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Abstract. Inspired by the Fast point Feature Histogram (FPFH) feature extraction
algorithm, this paper proposes a new 3D point cloud registration method, MFIPC
(Multi-feature Fusion and Interval Pairing Consistency). The method uses feature fusion
and interval pairwise consistency to improve the registration accuracy. In the MFIPC
framework, the point cloud is first downsampled to optimize computational efficiency
and expand the analysis domain. Then, clustering algorithm using local directional
centrality (CDC) classification algorithm is used to calculate the DCM (directional
centrality measure) value of each point. The Gaussian curvature values of the points
are calculated at the same time, and these eigenvalues are fused. To further refine
the registration process, the range between the minimum and maximum eigenvalues is
divided into several equal intervals and sorted in ascending order. A sorting algorithm
is used to assign each eigenvalue to a corresponding interval. For the global point
cloud computing step, after the operation is completed, the number of points in each
interval and its proportion are calculated. The program processes both point clouds
in order to analyze their interval percentage. This algorithm significantly improves the
robustness of MFIPC in establishing point correspondence. To verify the effectiveness
of MFIPC for 3D point cloud registration, we conducted extensive testing on various
datasets, including 3DMatch, RESSO, ModelNet40, Stanford Rabbit, and Dragon. The
experimental results show that the algorithm has high efficiency, good consistency of
point cloud, significantly reduced registration errors, low error and high registration
accuracy.
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1 Introduction

Traditional 2D image sensors can only obtain two dimensional image information, for the
detection of complex scenes, such as the number of people passing through the intersection
statistics, semantic segmentation [1], the need for complex algorithmic processing of two-
dimensional image data, which will take up most of the CPU’s computing resources, and
the real-time accuracy is low, so the threedimensional depth camera has become a hot
spot in the current research of machine vision, which is more than the two dimensional
image, which has more depth information [2] [3]. The extraction of three-dimensional
information can complete the object recognition, classification [4], motion tracking and
other aspects of complex applications. Two kinds of binocular stereo vision matching
algorithms are available: Partial and total [5]. The method of partial has the advantages
of simple implementation and high performance for image regions with rich texture, but
it suffers from low accuracy for photo regions with poor or repetitive configuration [6-10].
Compared to the method of partial, the total one performs better on matching low and
repetitive substance, but it has higher computational complexity, more dependency on
the object in the scene, and weak compatibility with on-line addressing. Both techniques
have difficulties in solving the occlusion region problem, and they are not robust enough
to deal with different measurement scenes [11].

Provided a pair of point clouds, the registration tries to find the best tele-transform
alignment with the smallest possible error for multiple point clouds to obtain a complete
3D scene [12] [13].As spending on 3D scanning equipment decreases, point cloud process-
ing technology continues to evolve. Point cloud registration is often applied in AR/VR,
autonomous driving [14], robotics and other fields. The registration quality affects the
purpose and effect of image registration, such as unmanned driving, pattern recognition,
and 3D reconstruction [15]. The achievement of high registration quality depends heav-
ily on the choice of registration methods, the adjustment of registration parameters, and
the evaluation criteria used. Given the diverse range of application scenarios and needs,
different registration qualities may be required.

Point cloud registration algorithms have been researched in the 1970s, we often use the
ICP algorithm [16] (which is an iterative nearest-point based point cloud fine registration
method, and it aims to go and locate a rigid transformation including rotational and
translational transformations) to maximize the registration between two point clouds.
The algorithm is simple and light to come true, applicable to various types of point cloud
data; The disadvantage is that it is easy to trap in a local optimum, the prerequisite for
implementation is the need for a good initial transform, which is sensitive to noise and
occlusion.

RANSAC algorithm is a robust registration method based on the consistency of random
samples, which aims at the same as the ICP algorithm, so as to minimise the error between
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Figure 1: Extraction contour: the building drawing is on the left and the contour extraction drawing is on the
right

the two point clouds [15]. The advantages of the RANSAC algorithm is that it can resist
a large amount of noise and outliers and is appropriate for miscellaneous types of point
cloud data, the disadvantage is that it needs to set several parameters, such as minimum
subset size, threshold, preset ratio, etc. and it takes a long time to run. NDT (normal
distributions transform) is a traditional method for fine registration, which aligns the
source points with the target points by optimizing the scores of source points on the
normal distributions probability density, which is computed after voxelizing the target
points. [17]. ICP, NDT, and their variations need the point cloud to be pre-aligned, or
to have previous poses from sources like IMU (inertial measurement unit), GNSS (global
navigation satellite system), and odometer. If not, rough registration is necessary to give
it a starting posture [18].

