Journal of Information and Computing Science DOI: 10.4208 /J1CS-2024-008
J. Info. Comput. Sci., Vol. 19, No. 2, pp. 131-154 December 2024

A Dual-Task Semi-supervised Neural Network Based
on Skew Normal Mixture Model for Brain MR Im-
age Segmentation

Shengyang Liao'"*and Yunjie Chen!

1 School of Mathematics and Statistics, Nanjing University of Information Science
and Technology, Nanjing 210044, China

Abstract. Accurate segmentation of brain magnetic resonance (MR) images is critical
in brain disease research and treatment. While deep learning methods have advanced
image segmentation by extracting hierarchical features, they typically require large la-
beled datasets for precise results. Acquiring annotated medical data remains challeng-
ing due to the need for specialized expertise and privacy restrictions. To address this,
we propose a semi-supervised model combining dual tasks: segmentation and bound-
ary feature regression. For class imbalance in segmentation, the network employs focal
loss to extract common features from annotated data. To handle asymmetric data dis-
tributions, a skew Normal Mixture-based Level set loss guides the network to learn in-
dividual image characteristics, enhancing class distribution fitting. This dual-feature
integration enables strong performance on limited datasets. In regression, Level set
signed distance functions focus the model on boundary information, mitigating partial
volume effects on focal loss. Experiments on IBSR and MRBrainS18 datasets demon-
strate our method’s advantages over current state-of-the-art approaches.

AMS subject classifications: 62E99, 68110

Key words: Brain MR image segmentation, Semi-supervised Learning, Skew Normal Mixture
model, Level set functional, Dual task.

1 Introduction

The phenomenon of aging population has become one of the important issues in contem-
porary society, and more and more diseases are beginning to harm the health of the el-
derly. Among them, brain diseases have a high incidence rate and mortality, and are more
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frequent in the elderly. From a medical perspective, effective prevention, accurate diag-
nosis, and rational treatment of brain diseases are beneficial for promoting healthy aging.
Medical imaging technology is widely used in the diagnosis of brain diseases. This tech-
nology can effectively obtain tissue information and pathological localization. Among
numerous medical imaging technologies, magnetic resonance imaging has a higher reso-
lution of soft tissues and is non-invasive and radiation free for the human body. In addi-
tion to its advantages, magnetic resonance (MR) images often exhibit noise, offset fields
and partial volume effects, and there are also differences between different individuals.
Meanwhile, brain tissue segmentation requires doctors to manually implement, which
can consume a significant amount of time. Numerous studies are focusing on develop-
ing advanced automatic segmentation techniques to enhance generalization capability.

Currently, various techniques [1] are employed for brain MR image segmentation
including unsupervised models [2], supervised models [3,4], semi-supervised models [5],
and weakly supervised models [6]. Unsupervised models rely solely on the information
within the image itself for analysis, often without utilizing any prior knowledge. This
techniques can be further grouped into statistical model-based methods [7] and PDE-
based methods [8, 9], etc. Statistical model-based methods typically involve fuzzy C-
means clustering models [10], finite Mixture models [11,12], and more. On the other
hand, the level set model [13], a classical curve/surface evolution model based on PDE
theory, is widely used in brain MR image segmentation as it can effectively segment
multiple objects in an image. Despite its strengths, unsupervised methods face challenges
in achieving optimal segmentation results due to factors such as bias field, noise, and
weak boundaries.

Over the past few years, deep learning technology [14] has become increasingly promi-
nent in the field of brain MR image segmentation. Deep learning techniques, such as the
fully convolutional network (FCN) [15] and U-Net [16], have emerged as powerful tools
in this domain, demonstrating remarkable performance. These models have the ability
to extract pertinent features from bottom to top, enabling more accurate and effective
segmentation of brain MR images. It is regrettable that deep learning techniques are
heavily dependent on rich labeled data [17]. Brain MR image segmentation poses unique
challenges due to the requirement of extensive clinical knowledge and time-consuming
efforts in acquiring annotated data. Furthermore, ethical and privacy concerns regarding
patient information restrict the availability of such data, making its acquisition a costly
and difficult task. Additionally, different imaging devices from various manufacturers
often produce images with distinct distributions, compounding the challenge of training
accurate segmentation models.

Semi-supervised methods [18] have been widely employed in the field of medical
image segmentation to address the challenge posed by limited sample sizes and have
demonstrated promising results. For example, Guo et al. [19] expanded the limited an-
notated data by applying operations such as translation, rotation, and linear combina-
tions to the training data to alleviate overfitting. However, it should be noted that the
generated augmented data still falls within the distribution of the annotated data, which
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may lead to inaccurate derivation of decision boundaries. Shi et al. [20] presented a novel
framework that enhances unlabeled data using two types of augmentations: strong and
weak. These augmented data are then fed into a mutually dual-consistent learning mod-
ule guided by uncertainty.

The current semi-supervised techniques still face the following main problems: firstly,
due to the small scale of annotated data, its distribution cannot fully characterize the
overall sample distribution. Therefore, there is a need to explore how to utilize unlabeled
data to improve the model’s ability to capture the overall sample characteristics. Sec-
ondly, individual variations in human bodies may result in certain individual features
present in the images. It is important to leverage both the overall sample characteristics
and individual features to enhance the final segmentation accuracy. Lastly, the presence
of weak boundaries caused by partial volume effects [21] can lead to low confidence in
the analysis results of that region, resulting in insufficient boundary preservation capa-
bility in the final output.

