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Abstract. Although gradient descent (GD) optimization methods in combination with rectified linear unit
(ReLU) artificial neural networks (ANNs) often supply an impressive performance in real world learning
problems, till this day it remains – in all practically relevant scenarios – an open problem of research to rig-
orously prove (or disprove) the conjecture that such GD optimization methods do converge in the training of
ANNs with ReLU activation.

In this article we study fully-connected feedforward deep ReLU ANNs with an arbitrarily large number of
hidden layers and we prove convergence of the risk of the GD optimization method with random initializa-
tions in the training of such ANNs under the assumption that the unnormalized probability density function
p : [a, b]d → [0, ∞) of the probability distribution of the input data of the considered supervised learning prob-
lem is piecewise polynomial, under the assumption that the target function f : [a, b]d → Rδ (describing the
relationship between input data and the output data) is piecewise polynomial, and under the assumption that
the risk function of the considered supervised learning problem admits at least one regular global minimum.
In addition, in the special situation of shallow ANNs with just one hidden layer and one-dimensional input we
also verify this assumption by proving in the training of such shallow ANNs that for every Lipschitz continu-
ous target function there exists a global minimum in the risk landscape. Finally, in the training of deep ANNs
with ReLU activation we also study solutions of gradient flow (GF) differential equations and we prove by
proving that every non-divergent GF trajectory converges with a polynomial rate of convergence to a critical
point (in the sense of limiting Fréchet subdifferentiability).

Our mathematical convergence analysis builds up on ideas from our previous article [S. Eberle, A. Jentzen,
A. Riekert, & G. Weiss, Existence, uniqueness, and convergence rates for gradient flows in the training of
artificial neural networks with ReLU activation. arXiv:2108.08106 (2021)], on tools from real algebraic geome-
try such as the concept of semi-algebraic functions and generalized Kurdyka-Łojasiewicz inequalities, on tools
from functional analysis such as the Arzelà–Ascoli theorem on the relative compactness of uniformly bounded
and equicontinuous sequences of continuous functions, on tools from nonsmooth analysis such as the concept
of limiting Fréchet subgradients, as well as on the fact that the set of realization functions of shallow ReLU
ANNs with fixed architecture forms a closed subset of the set of continuous functions revealed in [P. Petersen,
M. Raslan, & F. Voigtlaender, Topological properties of the set of functions generated by neural networks of
fixed size. Found. Comput. Math. 21 (2021), no. 2, 375–444].
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1 Introduction and main results

Even though gradient descent (GD) type optimization methods in combination with ar-
tificial neural networks (ANNs) often supply an impressive performance in real world
learning problems, till this day it remains – in all practically relevant scenarios – an open
problem of research to rigorously prove (or disprove) the conjecture that such GD opti-
mization methods do converge in the training of ANNs. Moreover, in the case of ANNs
with the widely-used rectified linear unit (ReLU) activation function, this problem of re-
search receives additional difficulty due to the lack of differentiability of the rectifier func-
tion R ∋ x 7→ max{x, 0} ∈ R.

Although the convergence analysis for GD type optimization methods in the training
of ANNs remains a fundamental open problem of research, there are several auspicious
approaches in the scientific literature which provide interesting first steps in this area of re-
search. To briefly introduce the reader to this topic of research, we now highlight/mention
some of those findings in a short way and refer to the below mentioned references for fur-
ther details.

In particular, we refer, for example, to [2, 17, 24, 25, 27, 37, 38, 72, 75] for convergence
results for gradient flow (GF) and GD processes in the training of ANNs in the so-called
overparametrized regime, where the number of ANN parameters highly exceeds the num-
ber of considered input-output training data pairs. As the number of neurons goes to
infinity, the corresponding GF processes converge to a measure-valued process called
Wasserstein gradient flow; cf., for instance, [12,15,16], [26, Section 5.1], and the references
mentioned therein.

Regarding abstract results on the convergence of GF and GD processes we refer, for ex-
ample, to [5, 39, 55, 56, 62] for the case of convex objective functions, we refer, for instance,
to [1,3,4,10,21,45,48,49,52,53,57] for convergence results for GF and GD processes under
Łojasiewicz type conditions, and we refer, for instance, to [7, 30, 50, 60] and the references
mentioned therein for further results without convexity conditions. In general, without
global assumptions on the objective function such as convexity, gradient-based methods
may converge to non-global local minima or saddle points. It therefore becomes important
to analyze critical points of the objective function in the training of ANNs and we refer, for
example, to [14,65,68,73,74] for articles which study the appearance of critical points in the
risk landscape in the training of ANNs. The question under which conditions gradient-
based optimization algorithms cannot converge to saddle points was investigated, for ex-
ample, in [32, 48, 49, 58, 59]. For more detailed overviews and additional references on GD
optimization schemes we mention, for instance, Bottou et al. [11], Fehrman et al. [30, Sec-
tion 1.1], [39, Section 1], and Ruder [64].

In this article we study the training of fully-connected feedforward ANNs with ReLU
activation by means of GD type optimization methods (we also refer to Figure 1.1 and
Figure 1.2 in this introductory section below for graphical illustrations of two example
architectures for the ANNs investigated in this work). In particular, one of the key con-
tributions of this work is rigorously verify, under the assumption that the unnormalized

probability density function p : [a, b]d → [0, ∞) of the probability distribution of the input
data of the considered supervised learning problem is piecewise polynomial (see Defi-
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nition 5.1 in Section 5 for our precise meaning of a piecewise polynomial function), and

the assumption that the target function f = ( f1, . . . , fδ) : [a, b]d → Rδ (the function de-
scribing the relationship between the input data and the output data which one intends
to learn approximately) is piecewise polynomial, it holds in the training of deep ReLU
ANNs with an arbitrarily large number of hidden layers that the risk function (the function
which is to be minimized) and its associated generalized gradient function satisfy at every
point of the ANN parameter space a generalized Kurdyka-Łojasiewicz inequality; see Proposi-
tion 6.2 in Subsection 6.4 for the precise statement. In the previous sentence the quantity
d ∈ N = {1, 2, 3, . . . } is an arbitrarily large natural number which describes the dimension
of the input data, the quantity δ ∈ N is a natural number which describes the dimension
of the output data, and the quantities a, b ∈ R with a < b are real numbers which border

the region [a, b]d in which the input data takes values in. Proposition 6.2 in Subsection 6.4
in this work generalizes Proposition 5.1 in our previous article Eberle et al. [28] where
such generalized Kurdyka-Łojasiewicz inequalities have been established in training of
ReLU ANNs with one hidden layer. The proof of Proposition 6.2 relies on the fact that the
considered risk function is semi-algebraic, which we establish in Corollary 5.1 below, and
the abstract Kurdyka-Łojasiewicz inequality in Bolte et al. [10, Theorem 3.1]. A similar
result regarding semi-algebraicity of the empirical risk, which is measured with respect to
a finite set of input-output data pairs, is already known, cf. Davis et al. [20, Corollary 5.11].

We then use the established generalized Kurdyka-Łojasiewicz inequalities in Proposi-
tion 6.2 to prove convergence of GD type optimization methods in the training of deep
ReLU ANNs where we first focus on time-continuous GD optimization methods (see Sec-
tion 7) and, thereafter, investigate time-discrete GD optimization methods (see Section 8).

Specifically, in the time-continuous situation (see Section 7 and Subsection 1.3 in this
introductory section) we establish in the training of deep ReLU ANNs, under the assump-

tion that the unnormalized probability density function p : [a, b]d → [0, ∞) and the target

function f : [a, b]d → R are both piecewise polynomial, that every non-divergent solution
of the associated gradient flow (GD) differential equation converges with a strictly positive
rate of convergence to a generalized critical point of the risk function (in the sense of the
limiting Fréchet subdifferential; see Definition 3.1 in Subsection 3.6) and also that the risk
of the GF solution converges with rate 1 to the risk of the generalized critical point (see
Theorem 7.1 in Subsection 7.3 below and Theorem 1.3 in Subsection 1.3 in this introduc-
tory section below, respectively, for the precise statements). This generalizes the approach
in Eberle et al. [28, Subsection 5.2] from shallow ReLU ANNs to deep ReLU ANNs.

Moreover, in the time-discrete situation (see Section 8 and Subsections 1.1 and 1.4 in
this introductory section) we establish in the training of deep ReLU DNNs, under the as-
sumption that p and f are piecewise polynomial and that the risk function of the consid-
ered deep supervised learning problem admits at least one regular global minimum point,
that the risk of the plain vanilla GD optimization method with random initializations con-
verges in the training of deep ReLU ANNs to 0 as the number of GD steps increases to ∞,
as the number of random initializations increases to ∞, as the step size of the GD method
(the learning rate of the GD method) decreases to 0, and as the width of the ANNs in-
creases to ∞; see Theorem 8.1 in Section 8 below and Theorem 1.4 in Subsection 1.4 in this
introductory section below, respectively, for the precise statement.
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Another key contribution of this work (see Section 2) is to prove in the special situation
of shallow ReLU ANNs with just one hidden layer and one-dimensional input and output
(corresponding to the case d = δ = 1) that for every Lipschitz continuous target function
f : [a, b] → R we have that there exist global minimum points of the risk function; see The-
orem 2.2 in Subsection 2.6 and Theorem 1.1 in Subsection 1.1 in this introductory section
below, respectively, for the precise statement. In the case of shallow ANNs we thereby ver-
ify the above mentioned assumption that the risk function of the considered supervised
learning problem admits at least one regular global minimum point; cf. Corollary 2.6 in
Subsection 2.7 below and Theorem 1.2 in Subsection 1.2 in this introductory section below,
respectively.

To elucidate the findings of this work more clearly, we now present 4 selected specific
results (which have already been briefly outlined in the above introductory paragraphs)
regarding the training of ReLU ANNs, Theorem 1.1 in Subsection 1.1, Theorem 1.2 in
Subsection 1.2, Theorem 1.3 in Subsection 1.3, and Theorem 1.4 in Subsection 1.4, with all
details in a self-contained fashion. Theorem 1.1 and Theorem 1.2 deal with shallow ReLU
ANNs with just one hidden layer and one-dimensional input and output (d = δ = 1) and
Theorem 1.3 and Theorem 1.4 treat the situation of deep ReLU ANNs with an arbitrarily
large number of hidden layers and multi-dimensional input and output (d, δ ∈ N).

1.1 Existence of global minima for shallow artificial neural networks (ANNs)

Maybe the most basic question that one can ask regarding the training of ANNs is the
existence of global minimum points in the risk landscape. In particular, without the ex-
istence of a global minimum point, one can not hope for a GD type optimization method
to converge to a global minimum point. Surprisingly, there is almost no result in the sci-
entific literature which actually establishes the existence of global minimum points of risk
functions in the training of ANNs and in our perspective this subject is a very important
direct of future research.

Theorem 1.1 below proves in the training of shallow ANNs with ReLU activation that
for every distribution µ : B([a, b]) → [0, ∞] of the input data of the considered supervised
learning problem and every Lipschitz continuous target function f : [a, b] → R it holds
that there exists a global minimum point of the risk function. The natural number h ∈ N

in Theorem 1.1 specifies the number of neurons on the hidden layer of the ANN (the
dimensionality of the hidden layer of the ANN), the natural number d ∈ N in Theorem 1.1
specifies the overall number of real parameters used to described to the considered ANNs,
and the set B([a, b]) is the Borel sigma-algebra on the real interval [a, b] ⊆ R.

In Theorem 1.1 we thus consider ANNs with 1 neuron on the input layer (with a 1-
dimensional input layer), with h neurons on the hidden layer (with h-dimensional hidden
layer), and with 1 neuron on the output layer (with a 1-dimensional output layer). There
are hence h real weight parameters and h real bias parameters to describe the affine lin-
ear transformation between the 1-dimensional input layer and the h-dimensional hidden
layer and h real weight parameters and 1 real bias parameter to describe the affine linear
transformation between the h-dimensional hidden layer and the 1-dimensional output
layer. The overall number d ∈ N of real ANN parameters in Theorem 1.1 therefore satis-



J. Mach. Learn., 1(2):141-246 145

fies d = (h+ h) + (h+ 1) = 3h+ 1. We also refer to Figure 1.1 for a graphical illustration
of an example architecture for the ANNs considered in Theorem 1.1.

The function L : Rd → R in (1.1) in Theorem 1.1 is the risk function in the considered
supervised learning problem and the finite measure µ : B([a, b]) → [0, ∞] is the unnor-
malized probability distribution of the input data of the considered supervised learning
problem. In Theorem 1.1 we considered ReLU ANNs and the ReLU activation func-
tion R ∋ x 7→ max{x, 0} ∈ R appears on the right hand side of (1.1). In this set-up
of shallow ReLU ANNs Theorem 1.1 reveals the existence of a global minimum point
θ = (θ1, . . . , θd) ∈ Rd of the risk function L : Rd → R.

Theorem 1.1. Let h, d ∈ N, a ∈ R, b ∈ [a, ∞) satisfy d = 3h+ 1, let f : [a, b] → R be Lipschitz
continuous, let µ : B([a, b]) → [0, ∞] be a finite measure, and let L : Rd → R satisfy for all
θ = (θ1, . . . , θd) ∈ Rd that

L(θ) =
∫ b

a ( f (x)− θd − ∑
h
j=1 θ2h+j max{θh+j + θjx, 0})2 µ(dx). (1.1)

Then there exists θ ∈ Rd such that L(θ) = infϑ∈Rd L(ϑ).

Theorem 1.1 is an immediate consequence of Theorem 2.2 in Subsection 2.6 below. The-
orem 1.1 proves that there exists an ANN parameter vector θ = (θ1, . . . , θd) ∈ Rd which
satisfies that the riskL(θ) of θ coincides with the infimum over all risk values infϑ∈Rd L(ϑ).

As observed in Petersen et al. [61], the existence of global minima has direct impli-
cations for the training of ANNs. In particular, if there is no global minimum then any
sequence (θn)n∈N ⊆ Rd with limn→∞ L(θn) = infϑ∈Rd L(ϑ) necessarily diverges to infin-
ity. This behavior is highly undesirable in numerical computations. If the target function
f is not continuous, this divergence phenomenon can indeed be observed in practice, as
the results and numerical examples in [31] show. On the other hand, using our existence
result for global minima we are able to establish convergence of GD with random initial-
izations in the training of shallow ANNs if the assumptions of Theorem 1.1 are satisfied,
see the next subsection for details.