In the existing point cloud feature extraction methods, there have been a variety of
registration methods such as point features, line features and surface features, etc.The
corresponding point cloud registration method is robust and accurate [19] [20]. The 4PCS
algorithm is a coarse registration method, which does not need to provide the initial
position, and can offer a fine starting position for the great registration method [21]. The
4PCS algorithm can deal with the noise and shelter of the point cloud, even for a small
amount of outliers “contamination” of the point cloud data, there is no need for filtering
and denoising, and the quality of the registration is generally better. 4PCS algorithm’s
disadvantage is that the running time is longer, for the feature extraction and the error
computation is time-consuming.

The traditional FPFH method only considers the nearest neighbour message of every
point in the point cloud, and the algorithm focuses on the computation of each point,
with less consideration of global information, resulting in the algorithm not being robust
enough [22] [23]. If there is noise or occlusion in the point cloud, the stability of the
algorithm decreases, resulting in poor registration accuracy. This paper presents a point
cloud registration algorithm that incorporates CDC and FPFH feature extraction to tackle
the intricate issue of registration fusion between theoretical and authentic original shapes,
building upon the aforementioned background research. The CDC algorithm [24] en-
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(a)

Figure 2: Figures(a), (b), and (c) show the point clouds of the sofa, bench, and aircraft in the ModelNet40
dataset derived using the DCM method. Using the DCM method allows the contours of the objects to be more
clearly visible

sures precise extraction of feature point ranges, the introduction of boundary points can
significantly improve the feature expression capability and alignment robustness of the
algorithm, because the high curvature region corresponding to boundary points is often
highly correlated with the key geometric structure of the target object, which can be used
as sparse but highly distinguishable feature descriptors to reduce the probability of mis-
matching in the fuzzy region of the point cloud; furthermore, by extracting the boundary
points, we can significantly reduce the size of the point cloud involved in the alignment,
and in combination with the sampling strategy based on boundary features, we can signif-
icantly reduce the computational complexity while maintaining the alignment accuracy.
Combined with the sampling strategy based on boundary features, the computational
complexity can be significantly reduced while maintaining the alignment accuracy. while
the FPFH algorithm guarantees accurate alignment of features for coarse registration of
point pairs. The algorithm’s registration precision, error analysis, and computational cost
are validated through rigorous comparative testing. Currently, 3D point cloud registration
techniques remain an active research area, with numerous individuals pursuing new ad-
vancements that continue to revolutionize the field. The method introduced in this paper
builds upon and enhances the classical FPFH feature algorithm, delivering comparatively
excellent results. The main contributions of this paper are concluded below:

e An efficient and precise point cloud registration algorithm is proposed, which ex-
plores an effective feature range and learns point features that are invariant to rota-
tion and translation of the point cloud.

e Through a series of experiments on indoor point cloud scans as well as synthetic and
real models, we prove the capability of the designed features in handling geometric
registration tasks.

e By fusing Gaussian curvature and DCM values to construct multi-feature descriptors,
the weighted fusion strategy enhances the comprehensiveness of feature expression.
The paper conducted an experimental verification of this method. The internal
points in the point cloud can be clearly distinguished from the contour points, and
the error accuracy after alignment is much smaller than that of other methods.

The core idea of innovative points in this paper is to distinguish the edge points and
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Figure 3: System flow chart: The system first inputs the point cloud, then calculates the DCM value and
curvature value, the feature fusion calculation, and finds the maximum and minimum number of the feature
value, then performs the interval proportion calculation, interval correspondence calculation, and finally the
transformation estimation and registration

internal points in point cloud based on KNN distribution. The calculated DCM value
can well distinguish the boundary point from the internal point, and can outline the
object outline, as shown in Fig.2. The robustness of the points is strengthened by the
Gaussian curvature value of the points. Multi-feature fusion makes the local features of
the description unique and enhances the accuracy of point cloud registration [25] [26].

2 Related Work

2.1 Registration based on conventional local optimum algorithms

The ICP algorithm is an iterative nearest-point based point cloud fine registration way
that is usually used in conjunction with other coarse registration methods [27]. The goal
is to get a stiffness transformation (including rotations and translations) that maximises
the telescope between two point clouds.The basic steps of the ICP algorithm are: given an
starting transformation, the origin and target point clouds are transformed so that they
roughly overlap. Then, for each point in the origin point cloud, the closest point in the
target point cloud is found as its matching point, and unreasonable pairs of matching points
are eliminated. Then, based on these corresponding pairs, an optimal transformation
is solved using the least squares method to minimise the sum of squares of the errors
between the source and target point clouds. Finally, the position of the source point
cloud is updated with this optimal transform, and the above steps are repeated until the
transform converges or reaches a preset number of iterations or an error threshold [28].

