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Abstract. In addressing the tracking control problem for unmanned aerial vehicle
(UAV) swarms, we consider several challenges: the unmeasurable state of the swarm
system, potential deception attacks on actuators, external random disturbances, and the
nonlinear dynamics of each UAV. To tackle these issues, we first introduce a time-varying
function and utilize a coordinate transformation method to convert the time tracking
problem into an error variable constraint problem. Next, we propose an adaptive time
tracking control method employing one-to-one mapping and inversion techniques, aimed
at achieving system convergence to a specified accuracy within a designated time frame.
To mitigate the impact of possible deception attacks on actuators, we design an attack
compensator that removes disturbances caused by time-varying attack gains. Addition-
ally, we implement an observer to estimate the unmeasurable state of the system and
utilize a fuzzy logic system to manage unknown functions. Finally, we validate the
effectiveness of our control method through simulations.
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1 Introduction

With the rapid development of unmanned air vehicle technology, the application of UAV
swarms has become increasingly widespread in fields such as military, agriculture, and
logistics. However, the complexity and diversity of UAV swarm systems have led to sig-
nificant control issues, which are increasingly important and challenging to address. The
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utilization of trajectory tracking technology enables multiple UAVs to commence their
journey from a variety of arbitrary initial positions and subsequently maintain the desired
trajectory motion. This technology has already achieved significant results [1, 2] in prac-
tical systems. However, due to various disturbances in the external environment, there
are inevitably uncertain parts in the modeling of (unmanned aerial vehicle)UAVs. Swarm
control methods are constrained by nonlinear systems, requiring the internal nonlinear
dynamics of the system to be known. Currently, a plethora of solutions exists, among
which neural networks and fuzzy logic systems (FLS) [3,4] are efficacious instruments for
the management of the unknown and uncertain components of the controlled system. For
example, in [5], an adaptive neural control method was designed for UAV formation. Nev-
ertheless, in the majority of practical systems, the state of the controlled UAVs cannot be
directly measured. Furthermore, the high costs associated with obtaining this data during
the control design process render it impractical. Therefore, for nonlinear systems with
unmeasurable states, appropriate fuzzy network state observers are employed. These ob-
servers are used to propose an observer-based leader-follower consensus controller [6]. The
aforementioned control scheme only considers deterministic nonlinear systems. Due to
the extreme complexity of the actual environment, additional consideration of stochastic
disturbances brought by the environment is necessary.

It is well-known that stochastic disturbances can destabilize the entire system. Con-
sequently, there has been a notable increase in the focus on the design of controllers for
stochastic nonlinear systems. Wu et al. [7, 8] respectively studied the adaptive control
of stochastic nonlinear systems with measurable and unmeasurable states. Subsequently,
Ren et al. [9] further considered fuzzy leader-follower control based on local information.

Compared to traditional control systems, UAVs need to operate in network environ-
ments, where most of their data is susceptible to various types of cyber-attacks, such as
stochastic attacks [10], denial-of-service (DoS) attacks [11], and deception attacks [12].
Once the system is attacked, it becomes difficult to transmit signals completely. There-
fore, the cybersecurity of UAV systems is an important research topic. This paper focuses
on deception attacks, which primarily aim to intercept the signals of the system’s actua-
tors and inject false signals [13], thereby destabilizing the system. In their study, Han et
al. [14] devised a consensus control scheme on the premise that the probability of deception
attacks was a constant, known quantity. In addition, Han et al. [15] considered the case
where deception attacks are multiplicative gains. Subsequently, it was proposed that a
leaderless consensus controller be employed under direct communication conditions, with
the objective of ensuring that all closed-loop signals are bounded. To mitigate attacks
on the actuator channels, Jin et al. [16] designed an adaptive control method for linear
systems.