In the scientific literature a similar existence result for ANNs with the Heaviside acti-
vation function R ∋ x 7→ 1[0,∞)(x) ∈ R was established in Kainen et al. [43]. Moreover,
we would like to point out that Theorem 1.1 does in general not hold without the Lips-
chitz continuity assumption on f . Indeed, Petersen et al. [61, Theorem 3.1] implies in the
case where h ≥ 2 and where the measure µ is non-atomic in the sense that its support is
uncountable that the set of realization functions

{

v ∈ C([0, 1], R) :
(

∃ θ = (θ1, . . . , θd) ∈ Rd : ∀ x ∈ [0, 1] : v(x) = θd + ∑
h
j=1 θ2h+j max{θh+j + θjx, 0}

)}

(1.2)

is not closed in the L2-space L2([0, 1], µ). Specifically, Petersen et al. [61, Theorem 3.1]
shows that there exists f ∈ L∞([0, 1], µ) such that infθ∈Rd L(θ) = 0 and {θ ∈ Rd : L(θ) =
0} = ∅. The function f constructed in Petersen et al. [61] is a step function of the form
f (x) = 1(x∗,1](x) for some suitable x∗ ∈ (0, 1) depending on the measure µ and, thus, does
not have a continuous representative. A similar non-closedness statement for the logistic
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Figure 1.1: Graphical illustration of the considered shallow ANN architecture in Theorems 1.1 and 1.2 in the
special case of an ANN with h = 5 neurons on the hidden layer. In this situation we have for every ANN
parameter vector θ ∈ Rd = R16 that the realization function R ∋ x 7→ N θ(x) ∈ R of the considered ANN maps

the scalar input x ∈ [a, b] to the scalar output N θ(x) = θd + ∑
h
j=1 θ2h+j max{θjx + θh+j, 0} ∈ R.

activation function was proved earlier in Girosi & Poggio [33]. In Theorem 1.1 we assume
that f : [a, b] → R is Lipschitz continuous. We guess that the statement remains true if one
only assumes that f is continuous.

1.2 Gradient descent (GD) with random initializations in the training of
shallow ANNs

In Theorem 1.2 below we employ Theorem 1.1 above to establish in the training of shallow
ReLU ANNs (with 1 neuron on the input layer, h ∈ N neurons on the hidden layer, and
1 neuron on the output layer) that the risk of the plain vanilla GD optimization method
with random initializations converges in probability to 0 as the number n ∈ N of GD steps
increases to ∞, as the number K ∈ N of random initializations increases to ∞, as the step
size γ ∈ (0, ∞) of the GD optimization method (the learning rate of the GD optimization
method) decreases to 0, and as the width h ∈ N of the considered ANNs increases to ∞;
see (1.6) in Theorem 1.2 below for the precise statement.

In Theorem 1.2 we consider the GD optimization method with random initializations
and the triple (Ω,F , P) in Theorem 1.2 serves as the underlying probability space for the
random initializations. Note that the function which maps random variables X : Ω → R

and Y : Ω → R to the real number

E
[

min{|X − Y|, 1}
]

(1.3)

is nothing else but one commonly used metric which characterizes convergence in probabil-



J. Mach. Learn., 1(2):141-246 147

ity (cf., e.g., Klenke [46, Theorem 6.7 in Chapter 6]) and (1.6) in Theorem 1.2 thus indeed
establishes convergence in probability of the risk of the GD optimization method to 0.

Theorem 1.2. Let N ∈ N, 0, 1, . . . , N , a, b ∈ R, satisfy a = 0 < 1 < · · · < N = b, let
f ∈ C([a, b], R), let p : [a, b] → [0, ∞) be a function, assume for all n ∈ {1, . . . , N} that
f |(n−1 ,n) and p|(n−1,n) are polynomials, for every h ∈ N let Lh : R3h+1 → R satisfy for all

θ = (θ1, . . . , θ3h+1) ∈ R3h+1 that

Lh(θ) =
∫ b

a

(

f (x)− θd − ∑
h
j=1 θ2h+j max{θjx + θh+j, 0}

)2
p(x)dx, (1.4)

for every h ∈ N let Gh : R3h+1 → R3h+1 satisfy for all θ ∈ {ϑ ∈ R3h+1 : Lh is differentiable
at ϑ} that Gh(θ) = (∇Lh)(θ), let (Ω,F , P) be a probability space, for every n, h, K ∈ N0,

γ ∈ R let Θ
K,γ
h,n : Ω → R3h+1 and k

K,γ
h,n : Ω → N be random variables, assume for all h ∈ N,

γ ∈ R that Θ
K,γ
h,0 , K ∈ N, are i.i.d., assume for all h ∈ N, γ, r ∈ (0, 1), θ ∈ R3h+1 that

P(‖Θ
1,γ
h,0 − θ‖ < r) > 0, and assume for all n, h ∈ N0, K ∈ N, γ ∈ R, ω ∈ Ω that

Θ
K,γ
h,n+1(ω) = Θ

K,γ
h,n (ω)− γGh(Θ

K,γ
h,n (ω)), (1.5a)

k
K,γ
h,n (ω) ∈ arg minκ∈{1,...,K} Lh(Θ

κ,γ
h,n(ω)). (1.5b)

Then

lim suph→∞ lim supγց0 lim supK→∞ lim supn→∞ E
[

min
{

Lh(Θ
h,k

h,K,γ
n ,γ

n ), 1
}]

= 0. (1.6)

Theorem 1.2 is a direct consequence of item (ii) in Corollary 8.6 in Subsection 8.7 be-
low and the reversed version of Fatou’s lemma. Note that in (1.5) above the random

index k
K,γ
h,n (ω) ∈ N selects the trajectory with the minimal risk after n ∈ N gradient steps

among the first K ∈ N random initializations. Observe that (1.6) demonstrates that the

risk Lh(Θ
h,k

h,K,γ
n ,γ

n ) of the GD optimization method with random initializations converges
in probability (see (1.3) above) to 0 as the number n of GD steps increases to ∞, as the
number K of random initializations increases to ∞, as the learning rate γ decreases to 0,
and as the number h of neurons on the hidden layer increases to ∞.

Roughly speaking, the proof of Theorem 1.2 consists of the following steps.

(I) We strengthen the existence result for global minima from Theorem 2.2 by proving
in Corollary 2.6 that each of the risk functions Lh, h ∈ N, admits a global minimum
around which suitable regularity conditions are satisfied.

(II) We establish in Corollary 5.1 that the considered risk functions are semi-algebraic.
As a consequence, we show in Proposition 6.2 a generalized Kurdyka-Łojasiewicz
inequality for the risk functions.

(III) In Corollary 8.4 below we show an abstract local convergence result to local min-
ima for GD under a Kurdyka-Łojasiewicz type assumption and a suitable regularity
assumption. Specifically, we assume that the considered local minimum admits a
neighborhood on which the objective function is differentiable with a Lipschitz con-
tinuous gradient.
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(IV) As a consequence, we obtain in Corollary 8.5 an abstract convergence result for GD
processes with random initializations. Due to the first two steps, Corollary 8.5 is
applicable to each risk function Lh, h ∈ N, under the assumptions of Theorem 1.2.

In [42, Theorem 1.1] a GD convergence result related to Theorem 1.2 above has been es-
tablished. Roughly speaking, in [42, Theorem 1.1] a convergence result similar to (1.6)
has been obtained in the situation where the learning rate γ ∈ (0, ∞) must be sufficiently
small but may be chosen to be independent of the number h ∈ N of neurons on the hid-
den layer, where the target function f : [a, b] → R must not only be piecewise polynomial
but even piecewise affine linear, and where the unnormalized probability density function
p : [a, b] → [0, ∞) does not necessarily have to be piecewise polynomial but instead must
be strictly positive and Lipschitz continuous.

The convergence analysis in [42] follows a completely different strategy than the con-
vergence analysis in this work. In particular, in contrast to the proof of Theorem 1.2 above,
the proof in [42, Theorem 1.1] does not at all use generalized Kurdyka-Łojasiewicz inequal-
ities but instead is based on differential geometric arguments and analyses of the Hessian
matrices of the risk function (cf. [30]).

1.3 Gradient flows (GFs) in the training of deep ANNs

In Theorem 1.3 below we demonstrate in the training of deep ReLU ANNs with an arbi-
trarily large number of hidden layers, under the assumption that the unnormalized prob-

ability density function p : [a, b]ℓ0 → [0, ∞) and the target function f : [a, b]ℓ0 → RℓL are
piecewise polynomial (see (1.8) below for details), that every non-divergent solution Θt,
t ∈ [0, ∞), of the associated GF differential equation converges with a strictly positive rate
of convergence to a generalized critical point ϑ (in the sense of the limiting Fréchet subdif-
ferential; see Definition 3.1 in Subsection 3.6) and also that the risk L∞(Θt), t ∈ [0, ∞), of
the GF solution converges with rate 1 to the risk L∞(ϑ) of the generalized critical point;
see (1.12) in Theorem 1.3 below for the precise statement.

The natural number L ∈ N in Theorem 1.3 specifies the number of affine linear trans-
formations in the considered deep ANNs (the considered deep ANNs in Theorem 1.3 thus
consist of L − 1 hidden layer and, including input and output layers, L + 1 layers overall)
and the natural numbers ℓ0, ℓ1, ℓ2, . . . ∈ N in Theorem 1.3 specify the number of neurons
of the layers in the sense that there are ℓ0 neurons on the input layer (the input layer is
ℓ0-dimensional), that for every i ∈ {1, . . . , L − 1} there are ℓi neurons on the ith hidden
layer (the ith hidden layer is ℓi-dimensional), and that there are ℓL neurons on the output
layer (the output layer is ℓL-dimensional). In the deep ANNs considered in Theorem 1.3,
we thus have for every k ∈ {1, . . . , L} that there are ℓkℓk−1 real weight parameters and ℓk

real bias parameters to describe the affine linear transformation between the (k − 1)st and
the k-th layer. The overall number d ∈ N of real ANN parameters in Theorem 1.3 thus
satisfies

d = ∑
L
k=1(ℓkℓk−1 + ℓk) = ∑

L
k=1 ℓk(ℓk−1 + 1). (1.7)

We also refer to Figure 1.2 for a graphical illustration of an example architecture for the
ANNs considered in Theorem 1.3.
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Figure 1.2: Graphical illustration of the considered deep ANN architecture in Theorem 1.3 in the special case of
a deep ANN with 3 hidden layers (corresponding to L = 4 affine linear transformations), with 5 neurons on the
input layer (corresponding to ℓ0 = 5), 8 neurons on the 1st hidden layer (corresponding to ℓ1 = 8), 6 neurons on
the 2nd hidden layer (corresponding to ℓ2 = 6), 7 neurons on the 3rd hidden layer (corresponding to ℓ3 = 7), and
3 neurons on the output layer (corresponding to ℓ4 = 3). In this situation the dimension d of the ANN parameter
space satisfies d = ∑

4
i=1 ℓi(ℓi−1 + 1) = 6 · 8 + 9 · 6 + 7 · 7 + 3 · 8 = 176. Note that we have for every ANN

parameter vector θ ∈ Rd = R176 that the realization function R5 ∋ x 7→ N 4,θ
∞ (x) ∈ R3 of the considered deep

ANN maps the 5-dimensional input vector x = (x1, x2, x3, x4, x5) ∈ [a, b]5 to the 3-dimensional output vector

N 4,θ
∞ (x) = (N 4,θ

∞,1,N 4,θ
∞,2,N 4,θ

∞,3) ∈ R3.

Because of the lack of differentiability of the ReLU activation function, the risk function
L∞ : Rd → R in Theorem 1.3 is in general not continuously differentiable. In order to
define an appropriately generalized gradient we approximate, as in [13, 36, 40, 41], the
ReLU function through continuously differentiable functions Rr ∈ C1(R, R), r ∈ [1, ∞]
(see (1.10) below for details). For every θ ∈ Rd, r ∈ [1, ∞] we define the approximate

realization function N L,θ
r : Rℓ0 → RℓL and the corresponding risk function Lr : Rd →

R. For every parameter vector θ ∈ Rd which satisfies that the approximate gradients
(∇Lr)(θ), r ∈ [1, ∞), are convergent as r → ∞ we define the generalized gradient G(θ) ∈
Rd as the limit limr→∞(∇Lr)(θ). In Proposition 3.1 below we verify that this limit, in
fact, exists for every θ ∈ Rd, and thus the generalized gradient G(θ) is uniquely defined
for every θ ∈ Rd. Furthermore, we derive in Proposition 3.1 an explicit formula for the
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generalized gradient, which agrees with the standard implementation of the gradient via
backpropagation.

Theorem 1.3. Let L, d, q ∈ N, (ℓk)k∈N0
⊆ N, a ∈ R, b ∈ [a, ∞) satisfy d = ∑

L
k=1 ℓk(ℓk−1 + 1),

for every i ∈ {1, . . . , q} let αi ∈ Rq×d, let βi ∈ Rq, and let Pi : Rℓ0 → RℓL+1 be a polynomial, let

f = ( f1, . . . , fℓL
) : [a, b]ℓ0 → RℓL and p : [a, b]ℓ0 → [0, ∞) satisfy for all x ∈ [a, b]ℓ0 that

( f1(x), f2(x), . . . , fℓL
(x), p(x)) = ∑

q
i=1 Pi(x)1[0,∞)q(αix + βi), (1.8)

for every θ = (θ1, . . . , θd) ∈ Rd let wk,θ = (wk,θ
i,j )(i,j)∈{1,...,ℓk}×{1,...,ℓk−1}

∈ Rℓk×ℓk−1 , k ∈ N,

and bk,θ = (bk,θ
1 , . . . , bk,θ

ℓk
) ∈ Rℓk , k ∈ N, satisfy for all k ∈ {1, . . . , L}, i ∈ {1, . . . , ℓk},

j ∈ {1, . . . , ℓk−1} that

wk,θ
i,j = θ

(i−1)ℓk−1+j+∑
k−1
h=1

ℓh(ℓh−1+1)
and bk,θ

i = θ
ℓkℓk−1+i+∑

k−1
h=1

ℓh(ℓh−1+1)
, (1.9)

let Rr : R → R, r ∈ [1, ∞], satisfy for all r ∈ [1, ∞), x ∈ (−∞, 2−1r−1], y ∈ R, z ∈ [r−1, ∞)
that

Rr ∈ C1(R, R), Rr(x) = 0, 0 ≤ Rr(y) ≤ R∞(y) = max{y, 0}, and Rr(z) = z,
(1.10)

assume supr∈[1,∞) supx∈R |(Rr)
′(x)| < ∞, for every r ∈ [1, ∞] let Mr : (∪n∈NRn) →

(∪n∈NRn) satisfy for all n ∈ N, x = (x1, . . . , xn) ∈ Rn that Mr(x) = (Rr(x1), . . . ,Rr(xn)),

for every r ∈ [1, ∞], θ ∈ Rd let N k,θ
r : Rℓ0 → Rℓk , k ∈ N, satisfy for all k ∈ N, x ∈ Rℓ0 that

N 1,θ
r (x) = b1,θ +w1,θx and N k+1,θ

r (x) = bk+1,θ +wk+1,θ(Mr1/k(N k,θ
r (x))), (1.11)

for every r ∈ [1, ∞] let Lr : Rd → R satisfy for all θ ∈ Rd that Lr(θ) =
∫

[a,b]ℓ0‖N
L,θ
r (x)−

f (x)‖2
p(x)dx, let G : Rd → Rd satisfy for all θ ∈ {ϑ ∈ Rd : ((∇Lr)(ϑ))r∈[1,∞) is convergent}

that G(θ) = limr→∞(∇Lr)(θ), and1 let Θ ∈ C([0, ∞), Rd) satisfy lim inft→∞‖Θt‖ < ∞

and ∀ t ∈ [0, ∞) : Θt = Θ0 −
∫ t

0 G(Θs)ds. Then2 there exist ϑ ∈ Rd, C, β ∈ (0, ∞) with
0 ∈ (DL∞)(ϑ) such that for all t ∈ [0, ∞) it holds that

‖Θt − ϑ‖ ≤ C(1 + t)−β and |L∞(Θt)−L∞(ϑ)| ≤ C(1 + t)−1. (1.12)

Theorem 1.3 is an immediate consequence of Theorem 7.1 in Subsection 7.3 below. Note
that the first inequality in (1.12) in Theorem 1.3 above assures that the standard norm
‖Θt − ϑ‖ of the difference of the GF solution at time t and the generalized critical point
ϑ converges with rate β ∈ (0, ∞) to 0 and note that the second inequality in (1.12) in
Theorem 1.3 above assures that the absolute value |L∞(Θt)−L∞(ϑ)| of the difference of
the risks of the GF solution at time t and the generalized critical point ϑ converges with
rate 1 to 0.