The advantages of the ICP algorithm are that it is simple and easy to implement, does
not require segmentation and feature extraction of the point cloud, and is applicable to
various types of point cloud data. The disadvantages are that it is easy to trap in a local
optimum, needs a better initial transformation, and is sensitive to noise and occlusion,
only considers the distance between points and points, and lacks the use of the whole
architecture of the point cloud.
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Figure 4: In Figure (a), DCM is the Angle between the calculated directions in two-dimensional space and the
convex hull volume in three-dimensional space; Figure (b) is the calculation result of the sample data of DCM,
and the DCM value of the boundary region is close to 1, and the internal point is close to 0. Figure (c) is a
schematic diagram of the DCM calculation results of a simple three-dimensional graph, and the junction points
are highlighted above the plane points. Figure (d) is a schematic diagram of the DCM calculation results of
complex three-dimensional graphics, and the junction points are highlighted above the plane points

2.2 Feature-based point cloud registration method

Some common point cloud features include: point features: extracting key points by far-
thest point sampling method [29], normal space sampling method [30] , and applying
covariance matrix [31], line features: extracting curves by dividing planar blocks [32],
extracting point cloud pole-like points, intersections, and vertices, and connecting them
into three types of vertical feature lines [33], extracting curves, calculating curvature, and
dividing curvature to fit it as the extraction of line features; face features: calculating pla-
nar features, dividing the point cloud into voxels, calculating the curvature of the points
within the voxels, and combining the planar blocks that satisfy the planar requirements
into planar features [34] [35]. Using the feature-based point cloud regiatration method,
the overall steps are firstly, to extract the corresponding point features, line features or
surface characterisations from the two point clouds, which can reflect the local geometric
information of each point or region in the point cloud, for example normal vector, curva-
ture, angle, etc. Then, based on the analogy between these features, the corresponding
features in the two point clouds are searched, and these correspondences can be used as
initial matching point pairs for subsequent registration. Finally, based on these matched
point pairs, an optimisation method is utilised to settle a rigid transformation (including
rotation and translation) that minimizes the inaccuracy between the two point clouds.

2.3 Point cloud registration approach based on statistical analysis

The features detected by the above method may not be fully applicable to feature match-
ing, because it will be affected by noise, occlusion and other factors, so the step of a
feature descriptor is needed to compare and match features more accurately [36]. Typical
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Figure 5: Innovative point flow chart: Firstly, K-Nearest Neighbors (KNN) algorithm is used to locate k points
around a given point, and the DCM value and curvature value of each point are calculated. The global eigenvalue
is obtained by iterating this process, and then the values are sorted and divided into equal intervals. Calculate
the proportion of each interval. This calculation is performed on both point clouds to assess whether the ratio
of the corresponding interval is the same

descriptors are feature signatures and feature histograms. FPFH algorithm belongs to
category feature histogram, which represents point cloud information as histogram. It is a
simplified version of PFH (Point Feature Histogram) algorithm to improve computational
efficiency. The principle of the two algorithms is the same, both are based on statistical
analysis to draw the geometric features of the point cloud, and construct the corresponding
histogram to obtain the statistical features.

In the FPFH algorithm, a fixed neighborhood is first defined and then a series of
eigenvalues are computed in this neighborhood and a histogram of the eigenvalues is
built to obtain the statistical features. By comparing the histograms of features between
point clouds, matching and registration can be performed, enabling applications such as
point cloud registration and regeneration. This has the advantage of taking into account
the geometric characteristics of the points as well as the assignment of features in their
neighboring regions, avoiding situations where anomalous points are incorrectly identified.
In point cloud registration, the FPFH algorithm can be used for accurate registration [37].
The method proposed in this paper combines the methods of point features and statistical
analysis, which effectively solves the limitation problems of parameter sensitivity and
noise robustness of the existing traditional algorithms, significantly improves the accuracy
of point cloud feature matching, and provides a high-precision solution for point cloud
alignment in complex scenes.

3 Innovative Method

The boundary points effectively depict the contour shape of an image, greatly enhanc-
ing image recognition and segmentation capabilities. By diminishing the informational
content and intricacy of the image, they simplify subsequent processing tasks. Notably,
despite occupying only a fraction of the overall image, the boundary points encapsulate
the majority of pertinent information. The regularity and continuity exhibited by these
points permit the use of a limited dataset to represent the entire image contour, thereby
achieving image compression (as Fig.1). Compressed images not only conserve storage
space but also boost the efficiency of image processing.