In this work, we introduce Skew Normal Semi-Supervised U-Net (SNSS-UNet), a
novel model which aims at segmenting brain MR images. Our network focuses on
achieving accurate segmentation results even when only limited labeled data is avail-
able. To accomplish this, our network consists of two modules: an image segmentation
branch and a boundary feature regression branch. In the image segmentation branch,
we introduce a Level Set loss based on the Skew Normal Mixture model. This loss func-
tion aids in steering the network toward grasping the typical features of the input data.
Furthermore, the Focal loss function is applied to facilitate the network’s understanding
of the general characteristics of the labeled data. In boundary feature regression branch,
we employ mean square errors of level set signed function between input and output
images as the loss function. This helps mitigate the influence from low contrast regions,
which often result in insufficient confidence in the network’s segmentation. By focusing
more on the target boundary information, the network can improve its segmentation ac-
curacy. In order to ensure consistency between two different modules, this paper also
introduces a residual connection module to couple the segmentation module and the re-
gression module. Meanwhile, the two modules both share the same encoding structure
to extract image features.

This paper details the following contributions. (1) For a few of annotated data and
asymmetric data, we design a novel semi-supervised image segmentation network based
on Skew Normal Mixture Model combined with level set energy functional loss function,
coupled with fully supervised focal loss, which can improve the accuracy of deep neural
models in small sample situations. The C-V level set energy functional uses the Euclidean
distance between pixels and center points as a similarity measure, and the advantage of
this loss function is that it combines with Skew Normal mixture models to consider the
true distribution characteristics of image pixels, thus solving the problem of Euclidean
distance being sensitive to noise and outliers. (2) To solve the weak boundary problem
caused by partial volume effects in images, we propose a boundary feature regression
module. The regression module uses the mean square error of prediction level set and
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label level set as the loss function, and combines it with the level set loss based Skew
Normal Mixure Model and focal loss in the segmentation module. Thus, the module can
effectively extract boundary features while fully extracting regional features. (3) To en-
sure that the features extracted by the segmentation module and regression module are
of the same dimension, we add the residual structure to couple the features of decod-
ing structures under two different modules. The coupling of image segmentation and
boundary feature regression complements each other to guide the network to achieve
better convergence. The final coupled network is called as SNSS-UNet.

The content of this paper consists of five sections: Section 1 outlines the research back-
ground and significance of brain MR image segmentation, as well as various problems
and improvements that exist. Section 2 focuses on introducing various related methods of
brain MR image segmentation. Section 3 elaborates on our proposed Skew Normal Semi-
Supervised U-Net (SNSS-UNet) structure and its loss function. Section 4 introduces the
brain MR image dataset, evaluation indicators used in the experiment and correspond-
ing experimental results. Section 5 discusses and summarizes the experimental results,
quantitatively analyzing the relationship between the values of hyperparameters in the
network and the final segmentation accuracy.

2 Related Works

2.1 Unsupervised image segmentation methods.

Level set model [22] is widely used in medical imaging segmentation by virtue of curve
or surface evolution theory [9]. The CV model [23] is one of the classical methods based
on level set function. It has boundarylessness and computability, which will lay the foun-
dation for the proposed method in this paper.

Finite Mixture Model (FMM) [11] is also a statistical clustering segmentation algo-
rithm widely used in unsupervised image segmentation. The Gaussian Mixture Model
(GMM) [24] based on symmetric normal distribution is one of the most widely used fi-
nite mixture models, and its parameter estimation is often completed through the EM
algorithm. However, the model is prone to divergence and the data needs to follow a
symmetric distribution, resulting in low segmentation quality for complex data.

The Gaussian Mixture Model has excellent fitting performance for data with an ap-
proximate normal distribution. In our task, the role of GMM is to divide the pixels in
the image into background and three target classes. The probability density function of a
single normal distribution is defined as

1 1 1 Tw-1
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Among them, y and X represent the mean vector and covariance matrix, respectively.
And, D represents the dimension of the observed data. According to the probability
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density function, the logarithmic likelihood function of the Gaussian mixture model is as
follows:

N K
L (xi|7sz (Vj,Zj)) = Z;logg TTip (xi| (Vf’z‘f))
i= j=

Among them, 71; is the prior probability that the pixel belongs to the jth normal distribu-
tion, and p represents the set of different normal distributions.