In addition to considering abnormal factors in the system (such as stochastic distur-
bances and deception attacks), the convergence speed of the system is also an important
criterion in the design of controllers. Bhat and Bernstein [17] proposed a finite-time control
method, which has stronger anti-disturbance capability and better robustness compared
to asymptotic convergence controllers. Min et al. [18] studied the trajectory tracking prob-
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lem based on finite-time control. Within a limited sensing range, Liao et al. [19] studied
the finite-time consensus of second-order multi-agent systems, while Yang et al [20] in-
vestigated the finite-time formation control problem of multiple UAVs. The limitation of
finite-time control is contingent upon the settling time, which is a function of the initial
conditions of the system. In practical applications, particularly in larger systems, it is not
feasible for users to obtain the specific initial conditions of the system. Therefore, Zhang
et al. [21] proposed a fixed-time controller that ensures the closed-loop system reaches
stability within a fixed time. Sun et al. [22] studied the timed control problem of Euler-
Lagrange type multi agent systems under limited communication range. It is worth noting
that although fixed-time control does not require obtaining the initial state of the system,
it still relies on certain control parameters. The boundary estimation of the settling time
is overly conservative, resulting in an estimated settling time that is significantly longer
than the actual settling time. Due to the time-sensitive nature of certain tasks, higher
control precision is required for the system to ensure that it reaches consensus within
the user-prescribed time. Consequently, researchers in [23] devised a prescribed-time con-
troller for nonlinear systems and constructed an adaptive fuzzy prescribed-time consensus
protocol to preserve connectivity for nonlinear systems. In recent years, the security con-
trol of multi-UAV networks has emerged as a prominent research area within the field of
control, garnering significant attention from the academic community. However, due to
the unknown gain of deception attacks on the system, ensuring stable operation under
such circumstances remains challenging.

Inspired by the aforementioned achievements, this paper designs a prescribed-time
adaptive fuzzy controller for UAV swarm with nonlinear dynamics, considering external
environmental noise and deception attacks. The principal contributions are as follows.

(1) Unlike [23], due to the inevitability of external noise, in addition to considering
deception attacks on the system, the impact of environmental noise on the internal UAVs
and the nonlinear dynamics within the UAVs are also considered.

(2) In order to address the unknown time-varying gain of deception attacks on the
actuators, a new attack compensator has been designed with the objective of eliminating
the impact of deception attacks, thereby ensuring the stable operation of the system in a
network environment.

(3) By designing a controller based on the attack compensator, it is ensured that all
signals in the stochastic nonlinear system are bounded under closed-loop conditions and
can achieve precise tracking within the prescribed time.

The paper proceeds systematically to address the challenge of prescribed-time tracking
control for UAV swarms under deception attacks. Section 2 introduces the graph-theoretic
framework and formalizes the problem, including the stochastic UAV swarm dynamics
and attack model. Building on this foundation, Section 3 develops the adaptive fuzzy
control strategy, integrating a time-varying attack compensator, a state observer, and a
backstepping-based prescribed-time convergence proof. Section 4 validates the theoret-
ical results through numerical simulations, demonstrating the method’s effectiveness in
achieving secure tracking under adversarial conditions. The paper concludes in Section 5
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with a discussion of contributions and future research directions, particularly in scaling
the approach to heterogeneous swarm systems.

2 Preliminaries

2.1 Graph Theory

Consider a directed graph G={V ,E,A} containing nnodes, where V ={v1,v2,...,vn} rep-
resents the set of nodes and ε⊆{V ×V } represents the set of edges. The matrix A=[aij ]
is the weighted adjacency matrix of the graph G. For a directed edge εij=(vj ,vi), there
exists a flow of information from UAV j to UAV i if and only if εij ∈ ε. If εij ∈ ε, then
UAV jis considered a neighbor of UAV i. The set of all neighbors of UAV iis denoted by
Ni={vj∈V :εij∈ε}. The adjacency matrix A=[aij ] is used to describe the communication
weights between UAVs, where aij >0 indicates communication, otherwise aij = 0,aii= 0.
The Laplacian matrix L of the graphG is defined as L=D−A, whereD=diag{d1,d2,...,dn}
and dn=

n∑
j=1

aij .