Due to the complexity of the network structure, the boundary point algorithm can
incur high computational costs for large-scale image datasets. The performance of the
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algorithm relies on the correct selection of parameters, such as neighborhood size and
threshold choice. In cases where there are too many or too few feature points, further
optimization is required to select the most meaningful eigenvalues. In response, we further
introduce the curvature feature of points and consider integrating Gaussian curvature with
the boundary point algorithm to form a multi-scale feature descriptor for point clouds.
By describing the features of point cloud data at different scales, we can construct the
feature vector of the point cloud.

3.1 DCM value calculation

The basic concepts of CDC classification algorithm lies in distinguishing edge points from
interior points within a cluster, primarily based on the distribution of K-Nearest Neighbors
(KNNs). This method involves outlining the object roughly by highlighting boundary
points and creating containers to regulate the connectivity of interior points. To assess
the variance in direction allocation, we utilize the angular deviation created by the KNN
in two dimensions as local direction-centred measure (DCM).

The principle of DCM calculation in 2D space is as follows: first get the X, Y co-
ordinates of the input points, a total of n points, then get a 2D array of n rows and 2
columns. Then take the KNN algorithm: determine the point coordinates of a point (X,
Y;), use the KNN algorithm to find its surrounding proximity to the k points, write down
the coordinates (Xj, Yy), calculate the difference between the point and the angle of the
surrounding k points, each point performs the above operation, and finally get an nxk
dimensional array, each row of the array can be calculated a DCM value.

After all the calculations, n DCM values are obtained, i.e., an array of n rows and 1
column; then the obtained DCM values are sorted, and a threshold is set to distinguish
the edge points from the inner points (The larger the event, the closer to the boundary,
the lower the event, the closer to the center).

DCM value calculation method: calculate the difference between two adjacent numbers
in a row, the last number and the first number for the difference calculation, in this way,
will be able to get n angular differences, these differences in the range of 0 to 27, using
the formula

1& 2\ 2
DCM=— i—— ) . 1
cM=13(paim) (3.1)

=1

The DCM value for the row can be derived.From this, we derive the three-dimensional
space: the knn are used to the unit sphere. They link neighbouring points to create a
ball-shaped triangle, and the DCM is spreaded to the real angle variance of the triangle.
For hyperspherical subdivision in higher dimensional space, the ghull algorithm is used to
construct convex complexes of KNNs [38]. In three-dimensional space, a convex complex
form is a convex polyhedron consisting of a number of tetrahedra, and each of its faces is a
two-dimensional simplex (a simplex denotes the simplest diagram), is a triangle. Since all
knn points are mapped onto the hypersphere, they are the vertices of the convex polytope.
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In NV dimensional space, each face of a convex polytope is an N —1 dimensional simplex,
corresponding to a subdivision unit, which is subdivided to measure generalised angles.
These angles correspond to the volume of the counterpart subdividing cell(typically the arc
length in a two-dimensional circle and the area of a spherical triangle in a three-dimensional
sphere).Computing the volume of subdivision units in higher dimensional spaces is chal-
lenging because of the computational complexity of multiple integrals. Hence, we have to
estimate the volume of each simplex and allocate the global volume incorrect evenly to
per partition cell for an approximation.Despite the error between the real and calculated
volumes of the partition cells, since the volume of the subdivision cells monotonically in-
creases with the matching simplex, the DCM sorting order based on these two volumes is
the same. Therefore, DCM thresholds can be set to efficiently identify interior and border
points. Points on intersecting surfaces will be brighter than interior points, allowing for
better depiction of object shapes.

Suppose that a simplex in 3D space is consisted of k¥ KNN points ni, no, ... , nx which

have been reflected onto a hyperball, where n; = (a;ll, z? x’?), and the vectors ngpi

2, I
, NpNa, - - - , nEgng_1 , Nk with the same origin can be determined as a two-dimensional
parallel hexahedron n in vector space. Let &=ngni=(z}-z}, x2-27, ... , 2¥-2F) and G=(&,

&, ..., £k—1), then we have the volume of n ( [39] [40]) as

vol(n)=1/det(GGT). (3.2)

A simplex Y is a hypertetrahedron embedded in a parallel hexahedron n that shares k—1
edges ngni, ngne, ... , ngng_1. Therefore, the volume of Y is [41]

vol(n \/det (GGT
vol(y) = i) _ i ) (3.3)

I(k—1) (k—1)!