2.2 Fully supervised image segmentation methods based on deep learning.

The Fully Convolutional Neural Network [15] is the first to use 1*1 convolution for fea-
ture fusion, opening up a new chapter in semantic segmentation and guiding the de-
velopment direction [25] in the future. The FCN extracts semantic features of images
through continuous convolution and pooling, and combines shallow and deep features
through skip connections for feature fusion to capture lost information. On the basis of
FCN, Ronneberger et al. designed the UNet network [16]. This network is similar to FCN,
consisting of encoding structure, decoding structure, and skip connection structure. The
encoding structure adopts four sets of convolution and pooling to extract spatial features
of the image, increase the number of channels in the feature map, and reduce the size
of the feature map. The decoding structure can be thought of as a reverse process of the
coding structure, which in turn recovers images. The fusion of encoding shallow features
and decoding deep features is achieved through skip connections, and dimension con-
catenation is performed based on channels. The receptive field of UNet network is larger
than that of FCN, and the robustness of the model is also higher. Considering semantic
gap that comes from different functional layers, Zhou et al. improved the skip connec-
tion structure and introduced the UNet++ network [26]. A high number of parameters
in UNet++ can slow down network convergence, and the main consideration is single
scale feature fusion. Huang et al. further designed the UNet3+ network [27] based on
UNet++ to address the problem of multi-scale feature fusion. However, these networks
often pay less attention to the correlation between target regions and different channel
feature maps in a single image, and perform poorly in effectively mining useful features.
In order to implicitly learn to suppress irrelevant regions in the input image while high-
lighting salient features that are helpful for specific tasks, Oktay et al. proposed Attention
U-Net [28]. Thus, the attention mechanism can improve the sensitivity of the model to
foreground pixels. While these methods perform well with enough training data, they
often struggle to achieve satisfactory results when the sample size is limited. To extract
individual features from samples, it is often necessary to rely on unsupervised models.

2.3 Semi-supervised image segmentation methods based on deep learning.

The Mean Teacher model [29] was first proposed by Tarvainen and is one of the classic
representatives of semi-supervised segmentation models. It is a method of sliding av-
erage of model weights rather than label prediction. The Mean Teacher model deeply
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implements the core principles of 77-model [30] and Temporary Ensembling [31], and is
further improved and supplemented. Currently, most model training is accomplished
by perturbing data or models. However, complex network designs and diverse pertur-
bation methods may affect the accuracy of segmentation results. In order to clearly con-
struct task-oriented regularization rather than implicitly constructing perturbations, an
innovative dual-task consistent semi-supervised network (DTC) was developed [32]. In
order to better obtain boundary features, Kristiadi et al. proposed ACM_CNN model [33],
combining deep convolutional neural networks with level set active contour models. The
advantage of this design is that it can simultaneously predict category boundaries in both
labeled and unlabeled data. In addition to the aforementioned models, Chen et al. also
proposed a semi-supervised semantic segmentation method [34] that enhances predic-
tion confidence, which is crucial for improving the reliability of segmentation outcomes
in scenarios with limited labeled data. Similarly, Hu et al. introduced an approach based
on adaptive equalization learning [35], which aims to balance the learning process and
enhance the model’s generalization capability. Chen et al. further explored the use of
cross pseudo supervision [36], leveraging pseudo-labels generated from the model it-
self to implement self-training. Wang et al. addressed the challenge of using unreliable
pseudo-labels by developing a robust framework [37] that can effectively handle noisy
labels, thus enhancing the performance of semi-supervised semantic segmentation.

3 Proposed method

Considering scarcity of labeled samples and asymmetric data in brain MR images, we
introduce Skew Normal Semi-Supervised U-Net (SNSS-UNet), a novel network for seg-
menting brain MR images. This network merges the power of deep CNNs with a dual-
task framework, which has an image segmentation module and a boundary feature re-
gression module.

The SNSS-UNet network simultaneously undertakes image segmentation task and
boundary feature regression task. To ensure consistency between two different tasks,
we directly use residual connections to extract the correlation between features in the
two tasks. Figure 1 showcases the network structure of the SNSS-UNet, providing a
visual representation of its architecture and the flow of information within the model.
The SNSS-UNet architecture consists of two main components: an image segmentation
module and a boundary feature regression module. The two modules share the same
encoding structure, which is consistent with the UNet++ network.

The segmentation module utilizes the UNet++ [26] architecture as the backbone net-
work. The UNet++ network extends the UNet network by incorporating nested and skip
connections, allowing for more comprehensive feature extraction and better segmenta-
tion performance.

On the other hand, the regression module employs the standard UNet [16] as its
backbone network. The UNet architecture is well-known for its effectiveness in image-to-
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Figure 1: Structure of the proposed SNSS-UNet

image regression tasks and serves as a suitable choice for the boundary feature regression
task in this work.

To establish coupling between the segmentation and regression modules, a residual
module is employed, as depicted in Figure 1 [38]. This module aids in preserving and
transferring relevant information between the two modules, facilitating their collabora-
tion in the overall network.

All functional layers in the SNSS-UNet architecture inherit the configuration of the
backbone network. For upsampling, a 3x3 transposed convolution operation is utilized.

Regarding the choice of stimulus response functions, the segmentation module em-
ploys the softmax function, which allows for probabilistic outputs representing different
class probabilities. Meanwhile, the regression module uses the hyperbolic tangent func-
tion, enabling the regression model to predict continuous values.

By utilizing these architectural choices and stimulus response functions, the SNSS-
UNet aims to achieve accurate segmentation and boundary feature regression for brain
MR image analysis.

3.1 Segmentation branch

3.1.1 Backbones

Inspired by the UNet++ network concept, our proposed image segmentation network
also satisfies the encoding and decoding structures, and connects them through convo-
lutional blocks at different levels. In this way, SNSS-UNet is capable of thoroughly ex-
tracting features of brain MR images and alleviating the semantic gap phenomenon to a
certain extent.