2.2 Problem Statement

In this paper, the following stochastic first-order UAV swarm is considered:
dxi,k=xi,k+1+fi,k (x̄i,k)dt+gi,k (x̄i,k)dw,
dxi,n=υi+fi,n(x̄i,n)dt+gi,n(x̄i,n)dw,
yi=xi,1, 1≤k≤n−1,

(2.1)

where x̄i,k=[xi,1,xi,2,...,xi,k]T ∈Rk represents the state vector for i=1,...,n. The variables
υi and yi represent the system’s input and output, respectively. Both fi,k(·) and gi,k(·) are
unknown smooth nonlinear functions. The term w denotes a standard Brownian motion
defined in a complete probability space.

Figure 1: System Control Diagram
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In practical networks, the system environment is intricate and complex. Therefore, it
is assumed that each UAV actuator in the system is subject to different deception attacks,
as illustrated in Figure 1.

Therefore, similar to the approach in reference [24], the deception attack on the actu-
ator can be modeled as

υi=Bi(t)ui(t)+Ki(t)γi(xi), (2.2)

where ui(t) is the designed controller. Both Bi(t) and Ki(t) are unknown time-varying
gains, and γi(xi) represents an unknown nonlinear function.

Assumption 1: There exist two unknown positive constants B̄ and B such that
B̄≤|Bi(t)|≤B.

Assumption 2: Let y0 be the leader, and the overall system is controlled by adjusting
the leader’s trajectory. If the i-th UAV can directly access the information of y0, then ιi=1;
otherwise, ιi= 0. Additionally, the directed graph G is balanced and weakly connected,
with at least one UAV having direct access to all the information of y0.

Let F (X) be a continuous function defined on a compact set
∏

. Then, there exists a
fuzzy logic system (FLS) F̂ (X)=Ŵ *TH (X) such that

FX=W *TH (X)+ h̄.

Furthermore, we can obtain sup
X∈
∏ |F (X)−W *T H (X)|≤ε with an approximation error

ε>0, and W *=
[
W *

1 ,W *
2 ,...,W *

m

]
represents the ideal weight vector. Additionally, H (X)=

[H1,...,Hn]T∑N

i=1Hi
denotes the fuzzy basis function vector.

Lemma 1 [25]: The second-order sliding mode integral filter is designed asλ̇p1=−λp1−P (t)
Ip1

−Qp1(λp1−P (t))
λp1−P (t)+Bp1

,

λ̇p2=−λp1−λ̇p1
Ip2

−Qp2(λp2−λ̇p1)
λp2−λ̇p1+Bp2

.

Lemma 2 [26]: For any vectors x,y∈Rn,there exists an inequality xy≤ ab

b |x|b+ 1
cac |y|c,

where a>0,b>1,c>1, and (b−1)(c−1)=1.

3 Main Results

3.1 Controller Design

To ensure that the system achieves the desired tracking accuracy within a limited time
frame at a predetermined convergence rate, the following nonlinear transformation func-
tions are introduced to obtain the actual prescribed-time tracking performance:

µ(t)=


T 2eβt

(1−ψ
a
)(T−t)2+ψ

a
T 2eβt

,0≤ t<T

a
ψ ,t≥T

(3.1)
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where the preset settling time T satisfies T >0, and the controller design parameter β>
0 represents the convergence rate. Additionally, a>ψ > 0 and ψ denotes the tracking
accuracy. The function has the following properties:

(1) µ(t) is a bounded and differentiable function, and its derivative is also bounded.
(2) µ(t) is strictly increasing on the interval [0,T], with µ(0) = 1.When t= T , the

function can approach its maximum value and maintain this constant.
At the same time, using adaptive fuzzy control, the following coordinate transforma-

tions are defined:
zi,1=yi−ιiy0−(1−ιi)ŷi,0,

χ1=µ(t)zi,1, (3.2)

zi,s=xi,s−αi,s−1,s=2,...,n. (3.3)

In this context, ŷi,0 represents the estimate of y0, χ1 denotes the virtual error, and αi is
the designed virtual controller.

Note 1: From the above nonlinear transformation of the error, it is required that
when t>T , |zi,1|<ψ, i.e., when t>0,|χ1|<a.

Step 1. First, by differentiating χ1, we obtain

dχ1=µdzi,1+zi,1dµ

=µd(yi−ιiy0−(1−ιi)ŷi,0)+zi,1µ̇dt

=
[
zi,1µ̇+µ(zi,2+αi,1−fi,1−ι1ẏ0−(1−ι1)ŷ0)

]
dt+µgi,1dw. (3.4)

Consider the following candidate Lyapunov function:

V1=
1
4 ln a4

a4−χ4
1
+

1
2m1

ξ̃2
1 .