1Throughout this article we denote by ‖·‖ : (∪n∈NRn) → R and 〈·, ·〉 : (∪n∈N(Rn × Rn)) → R the functions which

satisfy for all n ∈ N, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn that ‖x‖ = (∑n
i=1 |xi|

2)1/2 and 〈x, y〉 = ∑
n
i=1 xiyi.

2In the conclusion of Theorem 1.3 we denote by (DL∞)(ϑ) the limiting Fréchet subdifferential of L∞ : Rd → R at ϑ ∈ Rd;
see Definition 3.1 below for details.
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In our proof of Theorem 1.3 we combine the generalized KL-inequality for the risk
function in Proposition 6.2 with the abstract convergence results for GF processes in Sec-
tion 7. The main regularity condition we need is the chain rule for the risk function L∞,
which was established in [36]. The fact that the limit ϑ ∈ Rd is a generalized critical point
in the sense that 0 is an element of the limiting Fréchet subdifferential of L∞ : Rd → R at
ϑ is a consequence of the fact that the generalized gradient we define is an element of the
limiting Fréchet subdifferential, which we show in Proposition 3.3 below.

The assumption that the trajectory (Θt)t∈[0,∞) is bounded is necessary and is not im-
plied by the other conditions. Indeed, in [31] we show that there are piecewise polynomial
target functions for which GF trajectories with certain initialization do diverge to infinity.

In [28, Theorem 1.2] a GF convergence result related to Theorem 1.3 above has been
obtained in the case of shallow ANNs with just one hidden layer. More specifically, in [28,
Theorem 1.2] a GF convergence result similar to (1.12) has been established in the situation
where the target function is additionally continuous and where the considered ANNs are
not deep but shallow and just consist of 3 layers (input layer, output layer, and one hidden
layer).

1.4 Gradient descent (GD) with random initializations in the training of deep
ANNs

In Theorem 1.4 below we establish in the training of deep ReLU ANNs with an arbitrarily
large number of hidden layers, under the assumption that the unnormalized probability

density function p : [a, b]d → [0, ∞) and the target function f : [a, b]d → Rδ are piecewise
polynomial (see (1.14) below for details) and that the risk function of the considered deep
supervised learning problem admits at least one regular global minimum point, that the
risk of the plain vanilla GD optimization method with random initializations converges
in probability to 0 as the number of GD steps increases to ∞, as the number of random
initializations increases to ∞, as the step size of the GD method (the learning rate of the
GD method) decreases to 0, and as the width of the ANNs increases to ∞ (see (1.13) and
(1.18) below for details).

Theorem 1.4. Let d, δ, q ∈ N, a ∈ R, b ∈ [a, ∞), (ρa)a∈N ⊆ (N ∩ (1, ∞)), let ℓa =
(ℓa0, ℓa1, . . . , ℓaρa) ∈ {d} × Nρa−1 × {δ}, a ∈ N, satisfy

lim infa→∞ min{ℓa1, ℓa2, . . . , ℓaρa−1} = ∞, (1.13)

for every a ∈ N let da = ∑
ρa
k=1 ℓ

a
k(ℓ

a
k−1 + 1), for every i ∈ {1, . . . , q} let αi ∈ Rq×d, let βi ∈ Rq,

and let Pi : Rd → Rδ+1 be a polynomial, let f : [a, b]d → Rδ and p : [a, b]d → [0, ∞) satisfy for

all x ∈ [a, b]d that

( f1(x), f2(x), . . . , fδ(x), p(x)) = ∑
q
i=1 Pi(x)1[0,∞)q(αix + βi), (1.14)

for every a ∈ N, k ∈ {1, . . . , ρa}, θ = (θ1, . . . , θda) ∈ Rda let wk,θ
a =

(wk,θ
a,i,j)(i,j)∈{1,...,ℓak }×{1,...,ℓak−1}

∈ Rℓak ×ℓak−1 and bk,θ
a = (bk,θ

a,1, . . . , bk,θ
a,ℓak

) ∈ Rℓak satisfy for all
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i ∈ {1, . . . , ℓak}, j ∈ {1, . . . , ℓak−1} that

wk,θ
a,i,j = θ

(i−1)ℓak−1+j+∑
k−1
h=1 ℓ

a
h (ℓ

a
h−1+1)

and bk,θ
a,i = θ

ℓak ℓ
a
k−1+i+∑

k−1
h=1 ℓ

a
h (ℓ

a
h−1+1)

, (1.15)

let M : (∪n∈NRn) → (∪n∈NRn) satisfy for all n ∈ N, x = (x1, . . . , xn) ∈ Rn that M(x) =

(max{x1, 0}, . . . , max{xn, 0}), for every a ∈ N, θ ∈ Rda let N k,θ
a : Rd → Rℓak , k ∈ N ∩ [1, ρa],

satisfy for all k ∈ N ∩ [1, ρa), x ∈ Rd that

N 1,θ
a (x) = b1,θ

a +w1,θ
a x and N k+1,θ

a (x) = bk+1,θ
a +wk+1,θ

a

(

M(N k,θ
a (x))

)

, (1.16)

for every a ∈ N let La : Rda → R satisfy for all θ ∈ Rda that La(θ) =
∫

[a,b]d‖N
ρa,θ
a (x) −

f (x)‖2
p(x)dx, for every a ∈ N let ϑa ∈ (La)−1({infθ∈Rda La(θ)}), εa ∈ (0, 1) satisfy that

La|{θ∈Rda : ‖θ−ϑa‖<εa} has a Lipschitz continuous derivative, for every a ∈ N let Ga : Rda → Rda

satisfy for all θ ∈ {ϑ ∈ Rda : La is differentiable at ϑ} that Ga(θ) = (∇La)(θ), let (Ω,F , P)

be a probability space, for every n, a, K ∈ N0, γ ∈ R let Θ
K,γ
a,n : Ω → Rda and k

K,γ
a,n : Ω → N be

random variables, assume for all a ∈ N, γ ∈ R that Θ
K,γ
a,0 , K ∈ N, are i.i.d., assume for all a ∈ N,

γ, r ∈ (0, 1), θ ∈ Rda that P(‖Θ
1,γ
a,0 − θ‖ < r) > 0, and assume for all n ∈ N0, a, K ∈ N,

γ ∈ R, ω ∈ Ω that

Θ
K,γ
a,n+1(ω) = Θ

K,γ
a,n (ω)− γGa(Θ

K,γ
a,n (ω)), (1.17a)

k
K,γ
a,n (ω) ∈ arg minκ∈{1,...,K} La(Θ

κ,γ
a,n (ω)). (1.17b)

Then

lim supa→∞ lim supγց0 lim supK→∞ lim supn→∞ E
[

min
{

La

(

Θ
k

K,γ
a,n ,γ

a,n

)

, 1
]

= 0. (1.18)

Theorem 1.4 follows immediately from item (ii) in Theorem 8.1 in Subsection 8.6 below
and the reversed version of Fatou’s lemma. Observe that (1.18) above shows that the

risk La(Θ
k

K,γ
a,n ,γ

a,n ) of the GD optimization method with random initializations converges in
probability (see (1.3) above) to 0 as the number n of GD steps increases to ∞, as the number
K of random initializations increases to ∞, as the learning rate γ decreases to 0, and as the
width of the ANN increases to ∞ in the sense of (1.13) above.

The proof of Theorem 1.4 is mostly analogous to the proof of Theorem 1.2. The main
difference is that in the general setting of deep ANNs the existence of global minima is
not known. This is the reason why we assume in Theorem 1.4 for every a ∈ N that
the parameter vector ϑa ∈ Rda is a global minimum of the risk function La : Rda → R.
Additionally, we assume that for every a ∈ N there exists εa ∈ (0, 1) which satisfies that
the restriction of La to the neighborhood {θ ∈ Rda : ‖θ − ϑa‖ < εa} is differentiable with
a Lipschitz continuous derivative.

2 Existence of global minima for shallow ANNs

In this section we establish in Theorem 2.2 in Subsection 2.6 below in the case where the
target function f : [a, b] → R is Lipschitz continuous and where the considered ReLU
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ANNs just consist of a one-dimensional input layer, a multi-dimensional hidden layer,
and a one-dimensional output layer that there exists a global minimum point of the risk
function. Theorem 1.1 in the introduction is a direct consequence of Theorem 2.2.

In Corollary 2.6 in Subsection 2.7 we strengthen Theorem 2.2 by showing that there
also exists a global minimum point of the risk function such that the risk function is con-
tinuously differentiable on a neighborhood around the global minimum point. Our proof
of Corollary 2.6 is based on an application of Theorem 2.2 as well as on applications of
some basic regularity results from our earlier article Eberle et al. [28, Proposition 2.3 and
Corollary 2.7].

Our proof of Theorem 2.2 can, roughly speaking, be divided into three parts.

(I) In Corollary 2.2 in Subsection 2.3 below we establish an explicit characterization for
the functions f : [0, 1] → R which can be exactly represented by a shallow ReLU
ANN with h ∈ N neurons on the hidden layer.

(II) Thereafter, we employ Corollary 2.2 to prove in Corollary 2.5 in Subsection 2.5 be-
low in the case where the target function f : [a, b] → R is Lipschitz continuous with
Lipschitz constant L ∈ R and where the considered ReLU ANNs consist of a one-
dimensional input layer, an h-dimensional hidden layer, and a one-dimensional out-
put layer that, roughly speaking, for every ANN parameter vector θ ∈ R3h+1 there
exists an ANN parameter vector ϑ ∈ R3h+1 whose realization function approximates
f at least as well as the realization function of θ but is additionally also Lipschitz
continuous with Lipschitz constant at most hL.

(III) Finally, we combine Corollary 2.5 with the Arzelà–Ascoli theorem and the fact that
the set of realization functions of shallow ReLU ANNs with fixed architecture forms
a closed subset of the set of continuous functions revealed in Petersen et al. [61, The-
orem 3.8] to prove Theorem 2.2.

The question which functions f : Rd → R can be represented by a shallow ReLU ANN
with a fixed number of neurons on the hidden layer has also been investigated in the
article Dereich & Kassing [23] and in Theorem 3.2 in [23] a similar result as Corollary 2.2
has been established.

Our proofs of Corollary 2.2 and Corollary 2.5 also use the elementary results and no-
tions regarding piecewise linear functions in Subsection 2.2 as well as the elementary
Lemma 2.3 and Lemma 2.4, and only for completeness we include in this section also
detailed proofs for these results.

2.1 Mathematical framework for shallow ANNs with ReLU activation

In Setting 2.1 we present our framework for shallow ANNs with ReLU activation which
will be employed during the remainder of this section.

Setting 2.1. Let h, d ∈ N, L ∈ R, f ∈ C([0, 1], R) satisfy for all x, y ∈ [0, 1] that

| f (x) − f (y)| ≤ L|x − y| and d = 3h + 1, let w = ((wθ
j )j∈{1,...,h})θ∈Rd : Rd → Rh,

b = ((bθ
j )j∈{1,...,h})θ∈Rd : Rd → Rh, v = ((vθ

j )j∈{1,...,h})θ∈Rd : Rd → Rh, c = (cθ)θ∈Rd : Rd →
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R, and q = ((qθ
j )j∈{1,...,h}) : Rd → (−∞, ∞]h satisfy for all θ = (θ1, . . . , θd) ∈ Rd,

j ∈ {1, 2, . . . , h} that wθ
j = θj, b

θ
j = θh+j, v

θ
j = θ2h+j, c

θ = θd, and

qθ
j =

{

−bθ
j/wθ

j , wθ
j 6= 0,

∞, wθ
j = 0,

(2.1)

let µ : B([0, 1]) → [0, ∞] be a finite measure, and let N = (N θ)θ∈Rd : Rd → C([0, 1], R)
and L : Rd → R satisfy for all θ ∈ Rd, x ∈ [0, 1] that

N θ(x) = cθ + ∑
h
j=1 v

θ
j max

{

bθ
j +wθ

j x, 0
}

(2.2)

and L(θ) =
∫ 1

0 (N
θ(y)− f (y))2 µ(dy).

2.2 Properties of the breakpoint function

Definition 2.1 (Breakpoint function). We denote by Q : C([0, 1], R) → [0, ∞] the function
which satisfies for all f ∈ C([0, 1], R) that

Q( f ) =min
(

{∞} ∪
{

n ∈ N0 :
[

∃A1,A2, . . . ,An+1,B1,B2, . . . ,Bn+1, q0, q1, . . . , qn+1 ∈ R :

([0 = q0 < q1 < · · · < qn+1 = 1],

[∀ j ∈ N ∩ [1, n + 1], x ∈ [qj−1, qj] : f (x) = Ajx +Bj])
]}

)

. (2.3)

Definition 2.2 (Piecewise affine linear functions). We denote by L ⊆ C([0, 1], R) the set
given by

L = { f ∈ C([0, 1], R) : Q( f ) < ∞} (2.4)

(cf. Definition 2.1).

Definition 2.3 (Slopes and axis intercepts for piecewise affine linear functions).
Let f ∈ L (cf. Definition 2.2). Then we denote by A1( f ), A2( f ), . . . , AQ( f )+1( f ),

B1( f ), B2( f ), . . . , BQ( f )+1( f ), q0( f ), q1( f ), . . . , qQ( f )+1( f ) ∈ R the real numbers which satisfy

0 = q0( f ) < q1( f ) < · · · < qQ( f )+1( f ) = 1 and

∀ j ∈ N ∩ [1, Q( f ) + 1], x ∈ [qj−1( f ), qj( f )] : f (x) = Aj( f )x + Bj( f ) (2.5)

(cf. Definition 2.1).