We chose the UNet++ framework because it has demonstrated high segmentation
accuracy in various medical image segmentation tasks. To promote feature reuse, we
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have employed the densenet [38] architecture as encoder of our suggested segmentation
branch. The decoder of our network is enabled through transposed convolution. To
combine the feature maps from the decoding and encoding stages of the same layer, we
utilize dimensional concatenation.

3.1.2 Loss Function

Deep learning models typically use cross-entropy to guide network training, thereby
learning common features from annotated data. However, when there is a lack of anno-
tated data, overfitting may occur. In this case, combining individual features of unlabeled
samples can effectively strengthen the network’s potential in understanding the overall
characteristics of samples. The final network output of the segmentation branch depends
on the softmax function activation result of the feature fusion layer, which indicates the
likelihood of each pixel associated with a particular category. In brain MR images, the
heat maps of the signed distance functions is shown in Figure 2.

Figure 2: The heat maps of the signed distance functions. Starting with the first figure, the sequence is signed
distance function heat maps of the original image, background, cerebrospinal fluid, gray matter, and white
matter. The red portion of each map represents the distribution area of the target class in the heat map. The
three heat maps on the right provide a perfect overview of the level set structures of cerebrospinal fluid, gray
matter, and white matter. In the heat maps, the imbalance in the proportions of the three target classes is also
evident.

Similarly, M(¢1,¢2) in the C-V level set energy function can also approximate the
likelihood of each pixel associated with each category. However, the energy function
in the C-V level set model only considers the mean center of the image and does not
calculate the corresponding variance, resulting in poor robustness to noise. Therefore,
using a loss function based on Euclidean distance may not produce the best segmentation
results. To mitigate the perturbation of segmentation outcomes by noise and offset field
elements, we combine FMMs with the C-V model. Thus, the improved energy function
can simultaneously calculate the mean and variance of various categories. We once again
combine this energy function as a loss function with the cross-entropy in deep learning,
thereby promoting the network to capture the common features of the all samples and
the individual features of the each independent sample.

For example, the GMM assumes that all pixels in a brain MR image satisfy a mixture
of standard normal distributions. Then a GMM based on C-V level set energy function
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can be defined as

4
E= | Y —log (p(u(x,y),0;) Mi(¢1,¢2) dxdy
= 3.1)

+U/Q\VH((pl)|dxdy+v/Q|VH(cp2)|dxdy

Based on the observation in Kim et al. [39], My can be replaced by using the softmax
results s(x,y) of the preceding layer. Where, s(x,y) is defined as
e%i(X)

W,]:l,z,...,K, (32)

sj(xy) =

zj(x,y) represents the the preceding layer. Then Eq. (3.1) can be written as

4
Ecmrs= /Q Y log(p(u (x,y),@k)sk(x,y)dxdy—i—v/Q Vs (x,y)|dxdy. (3.3)
k=1
According to the EM algorithm, the parameters of the model can be calculated as
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where N is the number of the pixels in the image. Since the Gaussian mixture distribution
is employed to characterize the image distribution, it provides a better representation of
sample personality features. In order to obtain the overall characteristics of the samples,
we combine cross-entropy loss as the final loss function for the segmentation model

Hk

7

L=aEcg+BEcmrs,

where
1 N K
ECE = — N Z Zyijlogsi,j-
i=1j=1
When u is an annotated sample, f =1, otherwise, p =0. The segmentation module can
not only capture the feature information of annotated samples, but also obtain the feature
information of unannotated samples, thus reducing the risk of model overfitting.

For some symmetric data, the Gaussian mixture model (GMM) is able to fit the dis-
tributions of different categories. However, the distribution of pixels in brain MR images
is usually asymmetric. For data with asymmetric normal distribution, the skew normal
mixture model (SNMM) can more accurately fit the distribution of various categories
in brain MR images compared to the traditional Gaussian mixture model, especially for
some categories with high skewness, which helps to better extract the individual features
of sample images. A visualization of the SNMM probability density distribution is shown
in the Figure 3.
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Figure 3: Visualization of skew normal mixed distribution of brain MR images. The first subgraph is the
original image, the second subgraph is the ground truth, and the third subgraph is the histogram and skew
normal distribution curves of cerebrospinal fluid, gray matter, and white matter. Taking this whole figure as an
example, it can be seen that the skew normal mixture model is very accurate for the fitting of gray matter and
white matter.

Level set methods drives curve evolution by minimizing an energy functional, while
the Skew-Normal Mixture Model (SNMM) provides statistical modeling of data distri-
butions. The mathematical integration of these methodologies requires the definition
of a unified energy functional comprising two critical components: a data fidelity term
derived from SNMM likelihood estimation and a geometric regularization term inher-
ited from level set theory. Specifically, the Euclidean distance metric in the conventional
Chan-Vese (C-V) energy functional is reformulated as the SNMM-based likelihood func-
tion, enhancing noise robustness by probabilistically weighting pixel intensities accord-
ing to their skew-normal distribution characteristics. This formulation enables simulta-
neous optimization of regional statistical characteristics and boundary smoothness con-
straints. The integration process employs an alternating optimization strategy that it-
eratively updates segmentation boundaries and hyperparameters of SNMM, ensuring
that the energy function decreases monotonically during optimization. This dual-update
mechanism guarantees convergence while maintaining computational stability, thereby
facilitating the convergence of our proposed SNSS-UNet architecture. Therefore, the C-V
level set energy function combined with the skew normal mixing model is

K
L= [ Y log (Pu(xy)10)) " M; (9o dxcy
= (3.4)

—H)/Q]VH(gb])\dxdy—i—v/Q\VH(cpz)]dxdy.