Here, m1 is the design parameter, ξ̂1 represents the estimate of ξ1, and ξ̃1=ξ1−ξ̂1 denotes
the approximation error. By applying Itô′s lemma and equations (3.3) and (3.4), we
obtain

LV1=
χ3

1
a4−χ4

1
[z1µ̇+µ(zi,2+αi,1+fi,1−ι1ẏ0−(1−ι1) ˙̂yi,0]+

χ3
1

a4−χ4
1
µ2gTi,1gi,1− 1

m1
ξ̃1

˙̂ξ1

By applying Lemma 2, the terms in the equation satisfy the following conditions:

χ3
1

a4−χ4
1
µzi,2 ≤ 3χ4

1µ

4(a4−χ4
1)

4
3
+

1
4µzi,2, (3.5)

χ3
1(3a4+χ4

1)

2(a4−χ4
1)

2 µgTi,1gi,1 ≤ χ4
1(3a4+χ4

1)
2

8(a4−χ4
1)

4
3
µ4gi,1

4+
1
2.
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Assuming f̄1 is an unknown continuous function, it is approximated by the fuzzy logic
system (FLS) as f̄1=µfi,1+

χ1(3a4+χ4
1)

2

8(a4−χ4
1)

3 µ4gi,1
4, and ξ1=∥W ∗

1 ∥2. The design parameters b1

and ε∗
1 satisfy ε∗

1 ≥∥ε1∥. Therefore, we can obtain

a4−χ4
1f̄1=

χ3
1

a4−χ4
1

(
W ∗T

1 F1(xi,1)+ε1(xi,1)
)

≤ 1
2b2

1

(
χ3

1
a4−χ4

1

)2

∥W ∗
1 ∥2F T1 F1+

1
2b

2
1+

1
2

(
χ3

1
a4−χ4

1

)2

+
1
2ε

∗2
1

≤ 1
2b2

1

(
χ3

1
a4−χ4

1

)2

ξ1F
T
1 F+

1
2

(
χ3

1
a4−χ4

1

)2

+
1
2 (b

2
1+ε

∗2
1 ).

Then, design the first-order filter αi,1 as:

αi,1=−k1zi,1+ι1ẏ0+(1−ι1) ˙̂yi,0− 1
µ
zi1µ̇

− 1
2µ

χ3
1

a4−χ4
1

− 3χ1
4(a4−χ4

1)
1/3 − 1

µ

1
2b2

1

χ3
1

a4−χ4
1
ξ̂1F

T
1 F1,

(3.6)

where k1 is a system design parameter. Substituting it into equation (3.5), we obtain

LV1 ≤ ξ̃1
m1

(
m1
2b2

1

χ6
1

(a4−χ4
1)

2F
T
1 F1− ˙̂ξ1

)
+

1
2 (1+b

2
1+ε

∗2
1 +

1
2µz

4
i,2)−k1

χ4
1

a4−χ4
1
.

Thus, the adaptive controller can be designed as

˙̂ξ1=
m1
2b2

1

χ6
1

(a4−χ4
1)

2F
T
1 F1−η1ξ̂1, (3.7)

where η1 is a positive definite design parameter. Thus, we further obtain

LV1 ≤−k1
χ4

1
a4−χ4

1
+
η1
m1

ξ̃1ξ̂1+
1
4µz

4
i,2+d1, (3.8)

where d1=
1
2 (1+b

2
1+ε

∗2
1 ).

Step 2. From equation (3.3), we can obtain

zi,2=xi,2−αi,1,

Complexity explosion refers to the phenomenon where, in dealing with certain complex
systems or problems, the difficulty of computation and analysis increases sharply as the
system scale or the number of variables increases. To avoid the problem of complexity
explosion, according to Lemma 1, a second-order sliding mode integral filter is introduced:

λ̇21=−λ21−αi,1
I21

− Q21(λ21−αi,1)
∥λ21−αi,1∥+B21

,

λ̇22=−λ21−λ̇21
I22

− Q22(λ21−λ̇21)

∥λ21−λ̇21∥+B22
.