Proposition 2.1. Let f ∈ L , i ∈ {1, 2, . . . , Q( f )} (cf. Definitions 2.1 and 2.2). Then

(i) it holds that Ai+1( f ) 6= Ai( f ),

(ii) it holds that Bi+1( f ) = Bi( f )− (Ai+1( f )− Ai( f ))qi( f ), and

(iii) it holds that Bi+1( f ) = B1( f )− ∑
i
j=1(Aj+1( f )− Aj( f ))qj( f )

(cf. Definitions 2.3 and 2.4).
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Proof of Proposition 2.1. Observe that (2.3) ensures that Ai( f ) 6= Ai+1( f ). Next note that the
fact that for all j ∈ {1, 2, . . . , Q( f ) + 1}, x ∈ [qj−1( f ), qj( f )] it holds that f (x) = Aj( f )x +
Bj( f ) proves that for all j ∈ {1, 2, . . . , Q( f )} we have that

Aj( f )qj( f ) + Bj( f ) = Aj+1( f )qj( f ) + Bj+1( f ). (2.6)

Hence, we obtain for all j ∈ {1, 2, . . . , Q( f )} that Bj+1( f ) = Bj( f )− (Aj+1( f )− Aj( f ))qj( f ).
Induction hence establishes that for all j ∈ {1, 2, . . . , Q( f )} it holds that Bj+1( f ) = B1( f )−

∑
j
k=1(Ak+1( f )− Ak( f ))qk( f ). The proof of Proposition 2.1 is thus complete.

Lemma 2.1 (Subadditivity of the breakpoint function). Let f , g ∈ C([0, 1], R). Then

Q( f + g) ≤ Q( f ) + Q(g) (2.7)

(cf. Definition 2.1).

Proof of Lemma 2.1. Throughout this proof assume without loss of generality that

Q( f ) + Q(g) < ∞. (2.8)

Observe that (2.8) implies that there exist N ∈ N0 ∩ [0, Q( f ) + Q(g)], q0, q1, . . . , qN+1 ∈ R

which satisfy
0 = q0 < q1 < · · · < qN+1 = 1 (2.9)

and

{q0, q1, . . . , qN+1} = {q0( f ), q1( f ), . . . , qQ( f )+1( f )} ∪ {q0(g), q1(g), . . . , qQ(g)+1(g)}
(2.10)

(cf. Definition 2.3). Note that (2.9) and (2.10) ensure that for all i ∈ {0, 1, . . . , N} it holds
that ( f + g)|[qi,qi+1]

is affine linear. Hence, we obtain that Q( f + g) ≤ N ≤ Q( f ) + Q(g).
The proof of Lemma 2.1 is thus complete.

Corollary 2.1. Let f , g ∈ L (cf. Definition 2.2). Then

(i) it holds that Q( f + g) ≤ Q( f ) + Q(g) and

(ii) it holds that f + g ∈ L

(cf. Definition 2.1).

Proof of Corollary 2.1. Observe that Lemma 2.1 and the assumption that f , g ∈ L assure
that Q( f + g) ≤ Q( f ) + Q(g) < ∞. This completes the proof of Corollary 2.1.

Definition 2.4 (Lipschitz constant). We denote by Lip: C([0, 1], R) → [0, ∞] the function
which satisfies for all f ∈ C([0, 1], R) that

Lip( f ) = sup
x,y∈[0,1],

x 6=y

(

| f (x)− f (y)|

|x − y|

)

. (2.11)
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Lemma 2.2. Let f ∈ L (cf. Definition 2.2). Then

Lip( f ) = maxi∈{1,2,...,Q( f )+1}|Ai( f )| (2.12)

(cf. Definitions 2.1, 2.3, and 2.4).

Proof of Lemma 2.2. Note that the fact that 0 = q0( f ) < q1( f ) < · · · < qQ( f )+1( f ) = 1

and the fact that for all j ∈ {1, 2, . . . , Q( f ) + 1}, x ∈ [qj−1( f ), qj( f )] it holds that f (x) =
Aj( f )x + Bj( f ) ensure that

supx∈[a,b]\{q0( f ),q1( f ),...,qQ( f )+1( f )}| f
′(x)| = maxi∈{1,2,...,Q( f )+1}|Ai( f )|. (2.13)

This and the fundamental theorem of calculus establish (2.12). The proof of Lemma 2.2 is
thus complete.

2.3 Characterization results for realization functions of shallow ANNs

The objective of this subsection is to establish Corollary 2.2, which provides a complete
characterization of all functions in C([0, 1], R) that can be represented by a shallow ANN
with ReLU activation and h ∈ N hidden neurons. We first prove in Lemma 2.3 a simple
necessary condition: All representable functions are piecewise linear with at most h ∈ N

breakpoints.

Lemma 2.3. Assume Setting 2.1 and let θ ∈ Rd. Then

(i) it holds that N θ ∈ L and

(ii) it holds that Q(N θ) ≤ h

(cf. Definitions 2.1 and 2.2).

Proof of Lemma 2.3. Throughout this proof let gj ∈ C([0, 1], R), j ∈ {0, 1, . . . , h}, satisfy for

all j ∈ {1, 2, . . . , h}, x ∈ [0, 1] that

gj(x) = vθ
j max

{

wθ
j x + bθ

j , 0
}

and g0(x) = cθ. (2.14)

Observe that (2.14) ensures for all j ∈ {1, 2, . . . , h} that

gj ∈ L and Q(gj) ∈ {0, 1}. (2.15)

Furthermore, note that (2.14) demonstrates that g0 ∈ L and Q(g0) = 0. Combining this,

the fact that for all x ∈ [0, 1] it holds that N θ(x) = ∑
h
j=0 gj(x), Corollary 2.1, and induction

establishes items (i) and (ii). The proof of Lemma 2.3 is thus complete.

Moreover, every piecewise linear function with at most h − 1 breakpoints is repre-
sentable, as we show in Lemma 2.4.

Lemma 2.4. Assume Setting 2.1 and let g ∈ L satisfy Q(g) ≤ h− 1 (cf. Definitions 2.1 and 2.2).
Then there exists θ ∈ Rd such that N θ = g.
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Proof of Lemma 2.4. Throughout this proof let θ ∈ Rd satisfy for all j ∈ {1, 2, . . . , h} that

wθ
j =

{

1 : j ≤ Q(g) + 1,

0 : j > Q(g) + 1,
bθ

j =

{

−qj−1(g) : j ≤ Q(g) + 1,

0 : j > Q(g) + 1,
(2.16)

vθ
j =











A1(g) : j = 1,

Aj(g)− Aj−1(g) : 1 < j ≤ Q(g) + 1,

0 : j > Q(g) + 1,

(2.17)

and cθ = B1(g). Observe that (2.2), (2.16), and (2.17) ensure for all x ∈ [0, 1] that

N θ(x) = cθ +
h

∑
j=1

vθ
j max{wθ

j x + bθ
j , 0}

= B1(g) +
Q(g)+1

∑
j=1

vθ
j max{wθ

j x + bθ
j , 0}

= B1(g) +
Q(g)+1

∑
j=1

vθ
j max{x − qj−1(g), 0}

= B1(g) + A1(g)x +
Q(g)+1

∑
j=2

(Aj(g)− Aj−1(g))max{x − qj−1(g), 0}

= B1(g) + A1(g)x +
Q(g)

∑
j=1

(Aj+1(g)− Aj(g))max{x − qj(g), 0}. (2.18)

Combining this with Proposition 2.1 establishes for all i ∈ {0, 1, . . . , Q(g)}, x ∈ [qi(g), qi+1(g)]
that

N θ(x) = B1(g) + A1(g)x +
i

∑
j=1

(Aj+1(g)− Aj(g))(x − qj(g))

= Ai+1(g)x + B1(g)−
i

∑
j=1

(Aj+1(g)− Aj(g))qj(g)

= Ai+1(g)x + Bi+1(g) = g(x). (2.19)

The proof of Lemma 2.4 is thus complete.

For piecewise linear functions with exactly h breakpoints, the situation is more in-
volved: They are only representable by a shallow ANN with h hidden neurons if the
slopes fulfill a certain linear relation; see (2.21) below for details. In Lemma 2.5 we es-
tablish that this condition is necessary for a function to be representable, and afterwards
we show in Lemma 2.6 that it is also sufficient. Both proofs proceed by induction on the
number of breakpoints.
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Lemma 2.5. For every h ∈ N0, θ = (θ1, . . . , θ3h+1) ∈ R3h+1 let N θ : [0, 1] → R satisfy for all
x ∈ [0, 1] that

N θ(x) = θ3h+1 +
h

∑
j=1

θ2h+j max{θh+j + θjx, 0}, (2.20)

for every h ∈ N0 let Rh ⊆ C([0, 1], R) satisfy Rh = { f ∈ Q−1({h}) : [∃ θ ∈ R3h+1 : f =

N θ ]}, and for every h ∈ N0 let Sh ⊆ C([0, 1], R) satisfy

Sh =
{

f ∈ Q−1({h}) :
(

∃ k ∈ N, i1, i2, . . . , ik ∈ N :

[(

k
2 /∈ N

)

,
(

i1 < i2 < · · · < ik ≤ h+ 1
)

,
(

∑
k
j=1(−1)j Aij

( f ) = 0
)]

)}

(2.21)

(cf. Definitions 2.1 and 2.3). Then it holds for all h ∈ N0 that

Rh ⊆ Sh. (2.22)

Proof of Lemma 2.5. Throughout this proof let sgn: R → R satisfy for all x ∈ (0, ∞),
k ∈ {−1, 0, 1} that sgn(kx) = k and for every h ∈ N, θ = (θ1, . . . , θ3h+1) ∈ R3h+1,

j ∈ {1, 2, . . . , h} let qθ
j ∈ (−∞, ∞] satisfy

qθ
j =

{

−
θh+j

θj
: θj 6= 0,

∞ : θj = 0.
(2.23)

Observe that (2.23) ensures that for all h ∈ N, θ ∈ R3h+1 it holds that

Q(N θ) ≤
∣

∣

(

{qθ
1, qθ

2, . . . , qθ
h} ∩ R

)
∣

∣ ≤ h. (2.24)

We prove (2.22) by induction on h ∈ N0. For the base case h = 0 observe that for all θ ∈ R,

x ∈ [0, 1] it holds that N θ(x) = θ. Hence, we obtain that for all θ ∈ R that Q(N θ) = 0,
A1(N

θ) = 0, and B1(N
θ) = θ. Therefore, we obtain that R0 = (∪θ∈R{N

θ}) ⊆ S0.
This establishes (2.22) in the base case h = 0. For the induction step let h ∈ N0 satisfy
Rh ⊆ Sh and let F ∈ Rh+1. We intend to prove that F ∈ Sh+1. Observe that the fact

that F ∈ Rh+1 ensures that there exists Ξ ∈ R3(h+1)+1 = R3h+4 which satisfies N Ξ = F.

Note that (2.24) and the fact that Q(F) = h+ 1 demonstrate that qΞ
1 , qΞ

2 , . . . , qΞ
h+1 ∈ R and

|{qΞ
1 , qΞ

2 , . . . , qΞ
h+1}| = h+ 1. This shows that there exists a bijective p : {1, 2, . . . , h+ 1} →

{1, 2, . . . , h+ 1} which satisfies

− ∞ < qΞ
p(1) < qΞ

p(2) < · · · < qΞ
p(h+1) < ∞. (2.25)

In the following let Θ = (Θ1, . . . , Θ3h+4) satisfy for all j ∈ {1, 2, . . . , h+ 1} that

Θj = Ξp(j), Θh+1+j = Ξh+1+p(j), Θ2h+2+j = Ξ2h+2+p(j), and Θ3h+4 = Ξ3h+4.

(2.26)
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Observe that (2.25), (2.26), and the fact that F = N Ξ ensure that

N Θ = N Ξ = F and − ∞ < qΘ
1 < qΘ

2 < · · · < qΘ
h+1 < ∞. (2.27)

In the following let θ = (θ1, . . . , θ3h+1) ∈ R3h+1 satisfy

θ = (Θ1, . . . , Θh, Θh+2, . . . , Θ2h+1, Θ2h+3, . . . , Θ3h+2, Θ3h+4) (2.28)

and let f ∈ C([0, 1], R) satisfy f = N θ . Note that (2.28) ensures for all x ∈ [0, 1] that

f (x) = θ3h+1 +
h

∑
j=1

θ2h+j max{θh+j + θjx, 0}

= F(x)− Θ3h+3 max{Θ2h+2 + Θh+1x, 0}. (2.29)

Next observe that (2.27) assures that Q( f ) = h and −∞ < qθ
1 = qΘ

1 < qθ
2 = qΘ

2 < · · · <

qθ
h = qΘ

h < qΘ
h+1 < ∞. Combining this with the fact that f = N θ demonstrates that

f ∈ Rh. The induction hypothesis that Rh ⊆ Sh therefore assures that f ∈ Sh. This proves
that there exist k ∈ N, i1, i2, . . . , ik ∈ N which satisfy

k
2 /∈ N, i1 < i2 < · · · < ik ≤ h+ 1, and ∑

k
j=1(−1)j Aij

( f ) = 0. (2.30)

Next let K ∈ N, I1, I2, . . . , IK ∈ N satisfy

{I1, I2, . . . , IK} =











{i1, i2, . . . , ik} : Θh+1 > 0,

(∪k−1
l=1 {il}) ∪ {h+ 2} : Θh+1 < 0 = h+ 1 − ik,

{i1, . . . , ik, h+ 1, h+ 2} : Θh+1 < 0 < h+ 1 − ik.

(2.31)

Note that (2.30) and (2.31) ensure that K
2 /∈ N and I1 < I2 < · · · < IK ≤ h+ 2. In order to

prove that F ∈ Sh+1, it is thus sufficient to verify that

∑
K
j=1(−1)j AIj

(F) = 0. (2.32)

For this observe that (2.29) assures for all x ∈ [0, 1] that

F(x) = f (x) + |Θh+1|Θ3h+3 max{|Θh+1|
−1Θ2h+2 + |Θh+1|

−1Θh+1x, 0}

= f (x) + Θh+1Θ3h+3 sgn(Θh+1)max{(x − qΘ
h+1) sgn(Θh+1), 0}. (2.33)

In the following we distinguish between the case Θh+1 > 0, the case Θh+1 < 0 = h+ 1− ik,
and the case Θh+1 < 0 < h+ 1 − ik. We first prove (2.32) in the case

Θh+1 > 0. (2.34)

Note that (2.33) and (2.34) demonstrate for all x ∈ [0, 1] that F(x) = f (x) +
Θh+1Θ3h+3 max{x − qΘ

h+1, 0}. Hence, we obtain for all j ∈ {1, 2, . . . , h+ 1} that Aj(F) =
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Aj( f ). Combining this with (2.31) implies that ∑
K
j=1(−1)j AIj

(F) = ∑
k
j=1(−1)j Aij

( f ) = 0.