The ¢ and ¢, in the above equation(3.4) are biphasic level sets, which can divide the
pixels in the image into four categories. There are K categories of samples. () means the
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entire image area; u(x,y) represents each pixel in a two-dimensional image, and (x,y)
can obtain its position in the image; ©; represents the set of parameters under different
categories;(P(x;|®;) is a skew normal distribution probability density function, defined
as

1 1 1 To 1p- 1
P (xl\@]) = —l—lexp (— (xi—biyj —A]'Ti) Z] 11“]. 1 (xi —bi‘u]'—A]'Ti) — Tl-2> P (35)
272 |1 |2 2 2
where T; is a latent variable, which is derived by maximizing the joint probability density
or conditional posterior probability. Specifically:
We assume the joint distribution of the observed variable x; and latent variable T; is

1 T 1o 1
P(xi,Tl‘|@j) o<exp <—2 (xi—bi,’l/l]‘—A]‘Ti) Zj 1I'j 1 (xi_bi,uj_AjTi) — 2'(‘3) , (36)

where the optimal estimate of 7; is obtained by maximizing the log-likelihood of the joint
distribution . ,
T
L(n)=75 (xi=bipj—Bj1) " A(xi—bipj— Ajmi) +§Ti2, (3.7)
where A = Zj’lf ];1‘ And then, we take the derivative with respect to 7; and setting it to
zero to get

oL
55:—Aﬂﬂm—hmyH§A@n+n:Q (3.8)

Finally, we solve for T; yields
-1
EZQQAM+Q AT A(xi—bipsy), (3.9)

where [ is the identity matrix. 7; quantifies the skewness characteristics of the observed
data x;. When A;=0, the model reduces to a symmetric normal distribution with 7;=0. In
the E-step of the EM algorithm, 7; is computed to update model parameters ©;, enabling
precise modeling of asymmetric data.

Subsequently, we present a comprehensive derivation of closed-form parameter ex-
pressions through the Expectation-Maximization (EM) algorithm framework, with par-
ticular emphasis on elucidating the functional role of parameter 7; in governing the math-
ematical tractability of the optimization process. The analytical derivation systematically
addresses the interdependencies between latent variables and observable data, where 7;
serves as a critical mediator in maintaining probabilistic consistency during the iterative
maximization of the complete-data likelihood. This formulation explicitly reveals how
structural constraints imposed by T; enable stable convergence while preserving the sta-
tistical interpretability of skewness coefficient within the SNMM.

In conclusion, the parameters in the above probability density function P (x;|©;) are
given by the following mathematical expressions:

1
A=129;,
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According to the estimation formula of the above parameters, the covariance matrix
and skewness coefficient can be expressed as

The selection of skewness coefficient in the Skew Normal Mixture Model (SNMM)
critically influences the segmentation accuracy of brain MR images. When A =0, the
skew normal distribution will degenerate to a standard normal distribution, equivalent to
the Gaussian Mixture Model (GMM). As A increases, the distribution exhibits enhanced
skewness to better capture tail characteristics in intensity histograms, thereby improving
the model’s capacity to fit asymmetric intensity patterns prevalent in neuroimaging data.
However, excessive A value may erroneously interpret noise components as distribution
tails, resulting in irregular segmentation boundaries and potential model overfitting. To
address this trade-off, our methodology integrates an expectation-maximization (EM) al-
gorithm framework to adaptively estimate tissue-specific skewness coefficient A for cere-
brospinal fluid, gray matter, and white matter. This optimization strategy achieves equi-
librium between model complexity and fitting efficacy, ensuring robust segmentation
performance while maintaining plausibility in tissue boundary delineation.

In order to better obtain spatial information of images and focus on the common fea-
tures of images, we combine the skew normal mixture model based on C-V method with
our segmentation branch. The softmax probability values s; ; outputted by the network
can approximately replace the posterior probabilities Z;; in the skew normal mixture
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model, M; can be replaced by using the softmax results of the previous layer in the net-
work. According to Eq.(3.4), the unsupervised loss function is modeled as

K
ESNMLS:/QZ—log(P(u(x,y)]@)j)si"si,jdxdy—i—v/()]Vsi,j|dxdy. (3.11)
=1

In the above Eq.(3.11), the various parameters 71, 71, £ and A in the loss function can all
be solved by s; ;, and then the network can be trained using backpropagation algorithm
to obtain numerical solutions of the parameters.

Based on observation, it can be seen that the proportion of background and target
classes is relatively unbalanced, and the proportion of cerebrospinal fluid in the target
class is significantly lower than that in gray matter and white matter. For imbalance
categories, we replace the traditional cross entropy loss with focal loss to more accurately
extract the common features of the interested categories. The focal loss function is defined
as

1 N K
Efocal = —Nizljzlijyi,j(l—Pi,j)WlogPi,jr (3.12)

where p; ; =s;; is the probability value of the network predicting the ith pixel as the jth
class; y;  is the label value, with a range of values consisting of a set of 0 and 1; ; aims to
control the contribution weights of different categories in the entire loss function. Finally,
a comprehensive semi-supervised loss function is constructed by combining the skew
normal mixture loss of the unsupervised coupling level set with the fully supervised
Focal loss as the loss function of the segmentation module for network training. The
specific expression is

Lotar :Efocal+,BESNMLSr (3.13)

where the hyperparameter  serves as an important means of adjusting Esyars and
Efocar, which can adjust the contribution weights of the two different loss functions, and
balance the difference in values between unsupervised loss function and fully supervised
loss function.