162 S. Liu et al. / J. Info. Comput. Sci., 2024, 19(2): 155-170

dzi,2=(zi,3+αi,2+f2−Lαi,1)dt+
(
gi,2− ∂αi,1

∂x1
gi,1

)T
dw.

At the same time, the virtual signal is represented as Lαi,1 =λ22−λr1 , where λr1 is
the error estimate of the second-order sliding mode filter, and there exists λ∗

r1 such that
λr1 ≤λ∗

r1 . Next, we choose the Lyapunov function:

V2=V1+
1
4z

4
i,2+

1
2m2

ξ̃2
2 .

Similar to equation (3.8), m2 is a positive definite design parameter. LetG2=gi,2−∂αi,1
∂x1

gi,1.
By applying Lemma 4, we obtain

LV2=−k1
χ4

1
a4−χ4

1
+
η1
m1

ξ̃1ξ̂1+d1+
3
2z

2
i,2G

T
2 G2

+
1
4µz

4
i,2+z

3
i,2(zi,3+fi,2+αi,2−λ22+λr1)−

1
m2

ξ̃2
˙̂ξ2.

(3.9)

By applying Young’s inequality, we obtain

z3
i,2zi,3 ≤ 3

4z
4
i,2+

1
4z

4
i,3, (3.10)

z3
i,2λr1 ≤ 3

4z
4
i,2+

1
4λ

∗4
r1 , (3.11)

3
2z

2
i,2G

T
2 G2 ≤ 9

8z
4
i,2∥G2∥4+

1
2. (3.12)

Similar to equation (3.6), we select f̄2 and approximate it using FLS asf̄2 = fi,2+
9
8zi,2∥G2∥4. From this, we can further obtain

z3
i,2f̄2=z

3
i,2(W

∗T
2 F2+ε2)

≤ 1
2b2

2
z6
i,2ξ2F

T
2 F2+

1
2b

2
2+

1
2z

6
i,2+

1
2ε

∗2
2 . (3.13)

Here, b2 is the design parameter, ε2 represents the bounded approximation error, and it
satisfies ε∗

2 ≥ ∥ε2∥. Furthermore, we construct the adaptive controller ˙̂ξ2 and the virtual
controller αi,2.

αi,2=−k2zi,2− 1
4µzi,2− 3

2zi,2+λ22− 1
2z

3
i,2− 1

2b2
2
z3
i,2ξ̂2F

T
2 F2, (3.14)

˙̂ξ2=
m2
2b2

2
z6
i,2F

T
2 F2−η2ξ̂2. (3.15)

The design parameters k2 and η2 are required to be positive.
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From equations (3.9) to (3.15), we obtain

LV2 ≤−k1
χ4

1
a4−χ4

1
−k2z

4
i,2+

1
4z

4
i,3+

1
4ε

∗2
2 +d2+

2∑
i=1

ηi
mi
ξ̃iξ̂i,

where d2=
1
2 i+

2∑
i=1

(
b2
i
2 +

ε∗2
i
2 ).

Step 3 (2<s≤n−1). By applying the coordinate transformation (3.2), we obtain

zi,s=xi,s−αi,s−1, (3.16)

dzi,s=(zi,s+1+αi,s+fi,s−Lαi,s−1)dt+(gi,s−
s−1∑
j=1

∂αi,j
∂xj

gi,j)

T

dw. (3.17)

Furthermore, the virtual controller αi,s−1 is designed as

Lαi,s−1=λs−1,2−λrs−1 , (3.18)

the integral filter λrs−1 is required to satisfy λrs−1 ≤λ∗
rs−1 , and λ∗

rs−1 must be a positive
number. We select the candidate Lyapunov function as

Vs=Vs−1+
1
4z

4
i,s+

1
2ms

ξ̃2
s . (3.19)

In this equation, ξ̃s= ξs−ξ̂s represents the estimate of ξs, and ms is a positive definite
design parameter. Combining equations (3.16) to (3.19), we obtain