This establishes (2.32) in the case Θh+1 > 0. In the next step we prove (2.32) in the case

Θh+1 < 0 = h+ 1 − ik. (2.35)

Observe that (2.33) and (2.35) show for all x ∈ [0, 1] that F(x) = f (x) +
Θh+1Θ3h+3 min{x − qΘ

h+1, 0}. Therefore, we obtain for all j ∈ {1, 2, . . . , h + 1} that

Aj(F) = Aj( f ) + Θh+1Θ3h+3 and Ah+2(F) = Ah+1( f ). Combining this with (2.31), (2.35),

and the fact that k
2 /∈ N shows that

∑
K
j=1(−1)j AIj

(F) =
[

∑
K−1
j=1 (−1)j AIj

(F)
]

+ (−1)K AIK
(F)

=
[

∑
k−1
j=1 (−1)j

(

Aij
( f ) + Θh+1Θ3h+3

)]

− Ah+2(F)

=
[

∑
k−1
j=1 (−1)j Aij

( f )
]

+
[

∑
k−1
j=1 (−1)jΘh+1Θ3h+3

]

− Ah+1( f )

=
[

∑
k−1
j=1 (−1)j Aij

( f )
]

+
[

∑
k−1
j=1 (−1)j

]

Θh+1Θ3h+3 + (−1)k Aik( f )

= ∑
k
j=1(−1)j Aij

( f ) = 0. (2.36)

This establishes (2.32) in the case Θh+1 < 0 = h+ 1 − ik. Next we prove (2.32) in the case

Θh+1 < 0 < h+ 1 − ik. (2.37)

Note that (2.33) and (2.37) demonstrate for all x ∈ [0, 1] that F(x) = f (x) +
Θh+1Θ3h+3 min{x − qΘ

h+1, 0}. Hence, we obtain for all j ∈ {1, 2, . . . , h+ 1} that Aj(F) =

Aj( f ) + Θh+1Θ3h+3 and Ah+2(F) = Ah+1( f ). Combining this with (2.31), (2.37), and the

fact that k
2 /∈ N shows that

∑
K
j=1(−1)j AIj

(F)

=
[

∑
k
j=1(−1)j Aij

(F)
]

+ (−1)k+1 AIk+1
(F) + (−1)k+2 AIk+2

(F)

=
[

∑
k
j=1(−1)j

(

Aij
( f ) + Θh+1Θ3h+3

)]

+ AIk+1
(F)− AIk+2

(F)

=
[

∑
k
j=1(−1)j Aij

( f )
]

+
[

∑
k
j=1(−1)jΘh+1Θ3h+3

]

+ Ah+1(F)− Ah+2(F)

=
[

∑
k
j=1(−1)j

]

Θh+1Θ3h+3 + Ah+1( f ) + Θh+1Θ3h+3 − Ah+1( f ) = 0. (2.38)

This establishes (2.32) in the case Θh+1 < 0 < h+ 1 − ik. Observe that (2.32), the fact that
K
2 /∈ N, and the fact that I1 < I2 < · · · < IK ≤ h+ 2 prove that F ∈ Sh+1. Induction thus
establishes (2.22). The proof of Lemma 2.5 is thus complete.

Lemma 2.6. For every h ∈ N0, θ = (θ1, . . . , θ3h+1) ∈ R3h+1 let N θ : [0, 1] → R satisfy for all
x ∈ [0, 1] that

N θ(x) = θ3h+1 +
h

∑
j=1

θ2h+j max{θh+j + θjx, 0}, (2.39)
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for every h ∈ N0 let Rh ⊆ C([0, 1], R) satisfy Rh = { f ∈ Q−1({h}) : [∃ θ ∈ R3h+1 : f =

N θ ]}, and for every h ∈ N0 let Sh ⊆ C([0, 1], R) satisfy

Sh =
{

f ∈ Q−1({h}) :
(

∃ k ∈ N, i1, i2, . . . , ik ∈ N :

[(

k
2 /∈ N

)

,
(

i1 < i2 < · · · < ik ≤ h+ 1
)

,
(

∑
k
j=1(−1)j Aij

( f ) = 0
)]

)}

(2.40)

(cf. Definitions 2.1 and 2.3). Then it holds for all h ∈ N0 that

Sh ⊆ Rh. (2.41)

Proof of Lemma 2.6. We prove (2.41) by induction on h ∈ N0. For the base case h = 0 note
that (2.40) ensures that

S0 =
{

f ∈ Q−1({0}) : A1( f ) = 0
}

= { f ∈ C([0, 1], R) : (∀ x ∈ [0, 1] : f (x) = f (0))}

= ∪θ∈R{N
θ}. (2.42)

This establishes (2.40) in the base case h = 0. For the induction step let h ∈ N0 satisfy
Sh ⊆ Rh and let F ∈ Sh+1. We intend to prove that F ∈ Rh+1. Note that (2.40) ensures that
there exist K ∈ N, I1, I2, . . . , IK ∈ N which satisfy

Q(F) = h+ 1, K
2 /∈ N, I1 < I2 < · · · < IK ≤ h+ 2, and ∑

K
j=1(−1)j AIj

(F) = 0.

(2.43)
Next let f : [0, 1] → R satisfy for all x ∈ [0, 1] that

f (x) =

{

F(x)− (Ah+2(F)− Ah+1(F))max{x − qh+1(F), 0} : IK − 2 6= h,

F(x)− (Ah+2(F)− Ah+1(F))max{qh+1(F)− x, 0} : IK − 2 = h,
(2.44)

and let k ∈ N, i1, i2, . . . , ik ∈ N satisfy

{i1, i2, . . . , ik} =











{I1, I2, . . . , IK} : IK − 2 6= h,

{I1, I2, . . . , IK−2} : IK − 2 = h < min{Imax{K−1,1}, K + h− 1, }

(∪K−1
l=1 {Il}) ∪ {h+ 1} : IK − 2 = h ≥ min{Imax{K−1,1}, K + h− 1}.

(2.45)
Observe that (2.43) and (2.45) assure that k

2 /∈ N and i1 < i2 < · · · < ik ≤ h+ 1. Moreover,
note that (2.43) and (2.44) ensure that f ∈ C([0, 1], R), Q( f ) = h, and

(

∀ i ∈ {1, 2, . . . , h+ 1} : Ai( f ) =

{

Ai(F) : IK − 2 6= h

Ai(F) + Ah+2(F)− Ah+1(F) : IK − 2 = h

)

. (2.46)

In the next step we prove that

∑
k
j=1(−1)j Aij

( f ) = 0. (2.47)
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In the following we distinguish between the case IK − 2 6= h, the case IK − 2 = h <

min{Imax{K−1,1}, K + h− 1}, and the case IK − 2 = h ≥ min{Imax{K−1,1}, K + h− 1}. We
first prove (2.47) in the case

IK − 2 6= h. (2.48)

Observe that (2.45) and (2.48) ensure that

∑
k
j=1(−1)j Aij

( f ) = ∑
K
j=1(−1)j AIj

(F) = 0. (2.49)

This establishes (2.47) in the case IK − 2 6= h. In the next step we prove (2.47) in the case

IK − 2 = h < min{Imax{K−1,1}, K + h− 1}. (2.50)

Note that (2.43), (2.45), (2.46), and (2.50) assure that

∑
k
j=1(−1)j Aij

( f ) = ∑
K−2
j=1 (−1)j AIj

( f )

= ∑
K−2
j=1 (−1)j

(

AIj
(F) + Ah+2(F)− Ah+1(F)

)

=
[

∑
K−2
j=1 (−1)j AIj

(F)
]

+
[

∑
K−2
j=1 (−1)j

]

[

Ah+2(F)− Ah+1(F)
]

=
[

∑
K
j=1(−1)j AIj

(F)
]

−
[

∑
K
j=K−1(−1)j AIj

(F)
]

−
[

Ah+2(F)− Ah+1(F)
]

= −
[

AIK−1
(F)− AIK

(F)
]

−
[

Ah+2(F)− Ah+1(F)
]

= −
[

Ah+1(F)− Ah+2(F)
]

−
[

Ah+2(F)− Ah+1(F)
]

= 0. (2.51)

This establishes (2.47) in the case IK − 2 = h < min{Imax{K−1,1}, K + h− 1}. In the next
step we prove (2.47) in the case

IK − 2 = h ≥ min{Imax{K−1,1}, K + h− 1}. (2.52)

Observe that (2.43), (2.45), (2.46), and (2.52) assure that

∑
k
j=1(−1)j Aij

( f ) =
[

∑
K−1
j=1 (−1)j AIj

( f )
]

+ (−1)k Ah+1( f )

=
[

∑
K−1
j=1 (−1)j

(

AIj
(F) + Ah+2(F)− Ah+1(F)

)

]

−
[

Ah+1(F) + Ah+2(F)− Ah+1(F)
]

=
[

∑
K−1
j=1 (−1)j AIj

(F)
]

+
[

∑
K−1
j=1 (−1)j

]

(

Ah+2(F)− Ah+1(F)
)

− Ah+2(F)

=
[

∑
K
j=1(−1)j AIj

(F)
]

+ AIK
(F)− Ah+2(F) = Ah+2(F)− Ah+2(F) = 0. (2.53)

This establishes (2.47) in the case IK − 2 = h ≥ min{Imax{K−1,1}, K + h− 1}. Note that
(2.47) implies that f ∈ Sh. The induction hypothesis that Sh ⊆ Rh hence assures that
f ∈ Rh. Combining this with (2.44) and the fact that Q(F) = h+ 1 shows that F ∈ Rh+1.
Induction thus establishes (2.41). The proof of Lemma 2.6 is thus complete.

Finally, in Corollary 2.2 we combine the previous results to obtain the promised char-
acterization.
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Corollary 2.2. Let h ∈ N0, for every θ = (θ1, . . . , θ3h+1) ∈ R3h+1 let N θ : [0, 1] → R satisfy

x ∈ [0, 1] that N θ(x) = θ3h+1 + ∑
h
j=1 θ2h+j max{θh+j + θjx, 0}, and let f ∈ C([0, 1], R). Then

the following two statements are equivalent:

(i) Then exists θ ∈ R3h+1 such that N θ = f .

(ii) There exist k ∈ N, i1, i2, . . . , ik ∈ N such that k
2 /∈ N, i1 < i2 < · · · < ik ≤ h + 1,

Q( f ) ≤ h, and

(h− Q( f )− 1)
∣

∣∑
k
j=1(−1)j Amin{ij,Q( f )+1}( f )

∣

∣ ≥ 0 (2.54)

(cf. Definitions 2.1 and 2.3).

Proof of Corollary 2.2. Observe that Lemma 2.3 and Lemma 2.5 prove that (item (i)→
item (ii)). Furthermore, note that Lemma 2.4 and Lemma 2.6 establish that (item (ii)→
item (i)). The proof of Corollary 2.2 is thus complete.

2.4 Structure preserving approximations for piecewise affine linear functions

The next elementary lemma is an immediate consequence of the definitions in Subsec-
tion 2.2. It will be employed in the sequel to switch the endpoints of the domain [0, 1] and
thereby make some simplifying assumptions.

Lemma 2.7. Let L ∈ R, f ∈ C([0, 1], R) satisfy for all x, y ∈ [0, 1] that | f (x) − f (y)| ≤
L|x− y|, let g ∈ L , i ∈ {1, 2, . . . , Q(g) + 1}, a ∈ R satisfy L ≤ |a| ≤ |Ai(g)| and aAi(g) > 0,
let F : [0, 1] → R and G : [0, 1] → R satisfy for all x ∈ [0, 1] that F(x) = − f (1 − x) and
G(x) = −g(1 − x), and let I ∈ N satisfy I = Q(g) + 2 − i (cf. Definitions 2.1, 2.2, and 2.3).
Then

(i) it holds that F ∈ C([0, 1], R),

(ii) it holds for all x, y ∈ [0, 1] that |F(x)− F(y)| ≤ L|x − y|,

(iii) it holds that G ∈ L ,

(iv) it holds that Q(G) = Q(g),

(v) it holds that I ∈ {1, 2, . . . , Q(G) + 1},

(vi) it holds for all j ∈ {0, 1, . . . , Q(g) + 1} that qj(G) = 1 − qQ(g)+1−j(g),

(vii) it holds for all j ∈ {1, 2, . . . , Q(g) + 1} that Aj(G) = AQ(g)+2−j(g),

(viii) it holds that L ≤ |a| ≤ |AI(G)| = |Ai(g)|, and

(ix) it holds that aAI(G) = aAi(g) > 0.

Proof of Lemma 2.7. Observe that (2.3) and (2.5) establish items (i), (ii), (iii), (iv), (v), (vi),
(vii), (viii), and (ix). The proof of Lemma 2.7 is thus complete.



J. Mach. Learn., 1(2):141-246 164

Our next goal is to prove in Lemma 2.11 below that for any piecewise linear function
g ∈ L there exists a piecewise linear h ∈ L which has at most as many breakpoints as g,
approximates a given Lipschitz continuous target function f ∈ C([0, 1], R) as least as well
as g, and has a Lipschitz constant bounded by the Lipschitz constant of f . To show this
we will, roughly speaking, adjust the slopes of the piecewise linear function g one by one
and apply induction. Loosely speaking, the following three results, Lemmas 2.8, 2.9, and
2.10 all consider different cases depending on the slope to be adjusted in each step. The
various cases are illustrated in the figures.

Lemma 2.8. Let L ∈ (0, ∞), f ∈ C([0, 1], R) satisfy for all x, y ∈ [0, 1] that | f (x)− f (y)| ≤
L|x − y|, let g ∈ L , i ∈ {1, 2, . . . , Q(g) + 1}, a ∈ R satisfy L ≤ a ≤ Ai(g), assume for all
x ∈ (qi−1(g), qi(g)) that g(x) 6= f (x), and let µ : B([0, 1]) → [0, ∞] be a finite measure (cf.