We compute the difference between the sum of simplex volumes and the surface area
of the hyper-sphere after measuring volume of a simple form. Then we divide overall
volume tolerance equally among per subdivided cell. This ensures that the volume sum of
subdivided cells under various partitions is invariant in the same dimension. k-dimensional
unit sphere has a generalised surface area of

27
y= (3.4)
(%)

We assume that the convex complex consists of j simplexes 1, y2, ... , y;, and
accordingly subdivide the hypersphere into j units v, vo, ... , vj. The volume of the
subdivided cell v; can be solved for ( [24] [42])

Y =3 vol(y;
vol (v;) = vol (y;) 4 —2=1=1"° (i) (3.5)

J
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DCM measures the difference in volume of all subdivided cells [24]

DCOM = 1,i{vol(m')—y}2. (3.6)

= j

Algorithm 1 gives an outline of the DCM calculation process. Lines 1 and 2 use the
KNN algorithm to find out the proximity points and calculate the coordinate difference
between its own point and the surrounding proximity points. In lines 3 to 6, dimensionality
reduction is calculated using the map function, and when the calculated dimension is 2,
the DCM value is directly taken as 0. Lines 7 to 9 calculate the individual convex packet
volume using the convhulln function, and line 10 starts calculating the global convex packet
volume using a for loop, and then calculates the volume variance to derive the DCM using
the variance function, ending the DCM algorithm.

Algorithm 1 Outline of the DCM algorithm
Function [DCM] = DCMs(n, X, get knn)
Input: point cloud A
1: for 1:n do
2: Calculate the difference between the x-coordinates of the k points in the KNN
neighborhood around the point .

3: Dimensionality :

4: k=rank(map,);

5: ifk==2

6: DCM (Z) =0;

7: Compute the convex envelope function.

8: Count the number of convex polygonal surfaces:
9: simplex,um=length(convex(:,1));

10: Dim-pack volume:

11:  simplex,ol = zeros(simplex,um,1);

12: The for loop calculates the convex packet volume:
13: forj=1:simplex,um,;

14: Calculate the volume variance to find the DCM value.
15: DCM (i) =var(simplex,ol);

16: end for

End Function

3.2 Calculated gaussian curvature

Gaussian curvature is a quantity used in differential geometry to describe the degree of
curvature of a surface. It is defined as the product of the principal curvatures ki and ko
at a point on the surface. Mathematically, the Gaussian curvature K is defined as K = k;
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X ko. Alternatively, it can also be calculated using the radii of curvature R; and Ry at
that point, which is K = 1/(R; x Rg). The Gaussian curvature of the point and the local
centrality metric value are fused to obtain new eigenvalues.

3.3 Calculation of the interval ratio

The calculation of eigenvalues was executed for both point clouds. For one of these clouds,
the eigenvalues were systematically categorized into distinct intervals, and the relative
proportion of each interval’s eigenvalues was determined, considering the total count of
eigenvalues.

Given the range of eigenvalues spanning from 0 to 1, this range was partitioned into
ten equal segments, each segment possessing a length of 0.1. A counting-like process
was then initiated to identify the specific interval corresponding to each eigenvalue. By
systematically incrementing the count in the respective interval, we arrived at the final tally
of eigenvalues in each interval. For example, in the interval spanning from 0 to 0.1, there
were precisely 20 eigenvalues. Assuming a total count of 1000 eigenvalues, the percentage
representation of this interval would be 2%. Additionally, the interval between 0.8 and 0.9
had no recorded eigenvalues, indicating the absence of points with eigenvalues within this
specified range. With a total count of 1000 eigenvalues, the percentage representation of
this interval would be 0%. These interval ratios were calculated for both the source and
target point clouds.

3.4 Interval Correspondence Calculations

Based on the traditional statistical analysis method, this paper makes an innovation and
pairs the interval ratio values of two point clouds to determine whether the corresponding
interval ratio values are the same. The rotation matrix and translation matrix of the
generated point cloud are calculated with the Groundtruth value of the original data, so
as to achieve the purpose of registration.

4 Experimental Results and Parameter Analysis

In this paper, experiments and method comparison experiments were conducted on Model-
Net40 datasets, 3DMatch datasets, RESSO datasets and Stanford datasets and the results
of the experiments are analysed below.The experimental results show that the algorithm
proposed in this paper is much better than the FPFH algorithm in terms of rotation er-
ror(R_err), translation error(T_err), root-mean-square error(RMSE), and mean absolute
error(MAE), and exhibits remarkable advantages.