LVs≤−k1
χ4

1
a4−χ4

1
−
s−1∑
j=2

kjz
4
i,j+

1
4z

4
i,s+ds−1+

s−1∑
i=1

ηi
mi
ξ̃iξ̂i+

s−2∑
i=1

1
4ε

∗4
ri

+z3
i,s(zi,s+1+fi,s+αi,s+λrs−1 −λs,2)+

3
2z

2
i,sG

T
s Gs−

1
m
ξ̃s

˙̂ξs,

(3.20)

where Gs=gi,s−
s−1∑
j=1

∂αi,j
∂xi,j

gi,j . Similar to equations (3.11) to (3.14):

z3
i,szi,s+1 ≤ 3

4z
4
i,s+

1
4z

4
i,s+1,

z3
i,sλrs−1 ≤ 3

4z
4
i,s+

1
4λ

∗4
rs−1 ,

3
2z

2
i,sG

T
s Gs≤ 9

8z
4
i,s∥Gs∥

4+
1
2. (3.21)

Similarly, by approximating the unknown function f̄s= 9
8zi,s∥Gs∥

4+fi,s using FLS, and
similar to equation (3.13), we obtain

z3
i,sf̄s=z

3
i,s(W

∗T
s Fs+εs)≤ 1

2b2
s

z6
i,sξsF

T
s Fs+

1
2b

2
s+

1
2z

6
i,s+

1
2ε

∗2
s . (3.22)
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Here, bs is a positive definite design parameter. Furthermore, the virtual controller is
designed as

αi,s=−kszi,s−
7
4zi,s−

1
2z

3
i,s−

1
2b2
s

z3
i,sξ̂sF

T
s Fs+λs2, (3.23)

and construct the adaptive control rate ˙̂ξs as

˙̂ξs=
ms

2b2
s

z6
i,sF

T
s Fs−ηsξ̂s. (3.24)

Here, ks and ηs are design parameters, and both are positive numbers. By combining
equations (3.20) to (3.24), we obtain

LVs≤−k1
χ4

1
a4−χ4

1
−

s∑
j=2

kjz
4
i,j+

1
4z

4
i,s+1+ds+

s∑
i=1

ηi
mi
ξ̃iξ̂i+

s−1∑
i=1

1
4ε

∗4
ri ,

where ds=di−1+
1
2+

b2
i
2 +

ε∗2
i
2 .

Step 4 (s=n). Considering the coordinate transformation, we have:

zi,n=xi,n−αi,n−1,

dzi,n=(υi+fi,s−Lαi,s−1)dt+

gi,n−
n−1∑
j=1

∂αi,j
∂xj

gi,j

Tdw.

Similarly, the virtual controller is constructed in the following form:

Lαi,n−1=λn2−λrn−1 , (3.25)

the estimation error of the second-order sliding mode filter is λrn−1 , and it satisfies λrn−1 ≤
λ∗
rn−1 . From equation (2.2), we know that the system is subject to a deception attack
υi=Bi(t)ui(t)+Ki(t)γi(xi). There exists a constant K̄i such that K̄i≥Ki(t).

z3
i,nKi(t)γi(xi)≤K̄iz

3
i,n(W

∗T
ϕ Fϕ+εϕ)

≤ 1
2b2
ϕ

z6
i,nξϕF

T
ϕ Fϕ+

1
2b

2
ϕ+

1
2z

6
i,n+

1
2ε

∗2
ϕ . (3.26)

Further, we make the following provisions:

Qi= inf
t≥0

|bi(t)|>0,Θi=
1
Qi

. (3.27)

Here, Θi is an unknown parameter. We design a new attack compensator Ξi, as well as a
controller ui based on the attack compensator:

Ξi=
1

2b2
ϕ

z3
i,nξϕF

T
ϕ Fϕ+

1
2b2
n

z3
i,nξnF

T
n Fn+z

3
i,n−λn2+zi,n,
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ui=− Ξ2
i Θ̂i2√

Ξ2
i Θ̂i2+σ2

, (3.28)

where σ is a positive definite design parameter. We select the Lyapunov function as

Vn=Vn−1+
1
4z

4
i,n+

1
2mn

ξ̃2
n+

Qi
2 Θ̃2

i .