Considering the presence of partial volume effects, weak boundaries may be ob-
served, which may lead to a lack of clear differentiation between different categories. To
address this issue, we introduce a boundary information regression module to facilitate
the network in extracting boundary features.

The boundary feature regression module aims to overcome the challenges posed by
weak boundaries in the images. By integrating this module, the network becomes more
capable of distinguishing different categories and further improving overall segmenta-
tion performance.
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3.2 Boundary feature Regression branch

3.2.1 Backbones

In the boundary feature regression branch, the U-Net architecture [16] is employed as the
backbone, utilizing the same encoding structure as the segmentation module.

By using U-Net as the backbone, the boundary feature regression module benefits
from the effective feature extraction capabilities of the U-Net architecture. This allows
the module to capture and utilize important boundary-related information for improved
performance in capturing boundary features.

Overall, the boundary feature regression module, with U-Net as its backbone, con-
tributes to our SNSS-UNet to utilize essential boundary information, enhancing the seg-
mentation model’s accuracy and performance.

3.2.2 Loss Function

The level set model views curves/surfaces as zero level sets on a higher-dimensional sur-
face, and achieves segmentation through surface evolution. Therefore, its level set func-
tion can characterize the characteristic information of curves and their neighborhoods.
Exploiting this, this paper uses the signed distance function of the calibration result as
the final boundary feature information and constructs a regression loss to guide the net-
work in capturing boundary information.

The signed distance function is defined as

—inf||x—yl||,, x€Siy
p(x)=40, x€adS
+inf|‘x_y||2, xeSout,
where y € 0S is a point of the boundary of the object. S;;, and S, represent the inside

region and outside region. Thus, the regression loss is given by using the mean square
error (MSE):

2
Lreg:/QgH¢i—¢iH2dx.

3.3 Coupling module

To effectively integrate the feature information between the segmentation branch and the
regression branch, we design a feature coupling module based on Residual (Res) blocks,
which can ensure double-branch consistency.

The Res block union can be represented as

yi=x;+F(x;,W;),

Xit1 :f(]/i)/
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where x; and x; 1 are the ith (input) and (i+1)th (output), respectively. f(-) is the activa-
tion function and F(+) is the residual function.

The purpose of this idea was to simplify the training process and ensure that infor-
mation propagation does not degrade, ultimately leading to improved network perfor-
mance.

In summary, the combination of the feature coupling module and the Residual blocks
enables effective integration of feature information from both modules, leading to im-
proved representation and performance in capturing complex relationships between dif-
ferent tasks.

Then, the entire network is ultimately trained using a combined loss function that
encompasses both two branches

Liotar = Lseg + '}’Lreg/ (3.14)

where 7y represents a hyperparameter that controls the weight assigned to the losses from
the segmentation module and the regression module.

4 Experiments

In this section, we performed five sets of comparative experiments to showcase the effec-
tiveness of our proposed method. Among these experiments, we compared our method
against various other models, including fully supervised models such as UNet++ [26],
double UNet [32], Attention u-net [28], and a semi-supervised model called ACM_CNN
[39].

To analyze the effect of annotated sample quantity on results, we explored relation-
ship between sample size and segmentation accuracy using our dual-task semi-supervised
network. Our findings demonstrate that our proposed dual task UNet achieves higher
segmentation accuracy compared to the other models.

4.1 Datasets

We collected data from two sources for our experiments: the MRBrainS18 dataset (which
is available at https:/ /mrbrains18.isi.uu.nl) and the Internet Brain Segmentation Reposi-
tory (IBSR) dataset (which is available at http://www.cma.mgh.harvard.edu/ibsr). The
sample sizes of MRBrainS18 and IBSR are 282 and 1842, respectively.

To divide the dataset for training and testing, we set the training sample size to be
80%. The test sample should be different from the training sample. This partitioning
strategy ensures that the model is trained on a diverse range of images while also allow-
ing for unbiased evaluation on unseen data.

By incorporating data from multiple sources, we can more effectively evaluate and
validate the performance of our proposed method in segmenting brain images.
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4.2 Training and Evaluation Metrics

We employed the Adam optimizer as the algorithm for back-propagation optimization in
the network training process. We set the learning rate to 0.001, which determines the step
size for gradient updates during training. The choice of Adam optimizer and the specific
learning rate were based on their proven effectiveness in achieving faster convergence
and better optimization results. During the training phase, we used a small batch size of
6. A smaller batch size can help in reducing memory requirements and allow for more
frequent updates, leading to potentially faster convergence. We conducted a total of 120
iterations during the training process. The experiments were conducted on a hardware
environment equipped with an NVIDIA GeForce GTX 3090 GPU with 24GB of memory.