In the parameter setting of this paper, careful considerations are made regarding the
value of the downsampling parameter. When the parameter value is set too high, the
resulting point cloud data is significantly reduced, making it impossible to achieve effec-
tive and precise alignment, thereby affecting the final matching effect. Conversely, if the
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(a) (b) (c)

Figure 6: 3Dmatch dataset Kitchen scene: Three scenarios(a), (b)and(c), the first row is pre-registration, the
second row is post registration

parameter value is set too low, the point cloud data becomes excessively dense, greatly
increasing the processing time and placing higher demands on the operating equipment,
posing numerous challenges in practical applications. Therefore, after comprehensive con-
siderations, we have chosen an intermediate range of values for the downsampling param-
eter to balance alignment accuracy, processing efficiency, and equipment requirements.

4.1 Indoor Point Cloud Registration

We train and count the newly put forward method in this paper with interior point cloud
sweep data from the 3DMatch dataset. The dataset includes various indoor scenes such
as bedrooms, kitchens, offices, laboratories and hotels. We select two different locations
within the kitchen scenes in the dataset for reading the point clouds. As in Fig.6, the first
column on the left is the point cloud registration for the two scenes Cloud_bin8 and 9 of the
kitchen; the middle column is the point cloud registration for the two scenes Cloud_bin11
and 12 of the kitchen; and the rightmost column is the point cloud registration for the
two scenes Cloud_bin22 and 23 of the kitchen, with the downsampling threshold taken as
0.03, and the KNN taken as 30.

The GroundTruth value comprises of a rotation matrix and a translation matrix, we
calculated the error between the evaluation matrix generated after the registration and
the GroundTruth matrix (including the rotation error and translation error), and the error
accuracy is much smaller than that of 3D-SIFT algorithm [43], and the experiments will
be done to compare the other scenes needing to be aligned with the 3D-SIFT method, and
the table of the error accuracies is shown in Table 1.

The table of the comparison between the method of this paper and the 3D-SIFT algo-
rithm under different parameters and different registration environments is shown in Table
1. 3D-SIFT algorithm in different parameters and different registration environments to
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Table 1: The 3D point cloud registration performance of the proposed method (Ours) and the 3D-SIFT algorithm
is evaluated through comparative experiments at different sampling rates (sub=0.04 and sub=0.06) and different
alignment scenarios, with the main metrics including rotation error (R_err), translation error (T_err), root mean
square error (RMSE) and mean absolute error (MAE). As shown in the results in the table, the error of the
proposed method is reduced by 73.5% in RMSE, 12.9% in R_err and 77.7% in MAE
Ours 3D-SIFT
R_err T_err RMSE MAE R_err Terr RMSE MAE
02 and 12 | 35.6067 1.1215 0.2780 0.1979 | 40.5900 2.7650 0.8151 0.6562
sub=0.04 02 and 40 | 39.5486 0.3923 0.0353 0.0251 | 57.8700 0.3905 0.1334 0.1125
02 and 41 | 46.6357 0.3911 0.2590 0.1819 | 55.1540 0.9154 0.2890 0.2415
02 and 12| 36.9505 1.1266 0.3115 0.2638 | 42.5860 2.3181 0.8814 0.6544
sub=0.06 02 and 40 | 16.4478 0.7157 0.2734 0.1935 | 36.7511 2.1586 0.7130 0.5403
02 and 41 | 14.7876 1.3079 0.4021 0.2811 | 16.9801 1.9733 0.8154 0.7052
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Figure 7: Three methods of registration error line chart

do a comparison, when the downsampling parameter is set to 0.04, will be the same two
scenes (such as Scene2, 12) for the registration, one with this paper’s method, the other
with the 3D-SIFT algorithm, it can be clearly seen that this paper’s method of R_err and
T_err are much lower than 3D-SIFT algorithm. The same parameters then Scene2, 40 and
Scene2, 41 for registration, this paper’s method of the two errors are much smaller.

Overall, the proposed method has significant advantages in reducing RMSE and MAE,
and especially performs more stably at low sampling rates. The experimental results
show that the method can effectively adapt to different point cloud densities and scene
complexities, and improve the robustness of the algorithm while ensuring the alignment
accuracy.