In this equation, ξ̃n=ξn−ξ̂n, and Θ̃i=Θi−Θ̂i. Additionally, by applying Itô′s lemma, we
obtain

LVn≤−k1
χ4

1
a4−χ4

1
−
n−1∑
j=2

kjz
4
i,j+

1
4z

4
i,n+dn−1+

n−1∑
i=1

ηi
mi
ξ̃iξ̂i+

s−2∑
i=1

1
4ε

∗4
ri

+z3
i,n(υi+fi,n−λn2+λrn−1)+

3
2z

2
i,nG

T
nGn− 1

mn
ξ̃n

˙̂ξn−QiΘ̃i
˙̂Θi,

where Gn= gi,n−
n−1∑
j=1

∂αi,j
∂xi,j

gi,j . Similar to equations (3.16) to (3.25), by applying Young’s

inequality, we obtain
z3
i,sλrn−1 ≤ 3

4z
4
i,n+

1
4λ

∗4
rn−1 ,

3
2z

2
i,nG

T
nGn≤ 9

8z
4
i,n∥Gn∥4+

1
2,

z3
i,nf̄n=z

3
i,n(W

∗T
n Fn+εn)≤ 1

2b2
n

z6
i,nξnF

T
n Fn+

1
2b

2
n+

1
2z

6
i,n+

1
2ε

∗2
n .

By approximating the unknown function

f̄n=
9
8zi,n∥Gn∥4+fi,n,

using FLS, we define the adaptive rates ˙̂ξn and ˙̂Θi as

˙̂Θi=z
3
i,nΞi−σΘ̂i, ˙̂ξn=

mn

2b2
n

z6
i,nF

T
n Fn−ηnξ̂n. (3.29)

By applying Young’s inequality, we obtain

QiσΘ̃iΘ̂i≤−1
2QiσΘ̃2

i+
1
2QiσΘ2

i .

By combining equations (3.26) to (3.29), we obtain

LVn≤−k1
χ4

1
a4−χ4

1
−

n∑
j=2

kjz
4
i,j+

n∑
i=1

ηi
mi
ξ̃iξ̂i+d+

n−1∑
i=1

1
4β

∗4
ri − 1

2QiσΘ̂2
i , (3.30)

d=dn−1+
1
2+

b2
i

2 +
ε∗2
i

2 +
b2
ϕ

2 +
ε∗2
ϕ

2
1
2QiσΘ2

i .



166 S. Liu et al. / J. Info. Comput. Sci., 2024, 19(2): 155-170

3.2 Stability Analysis

Theorem 3.1. For the stochastic system (2.1), by designing the adaptive laws (3.7),
(3.15), (3.24), and (3.29), the virtual controllers (3.6), (3.14), and (3.23), and the con-
troller (3.28), it can be shown that all signals in the closed-loop system are bounded, and
the tracking error can reach the predetermined accuracy set within a prescribed-time.

Proof. By applying the quadratic formula, we obtain ξ̃iξ̂i≤ 1
2ξ

2
i − 1

2 ξ̃
2
i , inequality (3.30) can

be further written as

LVn≤−k1
χ4

1
a4−χ4

1
−

n∑
j=2

kjz
4
i,j−

n∑
i=1

ηi
2mi

ξ̃2
i +

n∑
i=1

ηi
2mi

ξ2
i +d

n−1
+
∑
i=1

1
4λ

∗4
ri − 1

2QiΘ̃
2
i .

At the same time, by selecting Γ =min{4k1,4k2,...,4kn,η1,...,ηn,σ}, Ω =
n∑
i=1

ηi
2mi ξ̃

2
i +d+

n−1∑
i=1

1
4λ

∗4
ri , we obtain

LVn≤−ΓV +Ω.

It satisfies E(V (t))≤(V (0)− Ω0
Γ0
)e−Γ0t+Ω0

Γ0
, indicating that for i=1,2,...,n,yi,0Θi,ξs,εsare

bounded. Furthermore, it can be shown that αi,s is also a bounded function, and thus xi,s
is bounded as well. In summary, all signals in the closed-loop system are bounded.