In order to facilitate a statistical analysis of the segmentation accuracy, we employed
the Jaccard similarity (JS) metric [40] and the misclassification rate (MCR) [41] as evalua-
tion criteria. The Jaccard similarity measures the overlap between the predicted segmen-
tation and the ground truth, while the misclassification rate quantifies the proportion of
misclassified pixels or regions. By employing these evaluation criteria, we can effectively
compare and quantify the performance of our method against other models.

4.3 Results

The first experiment primarily focuses on the IBSR dataset. To demonstrate robustness
of our proposed SNSS-UNet to the variation in the annotated sample size, we conducted
this experiment using two different proportions of the dataset. Specifically, we used 20%
and 80% of the annotated samples as the training set, while the remaining samples were
utilized as the test set.

In this study, we conducted comparative experiments. Figure 4 provides a compre-
hensive comparison of the performance of our proposed SNSS-UNet and the other frame-
works, highlighting the advantages of our approach.

The second experiment was conducted on the MRBrainS18 dataset. Similar to the
previous experiment, we used 20% and 80% of the annotated samples as the training
set, while the remaining samples were used as the test set. It is worth mentioning that
the MRBrainS18 dataset has a smaller sample size compared to the IBSR dataset. This
smaller sample size poses a challenge to deep learning methods as they are more prone
to overfitting. The segmentation results are also shown in Figure 5.

The first and second rows in Figure 4 and Figure 5 display the segmentation results
obtained using 80% and 20% annotated samples, respectively. Each column from left to
right represents the initial images, the ground truths, segmentation results of UNet++,
Attention u-net, double UNet, ACM_CNN, and our method, respectively.

All these methods can achieve comparable results when utilizing 80% annotated sam-
ples. However, when the size of annotated samples is small, supervised methods such
as UNet++, double UNet, and Attention u-net struggle to produce satisfactory results.
ACM_CNN is a semi-supervised method that employs the CV function as the loss, mak-
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Figure 4: Segmentation results on IBSR dataset. The first row shows the results on 80% annotated samples
and the second row shows the results on 20% annotated samples. From the left column to the right column
show the initial images(the ground truth), the segmentation results of UNet++, Attention u-net, double UNet,
ACM_CNN and our method, respectively.

ing it sensitive to weak edges. On the other hand, our method is based on a SNMM-based
level set and utilizes an edge information regression model to preserve edge information.

Here we used the Jaccard similarity (JS) value and MCR values as the evaluation
metric. From results of Table 1, it is evident that all the methods can achieve satisfactory
segmentation results when the training set is sufficiently large. However, as the size
of the labeled sample decreases, the semi-supervised methods exhibit higher accuracy
compared to the fully supervised methods. This distinction is particularly noticeable in
datasets like MRBrainS18, where the sample size is already small, with semi-supervised
methods achieving 0.1% higher JS accuracy. Examining the segmentation accuracy of
CSE, our method achieves the highest numerical value, indicating that the inclusion of
boundary feature regression branches preserves detailed contours.

4.4 Ablation Analysis

To examine the impact of the skew Normal Mixture Model based level set loss and eval-
uate the effectiveness of dual branch networks, we performed ablation studies following
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Figure 5: Segmentation results on MRBrainS18 dataset. The first row shows the results on 80% annotated
samples and the second row shows the results on 20% annotated samples. From the left column to the right
column show the initial images(the ground truth), the segmentation results of UNet++, Attention u-net, double
UNet, ACM_CNN and our method, respectively.

the experimental setup described in Section V.B. We employ UNet++ as the backbone
for our segmentation model. U-Net++ framework has garnered widespread recognition
in the field. It effectively tackles the challenge of uncertain network depths by integrat-
ing U-Nets of different depths. By sharing an encoder and leveraging deep supervision,
these integrated U-Nets learn collaboratively. Notably, UNet++ enhances the decoder
sub-network to incorporate features with varying semantic scales, enabling a flexible and
adaptable feature fusion scheme.

In order to highlight the advantages of dual branch networks, we incorporated our
boundary feature regression branch into the UNet++ architecture and compared it to the
original network. The Table 2 demonstrates that the inclusion of the boundary feature
regression branch is effective, regardless of whether it is trained with 80% or 20% of the
training set. This observation holds true for the MRBrainS18 dataset as well.

In this paper, we utilize the SNMM based Level set loss to capture the individual
characteristics of the samples and use focal loss to capture the common characteristics of
the sample set. This experiment is primarily conducted to test the role of the individual
characteristics of the samples in network segmentation. The JS values are shown in Table
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Table 1: The JS values of CSF, GM, WM by using different models for IBSR and MRBrainS18 datasets

dataset Sample ratio Backbones JS_CSE(%) JS_.GM(%) JS_-WM(%)
UNet++ 81.7+0.39  93.06+0.04 90.36+0.45

Attention u-net  82.34+0.35 93.29+0.03 90.45+0.50

80% double UNet  79.01+0.44 92.29+0.04 89.32+0.52

ACM_CNN 82.27+0.38 93.39+0.04 90.65+0.46

Ours 82.80+0.36  93.50+0.02 90.71+0.41

1BSR UNet++ 65.54+0.92 85.22+0.26 79.46+1.82
Attention u-net  65.05+1.02 85.2+0.25 79.88+1.18