In Fig.7, we can intuitively see that the error accuracy obtained by the multi-feature
fusion registration algorithm is the smallest in eight different scales. The downsampling
value is 0.09, the blue curve represents the classical registration method FPFH, the green
curve represents the 3D-SIFT method, and the orange curve represents the multi-feature
fusion method proposed in this chapter. The number on the horizontal axis represents the
scene number, representing the registration between scene 0 and the scene.
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Figure 8: RESSO dataset figure7D part0, 1, downsampling is taken as 0.9, and knn is taken as 30. figure (a)
is the point cloud before registration, and figures (b) (c) (d) are the top, side, and rear views, respectively, of
the point cloud after registration

The vertical axis from left to right from top to bottom is: rotation error, translation
error, rotation matrix root mean square error; mean square error of rotation matrix,
average absolute error of rotation matrix, translation matrix root mean square error,
Translation matrix mean square error, translation matrix mean absolute error.

4.2 RESSO Datasets

The RESSO dataset boasts an array of point clouds that meticulously capture the intri-
cate details of both urban and castle landscapes. For the purposes of our experiment, we
diligently chose two point clouds from each of these scenarios. The results of our method,
as it was applied to these point clouds, are comprehensively outlined in Table 2. Notably,
the downsampling values utilized were 0.5, 0.9, 1.5, and 2.0. The precision of each error
achieved is notably superior to that of the 3D-SIFT algorithm. Our method demonstrates
higher registration accuracies than the 3D-SIFT algorithm across diverse point cloud seg-
ments within the same outdoor scene. To delve deeper into the registration outcomes,
we zoomed in on the partial point clouds. By closely examining the alignment results of
the 3D point cloud presented in Fig.8, along with the point clouds captured from various
viewpoints (illustrated in Figs.7c and 7d), it becomes abundantly clear that the point
clouds for both scenarios have been successfully registered. This enhanced understanding
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Table 2: The alignment performance of the proposed method (Ours) is compared with the 3D-SIFT algorithm
for different downsampling values (sub=0.5, 0.9, 1.5, 2.0) under the RESSO dataset (Scene 0 and Scene 1),
and the evaluation metrics include rotational error (R_err), translation error (T_err), root-mean-square error
(RMSE) and mean absolute error (MAE) . The experimental results show that the alignment error values of

the proposed method are smaller, with the rotation error reduced by 10.4% and the translation error reduced
by 82.9%

Dataset Parameter Ours 3D-SIFT
para Rerr T.err RMSE MAE | Rerr T.err RMSE MAE
sub=0.5 | 62.9408 0.3755 0.0108 0.0091 |66.4482 2.1990 0.0031 0.0026
RESSO part 0/1 sub=0.9 | 63.4642 0.6282 0.0128 0.0113 {66.5934 2.0740 0.0068 0.0040
sub=1.5 |60.3010 1.1687 0.0129 0.0083|67.3677 3.0300 0.0062 0.0053
sub=2.0 | 62.7329 2.3683 0.0345 0.0257 |66.7735 5.6630 0.1373 0.0908

of the registration process offers valuable insights into the effectiveness of our method.

4.3 Stanford datasets

We tested textual algorithm on a 3D point cloud from the Stanford Rabbit dataset [44—
46].The registration results were taken when the downsampling thresholds were taken
as 0.005 and 0.001, respectively, and the experiments showed that the registration results
were better with the method, and that the registration was better when the downsampling

values were lower. We compared MFIPC with other ways and the outcomes are shown in
Table 3.

Table 3: The performance of different 3D point cloud registration methods is compared on the Stanford dataset,
and the evaluation metrics include rotation error (MSE(r), RMSE(r), MAE(r)), translation error (MSE(t),
RMSE(t), MAE(t)), and running time (TIME). Experiments show that the proposed method (Ours) significantly
outperforms the existing methods in both rotational and translational errors. However, the running time is
relatively the longest and the efficiency of the algorithm still needs to be optimised

MSE RMSE MAE MSE RMSE MAE TIME

Approach (x) © ) (t) (t) (t)
ICP [47] 168.59 14.01 10.88 0.0024 0.0502 0.0242 1.7002
Go-ICP [48] 161.38 12.88 5.03 0.0018 0.0418 0.0282 1.2990
R-PointHop [49] 2.19 1.39 0.97 0.0013 0.0378 0.0259 0.9755
FGR [50] 4.01 2.01 1.32 0.0406 0.1989 0.0661 3.4621
PointNet LK [51] 39.89 5.99 4.81 0.0016 0.0406 0.0369 0.2764
Ours 0.46 0.68 0.58 0.0012 0.0331 0.0205 7.3000

Table 3 shows that the algorithm proposed in this paper has lower error accuracy, but
the registration time is slightly longer [45]. The reason for this phenomenon is that when
calculating the eigenvalue of the point, it needs to be calculated to all the points, so the
calculation time is long. Later we will consider how to reduce the time complexity and
running time.