By applying the coordinate transformations (3.1) and (3.2), considering that
z2,...,zn,ξ̃1,...,ξ̃n are bounded, we can conclude that

|z1|=µ−1
1 (t)|χ1|=

{
ψ+(a−ψ)(T−t)2, 0≤ t<T ,
ψ, t≥T .

Therefore, it can be concluded that within the predetermined settling time, the error
variable z1 converges to the predefined region {z1 ∈ |z1|<ψ}, demonstrating its tracking
performance.

Remark 3.1. While the proposed method demonstrates robust control performance and
reduced communication overhead, the employment of time-varying impulsive signals may
require additional computational resources. This trade-off between computational load
and performance efficiency is an important consideration in real-time implementations,
especially for resource-constrained systems.

4 Simulation Example

In this section, the effectiveness of the designed controller for the studied multi-agent
system is verified through numerical simulations. Therefore, a nonlinear system with four
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agents is selected: 

dxi,1=xi,2+sin(xi,2)cos(xi,1))dt+ cos(xi,1)
10 dw,

dxi,2=xi,3+sin(xi,2)cos(xi,3))dt+ sin(xi,2)
10 dw,

dxi,3=xi,4+sin(xi,4)cos(xi,3))dt+ cos(xi,3)
10 dw,

dxi,4=υi+cos(xi,4)sin(xi,4))dt+ sin(xi,4)
10 dw,

yi=xi,1,

Here, x represents the state of the agent. The initial state of the system is set to β=0.9,ψ=
0.1,a=2,m1=1,b1=1.1,k1=1.51,η1=0.1,Q21=Q22=2,B21=4.5,B22=3, T =3, and the
reference signal is set along the line y0 = 0.The actuator deception attack parameters
are chosen as υi = bi(t)ui(t)+Ki(t)γi(xi),b1(t) = 1−0.1sin(t),Ki(t) =0.1cos(t),γ1(x1) =
0.1x1e

x1 . Based on the design method of Theorem 1, the simulation results of the system
are shown in Figures 2-6.

5 Conclusion

Figure 2: Trajectory of System State y and Refer-
ence State y0 Over Time

Figure 3: Trajectory of Adaptive Control Parame-
ters ξ

This paper explores the prescribed-time fuzzy adaptive control of multi-agent systems
affected by stochastic noise. Unlike previous works, it considers the nonlinear dynam-
ics within agents and the complex network environment where each system actuator is
subjected to different deception attacks. Based on backstepping techniques, combined
with sliding mode filters and adaptive controllers, a time-varying constraint function is
introduced to eliminate the impact of deception attacks on system actuators using attack
compensators. For stochastic nonlinear systems, a controller based on attack compen-
sators is designed, ensuring prescribed-time tracking performance and that all signals in
the closed-loop system are bounded. Finally, the theoretical results are validated through
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simulation examples. Currently, there are still many important issues to be studied in the
prescribed-time fuzzy adaptive control of stochastic nonlinear systems. Future research
could extend the method to handle multiple types of cyber-attacks, adapt to dynamic
environments, and support heterogeneous UAV swarms. Exploring the scalability of the
method in large-scale systems also remains an important direction for future work.

Figure 4: Trajectory of the Filter λ Figure 5: Trajectory Tracking and Constraint Bound-
aries

Figure 6: State Trajectories of Each Agent under the Controller

Figure 2 shows the system trajectory y and the reference signal y0. It can be visually
observed that the system output y can track the reference signal well and achieve trajectory
tracking within the prescribed-time.Figure 3 presents the curves of the adaptive controllers
ξ1,ξ2,ξ3,ξ4. Figure 4 displays the integral filter λ21. Figure 5 shows the error variable



Prescribed-time Adaptive Fuzzy Tracking Control Of UAV Swarms Under Deception Attack 169

curve of the system, clearly indicating that the overall system does not exceed the range
of a

µ . Figure 6 illustrates the state trajectories of each agent and the reference signal in
an unknown attack environment using the attack compensation controller. By analyzing
the above simulation results, it can be demonstrated that in a noisy environment, with
actuators subjected to different deception attacks, the use of the prescribed-time attack
compensation controller can ensure the stable operation of the system.
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