Definitions 2.1, 2.2, and 2.3). Then there exists h ∈ L such that
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g), and

(Q(g)− Q(h)− 1)
(

∑
Q(h)+1
j=1 |Aj(h)− Aj(g)1N\{i}(j)− a1{i}(j)|

)

≥ 0. (2.55)

Proof of Lemma 2.8. Throughout this proof assume without loss of generality that a < Ai(g),
let q0, q1, . . . , qQ(g)+1 ∈ R satisfy for all j ∈ {0, 1, . . . , Q(g)+ 1} that qj = qj(g), and assume

without loss of generality3 that ∀ x ∈ (qi−1, qi) : f (x) < g(x). Note that the fact that f and
g are continuous proves that f (qi−1) ≤ g(qi−1) and f (qi) ≤ g(qi). In the following we
distinguish between several cases:

(I) We first prove (2.55) in the case
i = Q(g) + 1 (2.56)

(cf. Figure 2.1). Let h ∈ L satisfy for all x ∈ [0, qQ(g)], y ∈ [qQ(g), 1] that h(x) = g(x)

and h(y) = g(qQ(g)) + a(y − qQ(g)). Observe that for all j ∈ {1, 2, . . . , Q(g)} that

h|[qj−1,qj]
is affine-linear with slope Aj(g). Furthermore, note that h|[qQ(g),1]

is affine-

linear with slope a. Moreover, observe that
(

(AQ(g)(g) = a) → (Q(h) = Q(g)− 1 <

Q(g))
)

and

(

(AQ(g)(g) 6= a) → [(Q(h) = Q(g)) ∧ (AQ(g)+1(h) = a)

∧ (∀ j ∈ N ∩ [1, Q(h)] : Aj(h) = Aj(g))]
)

. (2.57)

In addition, note that the fact that ∀ x, y ∈ [0, 1] : | f (x)− f (y)| ≤ L|x− y|, the fact that
∀ y ∈ [qQ(g), 1] : g(y) = g(qQ(g)) + Ai(g)(y − qQ(g)), and the fact that a ∈ [L, Ai(g))

ensure that for all y ∈ [qQ(g), 1] we have that

f (y) ≤ f (qQ(g)) + L(y − qQ(g)) ≤ g(qQ(g)) + a(y − qQ(g)) = h(y) ≤ g(y). (2.58)

This implies that
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y) − f (y))2 µ(dy), which estab-
lishes (2.55) in the case i = Q(g) + 1.

3Otherwise the fact that f and g are continuous ensures that ∀ x ∈ (qi−1, qi) : f (x) > g(x) and we can consider f x

([0, 1] ∋ x 7→ − f (1− x) ∈ R), g x ([0, 1] ∋ x 7→ −g(1 − x) ∈ R), and i x Q(g) + 2 − i (cf. Lemma 2.7).
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Figure 2.1: Case (I) in Lemma 2.8. Note that qi = qQ(g)+1 = 1. The new function h ∈ L is linear on

[qi−1, qi] = [qQ(g), qQ(g)+1] with slope a and agrees with g on [0, qQ(g)].
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f

Figure 2.2: Case (II) in Lemma 2.8. The new function h ∈ L is linear on [u, qi] with slope Ai+1(g), linear on
[qi−1, u] with slope a, and agrees with g outside of [qi−1, qi].

(II) Next we prove (2.55) in the case

(i < Q(g) + 1) ∧ (Ai+1(g) > Ai(g)) ∧ (g(qi+1)− g(qi−1) ≥ a(qi+1 − qi−1)) (2.59)

(cf. Figure 2.2). Observe that the fact that a ∈ [L, Ai(g)) shows that
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g(qi+1) + Ai+1(g)(qi − qi+1)− g(qi−1)− a(qi − qi−1)

= g(qi)− g(qi−1)− a(qi − qi−1) > 0. (2.60)

Furthermore, note that the fact that Ai+1(g) > Ai(g) shows that

Ai+1(g) >
[ qi+1−qi
qi+1−qi−1

]

Ai+1(g) +
[ qi−qi−1
qi+1−qi−1

]

Ai(g) =
g(qi+1)−g(qi−1)

qi+1−qi−1
. (2.61)

Hence, we obtain g(qi+1) + Ai+1(g)(qi−1 − qi+1) − g(qi−1) < 0. The intermediate
value theorem and (2.60) therefore assure that there exists u ∈ (qi−1, qi) which satis-
fies

g(qi−1) + a(u − qi−1) = g(qi+1) + Ai+1(g)(u − qi+1). (2.62)

Let h ∈ L satisfy for all x ∈ [0, qi−1] ∪ [qi+1, 1], y ∈ [qi−1, u], z ∈ [u, qi+1] that
h(x) = g(x), h(y) = g(qi−1) + a(y − qi−1), and h(z) = g(qi+1) + Ai+1(g)(z − qi+1).
Observe that

(

[(i = 1) ∨ (Amax{i−1,1}(g) 6= a)] → [(Q(h) = Q(g))

∧ (∀ j ∈ (N ∩ [1, Q(h) + 1])\{i} : Aj(h) = Aj(g))]
)

(2.63)

and
(

[(i > 1) ∧ (Amax{i−1,1}(g) = a)] → (Q(h) < Q(g))
)

. Moreover, note that the

fact that a ∈ [L, Ai(g)] implies for all y ∈ [qi−1, qi+1] that h(y) ≤ g(y). In addition,
observe that the fact that f (qi−1) ≤ g(gi−1), the fact that L ≤ a ≤ Ai+1(g), and the
fact that ∀ x, y ∈ [0, 1] : | f (x) − f (y)| ≤ L|x − y| prove for all y ∈ [qi−1, qi+1] that

f (y) ≤ h(y). Hence, we obtain
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y) − f (y))2 µ(dy).
This establishes (2.55) in the case (i < Q(g) + 1) ∧ (Ai+1(g) > Ai(g)) ∧ (g(qi+1)−
g(qi−1) ≥ a(qi+1 − qi−1)).

(III) Next we prove (2.55) in the case

(i < Q(g) + 1) ∧ (Ai+1(g) < Ai(g)) ∧ (g(qi+1)− g(qi−1) ≥ a(qi+1 − qi−1)) (2.64)

(cf. Figure 2.3). Let h ∈ L satisfy for all x ∈ [0, qi−1] ∪ [qi+1, 1], y ∈ [qi−1, qi+1] that

h(x) = g(x) and h(y) = g(qi−1) +
[ g(qi+1)−g(qi−1)

qi+1−qi−1

]

(y − qi−1). Clearly, we have that

h ∈ L and Q(h) < Q(g). Furthermore, note that the fact that Ai+1(g) < Ai(g)
shows that

Ai+1(g) ≤
[ qi+1−qi
qi+1−qi−1

]

Ai+1(g) +
[ qi−qi−1
qi+1−qi−1

]

Ai(g) =
g(qi+1)−g(qi−1)

qi+1−qi−1
≤ Ai(g). (2.65)

Therefore, we obtain for all y ∈ [qi−1, qi+1] that h(y) ≤ g(y). Moreover, observe

that the fact that f (qi−1) ≤ g(gi−1), the fact that L ≤ g(qi+1)−g(gi−1)
qi+1−gi−1

, and the fact that

∀ x, y ∈ [0, 1] : | f (x)− f (y)| ≤ L|x − y| prove for all y ∈ [qi−1, qi+1] that f (y) ≤ h(y).

Hence, we obtain
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy). This establishes
(2.55) in the case (i < Q(g) + 1)∧ (Ai+1(g) > Ai(g))∧ (g(qi+1)− g(qi−1) ≥ a(qi+1 −
qi−1)).
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Figure 2.3: Case (III) in Lemma 2.8. The new function h ∈ L is linear on [qi−1, qi+1] with slope
g(qi+1)−g(qi−1)

qi+1−qi−1
≥ a

and agrees with g outside of [qi−1, qi+1]. It thus satisfies Q(h) < Q(g).
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Figure 2.4: Case (IV) in Lemma 2.8. The new function h ∈ L is linear on [qi−1, z] with slope a and agrees with
g outside of [qi−1, z].

(IV) Finally, we prove (2.55) in the case

(i < Q(g) + 1) ∧ (g(qi+1)− g(qi−1) < a(qi+1 − qi−1)) (2.66)

(cf. Figure 2.4). Note that the fact that g(qi)− g(qi−1) = Ai(g)(qi − qi−1) > a(qi −
qi−1) and the intermediate value theorem demonstrate that there exists z ∈ (qi, qi+1)
which satisfies g(z) = g(qi−1) + a(z − qi−1). Let h ∈ L satisfy for all x ∈ [0, qi−1] ∪
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Figure 2.5: Case (I) in Lemma 2.9. Here Q(g) = 0, so g is linear. The new function h ∈ L is linear on
[q0, q1] = [0, 1] with slope a and satisfies h(z) = g(z) = f (z).

[z, 1], y ∈ [qi−1, z] that h(x) = g(x) and h(y) = g(qi−1) + a(y − qi−1). Observe
that Q(h) = Q(g), Ai(h) = a, and ∀ j ∈ {1, 2, . . . , Q(g) + 1}\{i} : Aj(h) = Aj(g). In

addition, note that the fact that f (qi−1) ≤ g(gi−1), the fact that L ≤ a, and the fact that
∀ x, y ∈ [0, 1] : | f (x)− f (y)| ≤ L|x − y| prove for all y ∈ [qi−1, z] that f (y) ≤ h(y) ≤

g(y). Therefore, we obtain
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy). This
establishes (2.55) in the case (i < Q(g) + 1) ∧ (g(qi+1)− g(qi−1) < a(qi+1 − qi−1)).

The proof of Lemma 2.8 is thus complete.

Lemma 2.9. Let L ∈ (0, ∞), f ∈ C([0, 1], R) satisfy for all x, y ∈ [0, 1] that | f (x)− f (y)| ≤
L|x − y|, let g ∈ L , i ∈ {1, Q(g) + 1}, a ∈ R satisfy L ≤ a ≤ Ai(g), let z ∈ (qi−1(g), qi(g))
satisfy g(z) = f (z), and let µ : B([0, 1]) → [0, ∞] be a finite measure. Then there exists h ∈ L

such that
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g), and

(Q(g)− Q(h)− 1)
(

∑
Q(h)+1
j=1 |Aj(h)− Aj(g)1N\{i}(j)− a1{i}(j)|

)

≥ 0. (2.67)

Proof of Lemma 2.9. Throughout this proof assume without loss of generality that a < Ai(g),
assume without loss of generality that i = 1 (cf. Lemma 2.7), and let q0, q1, . . . , qQ(g)+1 ∈ R

satisfy for all j ∈ {0, 1, . . . , Q(g) + 1} that qj = qj(g). In the following we distinguish be-
tween several cases:

(I) We first prove (2.67) in the case

1 = i = Q(g) + 1 (2.68)

(cf. Figure 2.5). Let h ∈ L satisfy for all x ∈ [0, 1] that h(x) = g(z) + a(x − z).
Observe that h ∈ L , Q(h) = 0 = Q(g), and A1(h) = a. Furthermore, note that
the assumption that A1(g) > a ≥ L and the fact that ∀ x, y ∈ [0, 1] : | f (x)− f (y)| ≤
L|x − y| prove for all x ∈ [0, z], y ∈ [z, 1] that g(x) ≤ h(x) ≤ f (x) and f (y) ≤
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Figure 2.6: Case (II) in Lemma 2.9. The new function h ∈ L satisfies h(z) = f (z) = g(z), is linear on [q0, q2]

with slope
g(q2)−g(z)

q2−z ≥ a, and agrees with g on [q2, 1].

h(y) ≤ g(y). This implies
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y) − f (y))2 µ(dy). This
establishes (2.67) in the case 1 = i = Q(g) + 1.

(II) Next we prove (2.67) in the case

(1 = i < Q(g) + 1) ∧ (A2(g) < A1(g)) ∧ (g(q2)− g(z) ≥ a(q2 − z)) (2.69)

(cf. Figure 2.6). Let h ∈ L satisfy for all x ∈ [0, q2], y ∈ [q2, 1] that h(x) = g(z) +
[ g(q2)−g(z)

q2−z

]

(x − z) and h(y) = g(y). Clearly, we have that h ∈ L and Q(h) < Q(g).

Moreover, observe that the fact that

A1(g) >
[ q2−q1
q2−z

]

A2(g) +
[ q1−z
q2−z

]

A1(g) = g(q2)−g(z)
q2−z

≥ max{A2(g), a} ≥ max{A2(g), L} (2.70)

and the fact ∀ x, y ∈ [0, 1] : | f (x) − f (y)| ≤ L|x − y| prove that for all x ∈ [0, z],
y ∈ [z, q2] we have that g(x) ≤ h(x) ≤ f (x) and f (y) ≤ h(y) ≤ g(y). Hence, we

obtain
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y) − f (y))2 µ(dy). This establishes (2.67) in
the case (1 = i < Q(g) + 1) ∧ (A2(g) < A1(g)) ∧ (g(q2)− g(z) ≥ a(q2 − z)).

(III) Next we prove (2.67) in the case

(1 = i < Q(g) + 1) ∧ (A2(g) > A1(g)) ∧ (g(q2)− g(z) ≥ a(q2 − z)) (2.71)

(cf. Figure 2.7). Note that the intermediate value theorem ensures that there exists
u ∈ [z, q1] which satisfies g(z) + a(u − z) = g(q2) + A2(g)(u − q2). Let h ∈ L
satisfy for all x ∈ [0, u], y ∈ [u, q1], z ∈ [q1, 1] that h(x) = g(z) + a(x − z), h(y) =
h(u) + A2(g)(y − u), and h(z) = g(z). Observe that Q(h) = Q(g), A1(h) = a, and
∀ j ∈ {2, 3, . . . , Q(g) + 1} : Aj(h) = Aj(g). In addition, note that for all x ∈ [0, z],
y ∈ [z, q1] it holds that g(x) ≤ h(x) ≤ f (x) and f (y) ≤ h(y) ≤ g(y). Therefore, we
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Figure 2.7: Case (III) in Lemma 2.9. The new function h ∈ L is linear on [0, u] with slope a, linear on [u, q1]
with slope A2(g), and agrees with g on [q1, 1].
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Figure 2.8: Case (IV) in Lemma 2.9. The new function h ∈ L is linear on [0, u] with slope a and agrees with g
on [u, 1].

obtain
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y) − f (y))2 µ(dy). This establishes (2.67) in
the case (1 = i < Q(g) + 1) ∧ (A2(g) > A1(g)) ∧ (g(q2)− g(z) ≥ a(q2 − z)).

(IV) Finally, we prove (2.67) in the case

(1 = i < Q(g) + 1) ∧ (g(q2)− g(z) < a(q2 − z)) (2.72)

(cf. Figure 2.8). Observe that the fact that g(q1)− g(z) = A1(g)(q1 − z) > a(q1 − z)
and the intermediate value theorem demonstrate that there exists u ∈ (q1, q2) which
satisfies g(u) = g(z) + a(u − z). Let h ∈ L satisfy for all x ∈ [0, u], y ∈ [u, 1] that
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h(x) = g(z) + a(x − z) and h(y) = g(y). Note that
(

(A2(g) = a) → (Q(h) < Q(g))
)

and

(

(A2(g) 6= a) → [(Q(h) = Q(g)) ∧ (A1(h) = a) ∧ (∀ j ∈ N ∩ (1, Q(g) + 1]

: Aj(h) = Aj(g))]
)

. (2.73)

Furthermore, observe that the assumption that A1(g) > a and the fact that ∀ x, y ∈
[0, 1] : | f (x) − f (y)| ≤ L|x − y| prove that for all x ∈ [0, z], y ∈ [z, u] we have that

g(x) ≤ h(x) ≤ f (x) and f (y) ≤ h(y) ≤ g(y). This implies
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y) − f (y))2 µ(dy). This establishes (2.67) in the case (1 = i < Q(g) + 1) ∧
(g(q2)− g(z) < a(q2 − z)).