We conducted registration tests for rabbit and dragon with different parameter values,
as shown in Fig.9 and 10. In Fig.9, from left to right, each column represents a subsample
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(a) (b) () (d) ()

Figure 9: The registration experiment was carried out on the Stanford rabbit dataset, and the experiment was
carried out on the same two rabbits, and the variables were different downsampling parameters

parameter with values of 0.005, 0.004, 0.003, 0.002, 0.001, and 0.0007. Column a has a
drop sample value of 0.005, the first row shows the pre-registration status, and the second
through fourth rows show the after-registration results. Each subsequent column is the
same as column a, except that the subsampling parameters are different.

In Fig.10, from left to right, each column represents a subsample parameter with values
of 0.005, 0.004, 0.003, 0.002, 0.001, and 0.0005. Column a has a drop sample value of 0.005,
the first row shows the pre-registration status, and the second through fourth rows show
the after-registration results. Each subsequent column is the same as column a, except
that the subsampling parameters are different.

The test findings indicate that reducing sampling parameters in different ways can
lead to improved registration results. It was observed that a downsampling value of
0.001 did not yield satisfactory registration outcomes. Consequently, the parameters were
adjusted to further decrease the downsampling value. It was subsequently discovered that
a downsampling value of 0.0005 provided more satisfactory registration results.

4.4 Ablation experiment

Table 4 shows the experimental errors of the three data sets under different modules, and 8
evaluation indicators are selected. The results show that the error of experimental results
is the largest when no module is added. Error reduction when adding a module; When
the two modules are combined, the error is minimum and the accuracy is highest.
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(a)

(b)

()

Figure 10: The registration experiment was carried out on the Stanford long dataset, and the experiment was
carried out on the same two longs, and the variables were different downsampling parameters

5 Conclusions

In this paper, we introduce a new point cloud registration algorithm and propose an im-
proved registration framework, MFIPC, specifically tailored for point cloud networks and
integrated optimization techniques. We delve into the intricacies of their design, outlining
each component in detail. The framework includes four stages: eigenvalue calculation,
feature fusion calculation, interval proportion calculation and interval correspondence cal-
culation, and the global calculation is realized by iteration.

Table 4: Ablation experiments on modules

Dataset

Baseline DCM Curvature

Evaluation metrics

R_err T_err

RMSE

MSE

MAE rmse

mse mae

ModelNet40

3DMatch

RESSO

NN S S NN

NN NN

v
v

v
v

v
v

16.9423 0.1454
10.6658 0.4855
9.3193 0.1857
4.5760 0.2578
56.4819 1.2681
35.6067 1.1215
30.7384 0.6946
5.9696 0.9407
66.4482 5.0300
60.3010 0.6282
62.7329 0.3755
9.8408 0.4418

0.0691
0.0344
0.0096
0.0446
0.3422
0.2780
0.1227
0.4894
0.0031
0.0108
0.0128
0.0446

0.0480
0.0107
0.0128
0.0020
0.2429
0.0099
0.0553
0.2966
0.6199
0.2648
0.2966
0.0472

0.0552 0.0727
0.0618 0.1642
0.0347 0.1725
0.0279 0.1290
0.2983 1.3886
0.1979 0.8747
0.0885 0.2389
0.3757 0.4704
0.0026 1.0341
0.0091 0.1991
0.0083 0.1961
0.0279 0.0820

0.0022
0.0270
0.0298
0.0166
1.9278
0.7652
0.0571
0.2212
1.0693

0.2701
0.1032
0.2035
0.1048
1.0175
0.5952
0.2035
0.3705
0.8094
0.0396 0.1237
0.0385 0.1436
0.0067 0.0705

Experimental evidence highlights the excellent accuracy, efficiency and robustness of
the framework. It is worth noting that the error rate of the text method is significantly
lower than that of similar point cloud registration methods, while maintaining similar clas-
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sification performance. Our work provides a practical solution for point cloud registration
that can be seamlessly integrated into a variety of deep learning platforms. Looking ahead,
our future efforts will focus on expanding the range of downsampled values for each data set
in the algorithm and improving the algorithm run time. At present, the algorithm has the
problem of slow speed or excessive memory usage when processing small subsampled data.
To solve this problem, we aim to improve the algorithm’s efficiency, expand the range it
can handle, and optimize the framework’s performance on real-world environmental data.
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