20% double UNet  64.85+1.03 85.05+0.17 77.87+1.47

ACM_CNN 65.3+1.33 85.33+0.25 79.95+1.65

Ours 66.92+1.22 85.60+0.21 80.08+1.19

UNet++ 82.09+0.41 73.88+0.20 74.31+1.29

Attention u-net 82.23+0.26 74.43+0.18 75.85+0.87

80% double UNet  82.12+0.24 73.85+0.18 75.37+0.96

ACM_CNN 82.57+0.23 75.04+0.23 75.77+1.23

MRBrainS18 Ours 83.73+£0.21 76.19+0.19 76.83+0.93
UNet++ 80.33+0.32 74.79+0.31 72.37+2.38

Attention u-net 81.42+0.59 73.24+0.28 72.68+3.29

20% double UNet  81.87+0.22 72.81+0.17 74.67+0.95

ACM_CNN 81.34+0.34 75.62+0.21 75.64+1.08

Ours 83.05+0.31 75.71+£0.12 76.24+0.96

3 highlight the differences between these two loss functions. Observing the data in the
table, driven by the loss function we proposed, the segmentation accuracy is enhanced by
approximately 0.2% for large samples and improve the segmentation accuracy by around
1% for small samples. These findings suggest that incorporating the individual charac-
teristics of the samples can effectively mitigate the risk of network overfitting.

Finally, in order to demonstrate that our proposed loss function and regression term
have a positive effect on improving the segmentation accuracy, we conducted corre-
sponding ablation experiments. The JS values are shown in Table 4 highlight the dif-
ferences between these two methods. Combining two tables, our proposed loss function
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Table 2: The JS values of CSF, GM, WM by using different models for IBSR and MRBrainS18 datasets

dataset Sample ratio Backbones JS_.CSF(%) JS-GM(%) JS-WM(%)

. UNet++ 81.7+0.39 93.06+0.04 90.36+0.45

IBSR 80% UNet++ with regression  81.94+£0.36 93.27+0.04 90.65+0.43

. UNet++ 65.54+0.92 85.22+0.26 79.46+1.82

20% UNet++ with regression  66.15+1.19  85.42+0.27 79.85+1.73

. UNet++ 82.09+£0.41 73.88+0.20 74.31+1.29

MRBrainS18 80% UNet++ with regression  82.38+0.28 75.7+0.18  76.36+1.11
0% UNet++ 80.33+£0.32 74.79+0.31 72.37+2.38

UNet++ with regression  81.72+0.30 74.29+0.25 76.23+1.23

Table 3: The JS values of CSF, GM and WM by using different loss functions for IBSR and MRBrainS18
datasets

dataset Sample ratio Backbones JS_.CSE(%) JS_.GM(%) JS-WM(%)

. UNet++ with CE 81.7+0.39  93.06+0.04 90.36+0.45

IBSR 80% UNet++ with CE+SNMLS  82.39+0.35 93.36+0.02 90.53+0.42

. UNet++ with CE 65.54+0.92 85.22+0.26 79.46+1.82

20% UNet++ with CE+SNMLS  66.18+0.90 85.95+0.23 79.51+1.35

. UNet++ with CE 82.09+0.41 73.88+0.20 74.31+1.29

MRBrainS18 80% UNet++ with CE+SNMLS  83.38+0.28 75.33+0.19 76.44+1.01
0% UNet++ with CE 80.33+0.32 74.79+0.31 72.37+2.38

UNet++ with CE+SNMLS  82.85+0.29 75.58+0.18 76.12+0.97

and regression term can better enhance the segmentation accuracy, especially under small
samples.

5 Discussion and Conclusion

The network introduced in this article includes two hyperparameters: g and <, whose
configurations have an impact on the ultimate segmentation outcome. The parameter
in Eq.(3.13) is primarily utilized to balance the common characteristics of the sample set
with the individual characteristics of the samples. A higher value of B directs the net-
work’s attention towards the individual characteristics of each sample, whereas a lower
value of p emphasizes the collective common features of the sample set. Figure 6 shows
the effect of B.

The parameter < in Eq.(3.14) is primarily utilized to balance the segmentation model
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Table 4: Comparison of ablation experimental results based on the addition of our loss function and regression

term
dataset Sample ratio Backbones JS_.CSF(%) JS-GM(%) JS-WM(%)
. UNet++ with CE 81.7+0.39  93.06+0.04 90.36+0.45
IBSR 80% UNet++ with CE+SNMLS and regression  82.77+0.35 93.44+0.03 90.63+0.42
) UNet++ with CE 65.54+0.92 85.22+0.26 79.46+1.82
20% UNet++ with CE+SNMLS and regression  66.88+1.24 85.74+0.20 80.03+1.21
) UNet++ with CE 82.09+£0.41 73.88+0.20 74.31+1.29
MRBrainS18 80% UNet++ with CE+SNMLS and regression  83.66+0.25 76.09+0.16 76.75+0.96
. UNet++ with CE 80.33+£0.32 74.79+0.31 72.37+2.38
20% UNet++ with CE+SNMLS and regression  82.99+0.29 75.56+0.14 76.28+0.95

Figure 6: The MCR values of SNSS-UNet based on different B values

and the regression model. The larger <y, the more the network focuses on the boundary
feature information. However, this can also lead to suboptimal segmentation results.
Figure 7 shows the effect of +.

Figure 7: The MCR values of SNSS-UNet based on different 7 values
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