The proof of Lemma 2.9 is thus complete.

Lemma 2.10. Let L ∈ (0, ∞), f ∈ C([0, 1], R) satisfy for all x, y ∈ [0, 1] that | f (x)− f (y)| ≤
L|x − y|, let g ∈ L , i ∈ N ∩ (1, Q(g)], a ∈ R satisfy L ≤ a ≤ Ai(g), let z ∈ (qi−1(g), qi(g))
satisfy g(z) = f (z), and let µ : B([0, 1]) → [0, ∞] be a finite measure. Then there exists h ∈ L

such that
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g), and

(Q(g)− Q(h)− 1)
(

∑
Q(h)+1
j=1 |Aj(h)− Aj(g)1N\{i}(j)− a1{i}(j)|

)

≥ 0. (2.74)

Proof of Lemma 2.10. Throughout this proof assume without loss of generality that a <

Ai(g) and let q0, q1, . . . , qQ(g)+1 ∈ R satisfy for all j ∈ {0, 1, . . . , Q(g) + 1} that qj = qj(g).
In the following we distinguish between several cases:

(I) We first prove (2.74) in the case

Ai(g) < min{Ai−1(g), Ai+1(g)} (2.75)

(cf. Figure 2.9). Note that the fact that a < Ai(g) and the intermediate value theorem
assure that there exist u ∈ (qi−1, z), v ∈ (z, qi) which satisfy g(qi−2) + Ai−1(g)(u −
qi−2) = g(z) + a(u − z) and g(qi+1) + Ai+1(g)(v − qi+1) = g(z) + a(v − z). Let
h ∈ L satisfy for all x ∈ [0, qi−1] ∪ [qi+1, 1], y1 ∈ [qi−1, u], y2 ∈ [u, v], y3 ∈ [v, qi] that
h(x) = g(x), h(y1) = g(qi−1) + Ai−1(g)(y1 − qi−1), h(y2) = g(z) + a(y2 − z), and
h(y3) = g(qi) + Ai+1(g)(y3 − qi). Observe that Q(h) = Q(g), Ai(h) = a, and ∀ j ∈
{1, 2, . . . , Q(g) + 1}\{i} : Aj(h) = Aj(g). Furthermore, note that the assumption that

Ai(g) > a and the fact that ∀ x, y ∈ [0, 1] : | f (x)− f (y)| ≤ L|x − y| demonstrate for
all x ∈ [qi−1, z], y ∈ [z, qi] that g(x) ≤ h(x) ≤ f (x) and f (y) ≤ h(y) ≤ g(y). Hence,

we obtain
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy). This establishes (2.74)
in the case Ai(g) < min{Ai−1(g), Ai+1(g)}.

(II) Next we prove (2.74) in the case

max
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

< a (2.76)

(cf. Figure 2.10). Observe that the fact that Ai(g) > a proves that
max{Ai−1(g), Ai+1(g)} < a. Moreover, note that the fact that Ai(g) > a and the
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Figure 2.9: Case (I) in Lemma 2.10. The new function h ∈ L is linear on [qi−1, u] with slope Ai−1(g), linear on
[u, v] with slope a, linear on [v, qi] with slope Ai+1(g), and agrees with g outside of [qi−1, qi].
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Figure 2.10: Case (II) in Lemma 2.10. The new function h ∈ L is linear on [u, v] with slope a and agrees with
g outside of [u, v].

intermediate value theorem assure that there exist u ∈ (qi−2, qi−1), v ∈ (qi, qi+1)

which satisfy
g(u)−g(z)

u−z = g(v)−g(z)
v−z = a. Let h ∈ L satisfy for all x ∈ [0, u] ∪ [v, 1],

y ∈ [u, v] that h(x) = g(x) and h(y) = g(z) + a(y − z). Observe that the fact that
Ai−1(g) 6= a and the fact that Ai+1(g) 6= a show that Q(h) = Q(g), Ai(h) = a, and
∀ j ∈ {1, 2, . . . , Q(g) + 1}\{i} : Aj(h) = Aj(g). In addition, note that the assumption

that Ai(g) > a and the fact that ∀ x, y ∈ [0, 1] : | f (x)− f (y)| ≤ L|x − y| demonstrate
for all x ∈ [u, z], y ∈ [z, v] that g(x) ≤ h(x) ≤ f (x) and f (y) ≤ h(y) ≤ g(y). There-

fore, we obtain
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy). This establishes



J. Mach. Learn., 1(2):141-246 173

x

f (x)

g

qi−1 qi qi+1qi−2 z

h

u

f

Figure 2.11: Case (III) in Lemma 2.10. The new function h ∈ L is linear on [u, qi+1] with slope
g(qi+1)−g(z)

qi+1−z ≥ a

and agrees with g outside of [u, qi+1].

(2.74) in the case max
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

< a.

(III) Next we prove (2.74) in the case

(

Ai(g) > max{Ai−1(g), Ai+1(g)}
)

∧
(

max
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

≥ a
)

(2.77)

(cf. Figure 2.11). In the following we assume without loss of generality that
g(qi+1)−g(z)

qi+1−z ≥ g(qi−2)−g(z)
qi−2−z (cf. Lemma 2.7). Observe that the fact that Ai(g) >

max{Ai−1(g), Ai+1(g)} shows that

Ai(g) =
g(qi−1)− g(z)

qi−1 − z
>

g(qi+1)− g(z)

qi+1 − z
≥

g(qi−2)− g(z)

qi−2 − z
. (2.78)

The intermediate value theorem hence proves that there exists u ∈ [qi−2, qi−1) which

satisfies g(u) = g(z) +
[ g(qi+1)−g(z)

qi+1−z

]

(u − z). Let h ∈ L satisfy for all x ∈ [0, u] ∪

[qi+1, 1], y ∈ [u, qi+1] that h(x) = g(x) and h(y) = g(z) +
[ g(qi+1)−g(z)

qi+1−z

]

(y − z). Note

that Q(h) < Q(g). Furthermore, observe that the assumption that Ai(g) > a and
the fact that ∀ x, y ∈ [0, 1] : | f (x) − f (y)| ≤ L|x − y| demonstrate for all x ∈ [u, z],
y ∈ [z, qi+1] that g(x) ≤ h(x) ≤ f (x) and f (y) ≤ h(y) ≤ g(y). Therefore, we obtain
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy). This establishes (2.74) in the case
(

Ai(g) > max{Ai−1(g), Ai+1(g)}
)

∧
(

max
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

≥ a
)

.

(IV) Next we prove (2.74) in the case

(

max{Ai−1(g), Ai+1(g)} > Ai(g) > min{Ai−1(g), Ai+1(g)}
)

∧
(

min
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

≥ a
)

(2.79)
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Figure 2.12: Case (IV) in Lemma 2.10. The new function h ∈ L is linear on [qi−2, u] with slope
g(z)−g(qi−2)

z−qi−2
≥ a,

linear on [u, qi] with slope Ai+1(g), and agrees with g outside of [qi−2, qi].

(cf. Figure 2.12). In the following we assume without loss of generality that

Ai−1(g) < Ai(g) < Ai+1(g) (cf. Lemma 2.7). Note that the fact
g(qi−2)−g(z)

qi−2−z < Ai(g)

and the intermediate value theorem imply that there exists u ∈ (z, qi) which satis-

fies g(z) +
[ g(qi−2)−g(z)

qi−2−z

]

(u − z) = g(qi) + Ai+1(g)(u − qi). Let h ∈ L satisfy for all

x ∈ [0, qi−2] ∪ [qi, 1], y1 ∈ [qi−2, u], y2 ∈ [u, qi] that h(x) = g(x), h(y1) = g(qi−2) +
[ g(qi−2)−g(z)

qi−2−z

]

(y1 − qi−2), and h(y2) = g(qi) + Ai+1(g)(y2 − qi). Observe that

Q(h) < Q(g) and
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy). This establishes

(2.74) in the case
(

max{Ai−1(g), Ai+1(g)} > Ai(g) > min{Ai−1(g), Ai+1(g)}
)

∧
(

min
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

≥ a
)

.

(V) Finally, we prove (2.74) in the case

(

max{Ai−1(g), Ai+1(g)} > Ai(g) > min{Ai−1(g), Ai+1(g)}
)

∧
(

min
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

< a
)

(2.80)

(cf. Figure 2.13). In the following we assume without loss of generality that

Ai−1(g) < Ai(g) < Ai+1(g) (2.81)

(cf. Lemma 2.7). Note that (2.80) and (2.81) show that
g(qi−2)−g(z)

qi−2−z = min
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

< a. The intermediate value theorem therefore implies that there exist

u ∈ (qi−2, qi−1), v ∈ (z, qi) which satisfy
g(u)−g(z)

u−z = a and g(z) + a(v − z) = g(qi) +
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Figure 2.13: Case (V) in Lemma 2.10. The new function h ∈ L is linear on [u, v] with slope a, linear on [v, qi]
with slope Ai+1(g), and agrees with g outside of [v, qi].

Ai+1(g)(v − qi). Let h ∈ L satisfy for all x ∈ [0, u] ∪ [qi, 1], y1 ∈ [u, v], y2 ∈ [v, qi]
that h(x) = g(x), h(y1) = g(z) + a(y1 − z), and h(y2) = g(qi) + Ai+1(g)(y2 − qi).
Observe that Q(h) = Q(g), Ai(h) = a, and ∀ j ∈ {1, 2, . . . , Q(g) + 1}\{i} : Aj(h) =
Aj(g). Moreover, note that the fact that ∀ x, y ∈ [0, 1] : | f (x) − f (y)| ≤ L|x − y|

and the fact that a < Ai(g) demonstrate that
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y) −

f (y))2 µ(dy). This establishes (2.74) in the case
(

max{Ai−1(g), Ai+1(g)} > Ai(g) >

min{Ai−1(g), Ai+1(g)}
)

∧
(

min
{ g(qi+1)−g(z)

qi+1−z ,
g(qi−2)−g(z)

qi−2−z

}

< a
)

.

The proof of Lemma 2.10 is thus complete.

Next, we summarize Lemmas 2.8, 2.9, and 2.10 in the following corollary.

Corollary 2.3. Let L ∈ (0, ∞), f ∈ C([0, 1], R) satisfy for all x, y ∈ [0, 1] that | f (x)− f (y)| ≤
L|x− y|, let g ∈ L , i ∈ {1, 2, . . . , Q(g) + 1}, a ∈ R satisfy L ≤ |a| ≤ |Ai(g)| and aAi(g) > 0,
and let µ : B([0, 1]) → [0, ∞] be a finite measure (cf. Definitions 2.1, 2.2, and 2.3). Then there

exists h ∈ L such that
∫ 1

0 (h(y) − f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g),
and

(Q(g)− Q(h)− 1)
(

∑
Q(h)+1
j=1 |Aj(h)− Aj(g)1N\{i}(j)− a1{i}(j)|

)

≥ 0. (2.82)

Proof of Corollary 2.3. Throughout this proof assume without loss of generality4 that L ≤
a ≤ Ai(g). Observe that Lemma 2.8 establishes (2.82) in the case

[

∀ x ∈ (qi−1(g), qi(g)) : f (x) 6= g(x)
]

. (2.83)

4Otherwise we consider f x − f , g x −g, a x −a.
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Furthermore, note that Lemma 2.9 establishes (2.82) in the case
[

(∃ z ∈ (qi−1(g), qi(g)) : f (z) = g(z)) ∧ (i ∈ {1, Q(g) + 1})
]

. (2.84)

Moreover, observe that Lemma 2.10 establishes (2.82) in the case
[

(∃ z ∈ (qi−1(g), qi(g)) : f (z) = g(z)) ∧ (i /∈ {1, Q(g) + 1})
]

. (2.85)

The proof of Corollary 2.3 is thus complete.

The following two results are a consequence of Corollary 2.4 and induction.

Corollary 2.4. Let L ∈ (0, ∞), f ∈ C([0, 1], R) satisfy for all x, y ∈ [0, 1] that | f (x)− f (y)| ≤
L|x − y|, let g ∈ L , let A ⊆ {1, 2, . . . , Q(g) + 1} be a set, let a = (aj)j∈A : A → R satisfy

for all j ∈ A that L ≤ |aj| ≤ |Aj(g)| and aj Aj(g) > 0, and let µ : B([0, 1]) → [0, ∞] be a

finite measure (cf. Definitions 2.1, 2.2, and 2.3). Then there exists h ∈ L such that
∫ 1

0 (h(y) −

f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g), and

(Q(g)− Q(h)− 1)
(

∑
Q(h)+1
j=1 |Aj(h)− Aj(g)1N\A(j)− aj1A(j)|

)

≥ 0. (2.86)

Proof of Corollary 2.4. Note that induction and Corollary 2.3 establish (2.86). The proof of
Corollary 2.4 is thus complete.

Lemma 2.11. Let f ∈ C([0, 1], R) and let µ : B([0, 1]) → [0, ∞] be a finite measure. Then for all
g ∈ L there exists h ∈ L such that

Q(h) ≤ Q(g), Lip(h) ≤ Lip( f ), (2.87a)
∫ 1

0
(h(y)− f (y))2 µ(dy) ≤

∫ 1

0
(g(y)− f (y))2 µ(dy) (2.87b)

(cf. Definitions 2.1, 2.2, 2.3, and 2.4).

