5.22)

Replacing Un
jklm with un

jklm and replacing V n
jklm with vn

jklm, so we have

−ikxFx[v
n
jklm]=Fx[A

n], (j,k,l,m)∈ h̄,1≤n≤N , (5.23)

vn
jklm=F −1

x

{
Fx[An]

−ikx

}
, (j,k,l,m)∈ h̄,1≤n≤N , (5.24)

un
jklm=

(
ταvn

jklm−
n∑

k=1
w
(α)
k un−k

jklm

)/
w
(α)
0 , (j,k,l,m)∈ h̄,1≤n≤N , (5.25)

u0
jklm=u0(xj ,yk,sl,zm), (j,k,l,m)∈ℓ, (5.26)

un
jklm=ϕ(xj ,yk,sl,zm,tn), (j,k,l,m)∈£,0≤n≤N . (5.27)

5.4 Numerical results

We provide two examples to demonstrate the effectiveness of our proposed numerical
method discussed in subsection 5.3.

Example 5.1. When we consider each variable coefficient of Eq. (2.10) as 1, we can
obtain the equation

Dα
t ux+(u2)xx+uxxxx+uss+uzz+uyy+uxs+uxz+uxy+uxx=0,

where (x,y,s,z)∈R4,t∈(0,T ]. By appropriately selecting free parameters from Eq. (4.11),
we can obtain the exact solution for the above equation.

The initial conditions and boundary conditions are determined by Eq. (4.11). We
compare the exact solution given by Hirota bilinear method with the numerical solution
given by pseudo-spectral method to demonstrate the effectiveness of the proposed numeri-
cal method. When taking α=0.8, α=0.9, α=0.98 and α=1, the maximum absolute errors
of exact solutions and numerical solutions under different fractional orders are given in
Table 1, and we give two-dimensional comparison images of exact and numerical solutions
under different fractional orders in Figure 3(a)-(d). The results of error and curve fitting
are acceptable, which also show the accuracy of the proposed pseudo-spectral method.

Table 1: The maximum absolute errors between the numerical solutions and the exact solutions in Eq. (4.11)
for different fractional order α.

α Errors α Errors

0.8 2.8065E-07 0.98 2.7936E-08
0.9 7.1646E-08 1 1.4624E-11
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Figure 3: Comparison of the numerical solutions and the exact solutions in Eq. (4.11) at the end time for
different fractional order α with y=π,s=2π,z=3π. (a) α=0.8; (b) α=0.9; (c) α=0.98; (d) α=1.

Example 5.2. When we consider each variable coefficient of Eq. (2.10), h1(t)=h5(t)=
h6(t)=h7(t)=−1, f(t)=g(t)=h4(t)=h3(t)=h2(t)=0, we can obtain the equation

Dα
t ux=uxx+uyy+uss+uzz,

where (x,y,s,z)∈ [0,2π]×[0,2π]×[0,2π]×[0,2π],t∈ (0,T ], and the exact solution of above
equation is

u(x,y,s,z,t)= sin
(

x+y+z+s+
4

Γ(1+α)
tα
)

,

in which, Γ(x) is the standard Gamma function.

Both initial and boundary conditions are derived from the exact solution. Table 2
shows the maximum absolute error between numerical and exact solutions under different
fractional order α. Figure 4 illustrates the comparison between the numerical and exact
solutions for different fractional orders. The results presented in Table 2 and Figure 4
demonstrate that the error values and curve fitting results for different fractional orders
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α are acceptable and satisfactory. These findings indicate the feasibility of our proposed
numerical method.
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Figure 4: Comparison of the numerical solutions and the exact solution at the end time for different fractional
order α with y=π/8,s=π/4,z=π/2. (a) α=0.8; (b) α=0.9; (c) α=0.98; (d) α=1.

Table 2: The maximum absolute errors between the numerical solutions and the exact solutions for different
fractional order α.

α Errors α Errors

0.8 1.6965E-05 0.98 1.0666E-06
0.9 3.8329E-06 1 8.0000E-09

6 Conclusions

In this study, we have investigated the (4+1)-dimensional time fractional KP equation
with variable coefficients. The equation is considered in the sense of Riemann-Liouville
fractional derivative, which allows us to model systems with fractional order dynamics.To
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analyze the equation further, we employed the Lie symmetry analysis method. This math-
ematical technique helps identify the symmetries of the equation, which are crucial for
understanding its behavior and properties. By applying Lie symmetry and the adjoint
equation, we were able to derive the conservation laws of the equation with variable coeffi-
cients. Then we explored the solutions of the equation using different methods. First, we
utilized the Hirota method to obtain soliton solutions. Solitons are localized and stable
waveforms that propagate without changing their shape. Additionally, we employed the
Pseudo-spectral method to obtain numerical solutions. This method is commonly used
for solving partial differential equations numerically, providing accurate results by utiliz-
ing high-order approximations. To assess the effectiveness of the numerical method, we
calculated error results and compared images of the solutions. These evaluations demon-
strated that the numerical method is capable of accurately capturing the dynamics of
the equation with variable coefficients. This paper presents a comprehensive analysis of
the (4+1)-dimensional time fractional KP equation with variable coefficients, including
symmetry analysis, conservation laws, and various solution methods. The results provide
valuable insights into the behavior of this equation and pave the way for further research
in fractional differential equations.
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