Proof of Lemma 2.11. Throughout this proof assume without loss of generality that 0 <

Lip( f ) < ∞ and let Q : L → N0 satisfy for all g ∈ L that

Q(g) = (Q(g) + 1)2 + #({i ∈ {1, 2, . . . , Q(g) + 1} : |Ai(g)| > Lip( f )}) . (2.88)

Observe that (2.88) assures for all g1, g2 ∈ L with Q(g1) < Q(g2) that

Q(g1) ≤ (Q(g1) + 1)2 + Q(g1) + 1 < (Q(g1) + 1)2 + 2(Q(g1) + 1) + 1

= (Q(g1) + 2)2 ≤ (Q(g2) + 1)2 ≤ Q(g2). (2.89)

Next we claim that for all k ∈ N0, g ∈ Q−1({k}) there exists h ∈ L such that

Q(h) ≤ Q(g), Lip(h) ≤ Lip( f ), (2.90a)
∫ 1

0
(h(y)− f (y))2 µ(dy) ≤

∫ 1

0
(g(y)− f (y))2 µ(dy). (2.90b)
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We now prove (2.90) by induction on k ∈ N0. For the base case k = 0 we note that
Q−1({0}) = ∅. This establishes (2.90) in the base case k = 0. For the induction step let
k ∈ N0 satisfy for all g ∈ Q−1({0, 1, . . . , k}) that there exists h ∈ L such that

Q(h) ≤ Q(g), Lip(h) ≤ Lip( f ), (2.91a)
∫ 1

0
(h(y)− f (y))2 µ(dy) ≤

∫ 1

0
(g(y)− f (y))2 µ(dy) (2.91b)

and let g ∈ Q−1({k + 1}) satisfy

Lip(g) > Lip( f ). (2.92)

Observe that Lemma 2.2 and (2.92) ensure that there exists i ∈ {1, 2, . . . , Q(g) + 1} which
satisfies

|Ai(g)| > Lip( f ). (2.93)

Note that (2.93) shows that there exists a ∈ R which satisfies

Lip( f ) = |a| ≤ |Ai(g)| and aAi(g) > 0. (2.94)

Observe that (2.94), the fact that Lip( f ) ∈ (0, ∞), and Corollary 2.3 demonstrate that there

exists g ∈ L which satisfies
∫ 1

0 (g(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y) − f (y))2 µ(dy), Q(g) ≤
Q(g), and

(Q(g)− Q(g)− 1)
(

∑
Q(g)+1
j=1 |Aj(g)− Aj(g)1N\{i}(j)− a1{i}(j)|

)

≥ 0. (2.95)

Note that (2.89) and (2.95) assure that Q(g) < Q(g) = k + 1. Hence, we obtain g ∈
Q−1({0, 1, . . . , k}). Combining this with (2.91) and (2.95) demonstrates that there exists
h ∈ L such that Q(h) ≤ Q(g) ≤ Q(g), Lip(h) ≤ Lip( f ), and

∫ 1
0 (h(y)− f (y))2 µ(dy) ≤

∫ 1
0 (g(y)− f (y))2 µ(dy) ≤

∫ 1
0 (g(y)− f (y))2 µ(dy). (2.96)

Induction thus establishes (2.90). Observe that (2.90) implies (2.87). The proof of
Lemma 2.11 is thus complete.

Lemma 2.11 is not yet sufficient to establish Proposition 2.2 since, as mentioned before,
not every piecewise linear function with at most h ∈ N breakpoints is representable by an
ANN with h hidden neurons. Thus we need to ensure that the linear relation for the slopes
(cf. Corollary 2.2) is also preserved by our inductive construction. This is the content of
Lemma 2.12, which is again a consequence of Corollary 2.3 and induction.

Lemma 2.12. Let f : [0, 1] → R be Lipschitz continuous and let µ : B([0, 1]) → [0, ∞] be a finite

measure. Then for all g ∈ L , k ∈ N, i1, i2, . . . , ik ∈ N with k
2 /∈ N, i1 < i2 < · · · < ik ≤

Q(g) + 1, and ∑
k
j=1(−1)j Aij

(g) = 0 there exists h ∈ L such that
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g), and

(Q(g)− Q(h)− 1)
(∣

∣∑
k
j=1(−1)j Amin{ij,Q(h)+1}(h)

∣

∣+ max{Lip(h)− Q(g)Lip( f ), 0}
)

≥ 0

(2.97)
(cf. Definitions 2.1, 2.2, and 2.3).
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Proof of Lemma 2.12. Throughout this proof assume without loss of generality that Lip( f ) >
0, let sgn: R → R satisfy for all x ∈ (0, ∞) that sgn(x) = 1, sgn(−x) = −1, and
sgn(0) = 0, and let Q : L → N0 satisfy for all g ∈ L that

Q(g) = (Q(g) + 1)2 + #
(

{i ∈ {1, 2, . . . , Q(g) + 1} : |Ai(g)| > Q(g)Lip( f )}
)

(2.98)

(cf. Definitions 2.1, 2.2, and 2.3). Note that (2.98) assures for all g1, g2 ∈ L with Q(g1) <
Q(g2) that

Q(g1) ≤ (Q(g1) + 1)2 + Q(g1) + 1 < (Q(g1) + 1)2 + 2(Q(g1) + 1) + 1

= (Q(g1) + 2)2 ≤ (Q(g2) + 1)2 ≤ Q(g2). (2.99)

We claim that for all n ∈ N0, g ∈ Q−1({n}), k ∈ N, i1, i2, . . . , ik ∈ N with k
2 /∈ N,

i1 < i2 < · · · < ik ≤ Q(g) + 1, and ∑
k
j=1(−1)j Aij

(g) = 0 there exists h ∈ L such that
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g), and

(Q(g)− Q(h)− 1)
(
∣

∣∑
k
j=1(−1)j Amin{ij,Q(h)+1}(h)

∣

∣+ max{Lip(h)− Q(g)Lip( f ), 0}
)

≥ 0.

(2.100)
We now prove (2.100) by induction on n ∈ N0. For the base case n = 0 observe that
Q−1({0}) = ∅. This establishes (2.100) in the base case n = 0. For the induction step

let n ∈ N0 satisfy for all g ∈ Q−1({0, 1, . . . , n}), k ∈ N, i1, i2, . . . , ik ∈ N with k
2 /∈ N,

i1 < i2 < · · · < ik ≤ Q(g) + 1, and ∑
k
j=1(−1)j Aij

(g) = 0 that there exists h ∈ L such that
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g), and

(Q(g)− Q(h)− 1)
(∣

∣∑
k
j=1(−1)j Amin{ij,Q(h)+1}(h)

∣

∣+ max{Lip(h)− Q(g)Lip( f ), 0}
)

≥ 0,

(2.101)
and5 let g ∈ Q−1({n + 1}), k ∈ N, i1, i2, . . . , ik ∈ N satisfy

k
2 /∈ N, i1 < i2 < · · · < ik ≤ Q(g) + 1, ∑

k
j=1(−1)j Aij

(g) = 0, (2.102)

and Lip(g) > Q(g)Lip( f ). We now prove that there exists h ∈ L such that
∫ 1

0 (h(y) −

f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(h) ≤ Q(g), and

(Q(g)− Q(h)− 1)
(∣

∣∑
k
j=1(−1)j Amin{ij,Q(h)+1}(h)

∣

∣+ max{Lip(h)− Q(g)Lip( f ), 0}
)

≥ 0.

(2.103)
Observe that Lemma 2.2 and the fact that Lip(g) > Q(g)Lip( f ) ensure that there exist
I ∈ {1, 2, . . . , Q(g) + 1}, s ∈ {−1, 1} which satisfy

sAI(g) = |AI(g)| > Q(g)Lip( f ). (2.104)

In the following we distinguish between the case I /∈ {i1, i2, . . . , ik} and the case I ∈
{i1, i2, . . . , ik}. We first prove (2.103) in the case

I /∈ {i1, i2, . . . , ik}. (2.105)

5Note that we could choose h = g in (2.103) if we would have Lip(g) ≤ Q(g)Lip( f ).
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Note that (2.104) and Corollary 2.3 assure that there exists g ∈ L which satisfies
∫ 1

0 (g(y)−

f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(g) ≤ Q(g), and

(Q(g)− Q(g)− 1)
(

∑
Q(g)+1
j=1 |Aj(g)− Aj(g)1N\{I}(j)− sQ(g)Lip( f )1{I}(j)|

)

≥ 0.

(2.106)
Moreover, observe that (2.102) ensures that Q(g) = n + 1. Combining this with (2.98),
(2.99), and (2.104) demonstrates that Q(g) < Q(g) = n + 1. Therefore, we obtain

g ∈ Q−1({0, 1, . . . , n}). (2.107)

In addition, note that (2.102), (2.105), and (2.106) show that Q(g) ≤ Q(g),
∫ 1

0 (g(y) −

f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), and

(Q(g)− Q(g)− 1)
∣

∣∑
k
j=1(−1)j Amin{ij,Q(g)+1}(g)

∣

∣ ≥ 0. (2.108)

Combining (2.101), (2.102), and (2.107) hence6 establishes (2.103) in the case I /∈
{i1, i2, . . . , ik}. In the next step we prove (2.103) in the case

I ∈ {i1, i2, . . . , ik}. (2.109)

Note that (2.109) demonstrates that there exist J ∈ {1, 2, . . . , k}, S ∈ {−1, 1} which
satisfy

iJ = I and S = s(−1)J = sgn((−1)J AiJ ) = sgn((−1)J AI). (2.110)

In the following let αv ∈ R, v ∈ {−1, 1}, satisfy for all v ∈ {−1, 1} that

αv = ∑j∈N∩[1,k], sgn((−1)j Aij
(g))=vS |Aij

(g)|. (2.111)

Observe that (2.102) and (2.111) ensure that

S (α1 − α−1) = Sα1 −Sα−1 = ∑v∈{−1,1} [vSαv]

= ∑v∈{−1,1} ∑j∈N∩[1,k], sgn((−1)j Aij
(g))=vS

[

vS|Aij
(g)|

]

= ∑v∈{−1,1} ∑j∈N∩[1,k], sgn((−1)j Aij
(g))=vS

[

vS|(−1)j Aij
(g)|

]

= ∑v∈{−1,1} ∑j∈N∩[1,k], sgn((−1)j Aij
(g))=vS

[

(−1)j Aij
(g)
]

= ∑
j∈N∩[1,k]

(−1)j Aij
(g) = 0. (2.112)

Hence, we obtain α1 = α−1. Next note that (2.110) and (2.111) assure that α1 ≥ |AI(g)|.
Combining this with (2.104) and the fact that α−1 = α1 demonstrates that

α−1 ≥
(

|AI(g)| − Q(g)Lip( f )
)

+ Q(g)Lip( f ) > Q(g)Lip( f ). (2.113)

6Observe that we can choose h = g in (2.103) in the case where Q(g) < Q(g).
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Therefore, we obtain that there exist l ∈ N, J1, J2, . . . , Jl ∈ N, r1, r2, . . . , rl ∈ [0, ∞) which
satisfy for all v ∈ {1, 2, . . . , l} that

J1 < J2 < · · · < Jl ≤ k, sgn((−1)Jv AiJv
(g)) = −S, |AiJv

(g)| − rv ≥ Lip( f ),
(2.114)

and r1 + r2 + . . . + rl = |AI(g)| − Q(g)Lip( f ). In the following let A ⊆ {1, 2, . . . , Q(g) +
1} satisfy

A = {iJ1
, iJ2

, . . . , iJl
} ∪ {I} (2.115)

and let a = (aj)j∈A : A → R satisfy for all v ∈ {1, 2, . . . , l} that

aiJv
=
(

|AiJv
| − rv

)

sgn(AiJv
) and aI = sQ(g)Lip( f ). (2.116)

Note that (2.114) and (2.116) ensure for all v ∈ {1, 2, . . . , l} that

aiJv
AiJv

(g) =
(

|AiJv
(g)| − rv

)

sgn(AiJv
(g))AiJv

(g) =
(

|AiJv
(g)| − rv

)

|AiJv (g)|

≥ Lip( f )|AiJv
(g)| ≥ Lip( f )(|AiJv

(g)| − rv) ≥ [Lip( f )]2 > 0. (2.117)

Next observe that (2.104) implies that |AI(g)| > Q(g)Lip( f ) ≥ 0. Hence, we obtain
AI(g) 6= 0. This and (2.102) prove that Q(g) > 0. Combining (2.104), (2.114), and (2.116)
therefore shows that

aIAI(g) =
[

sQ(g)Lip( f )
][

s−1|AI(g)|
]

= |AI(g)|Q(g)Lip( f )

> [Q(g)Lip( f )]2 > 0. (2.118)

This and (2.117) assure for all j ∈ A that

aj Aj(g) > 0. (2.119)

Furthermore, note that (2.104), (2.114), (2.116), and the fact that Q(g) ≥ 1 demonstrate for
all v ∈ {1, 2, . . . , l} that

Lip( f ) ≤ |AiJv
| − rv = |aiJv

| ≤ |AiJv
|, (2.120a)

Lip( f ) ≤ Q(g)Lip( f ) = |aJ| < |AJ(g)|. (2.120b)

Therefore, we obtain for all j ∈ A that Lip( f ) ≤ |aj| ≤ Aj(g). Combining this with
(2.119) enables us to apply Corollary 2.4 to obtain that there exists g ∈ L which satisfies
∫ 1

0 (g(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(g) ≤ Q(g), and

(Q(g)− Q(g)− 1)
(

∑
Q(g)+1
j=1 |Aj(g)− Aj(g)1N\A(j)− aj1A(j)|

)

≥ 0. (2.121)

Observe that (2.98), (2.99), (2.104), (2.116), and (2.121) show that Q(g) < Q(g). This and
(2.102) show that Q(g) ≤ Q(g)− 1 = (n + 1)− 1 = n. Hence, we obtain

g ∈ Q−1({0, 1, . . . , n}). (2.122)
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Moreover, note that (2.102), (2.116), (2.121), and the fact that r1 + r2 + . . . + rl = |AJ(g)| −

Q(g)Lip( f ) assure that
∫ 1

0 (g(y)− f (y))2 µ(dy) ≤
∫ 1

0 (g(y)− f (y))2 µ(dy), Q(g) ≤ Q(g),
and

(Q(g)− Q(g)− 1) |∑
k
j=1(−1)j Amin{ij,Q(g)+1}(g)| ≥ 0. (2.123)

Combining (2.101), (2.102), and (2.108) hence7 establishes (2.103) in the case I ∈
{i1, i2, . . . , ik}. Induction thus proves (2.100). Note that (2.100) establishes (2.97). The
proof of Lemma 2.12 is thus complete.

2.5 Structure preserving approximations for realization functions of shallow
ANNs

In this subsection we employ Lemma 2.11 and Lemma 2.12 above to prove in Proposi-
tion 2.2 the announced result about the existence of a better ANN approximation which is
additionally Lipschitz with a constant depending only on the width h ∈ N and the target
function f .

Lemma 2.13. Assume Setting 2.1 and let θ ∈ Rd satisfy (h− Q(N θ)− 1)max{Lip(N θ)−
hL, 0} ≥ 0 (cf. Definitions 2.1 and 2.2). Then there exists ϑ ∈ Rd such that

L(ϑ) ≤ L(θ), Q(N ϑ) ≤ Q(N θ), and Lip(N ϑ) ≤ hL (2.124)

(cf. Definition 2.4).

Proof of Lemma 2.13. In the following we distinguish between the case Q(N θ) = h and the

case Q(N θ) < h. We first prove (2.124) in the case

Q(N θ) = h. (2.125)

Observe that (2.125) and the assumption that (h−Q(N θ)− 1)max{Lip(N θ)−hL, 0} ≥ 0

ensure that −max{Lip(N θ) − hL, 0} ≥ 0. Therefore, we obtain Lip(N θ) ≤ hL. This

establishes (2.124) in the case Q(N θ) = h. In the next step we prove (2.124) in the case

Q(N θ) < h. (2.126)

Note that (2.126) and Lemma 2.11 prove that there exists h ∈ L which satisfies Q(h) ≤
Q(N θ) ≤ h− 1, Lip(h) ≤ L ≤ hL, and

∫ 1

0
(h(y)− f (y))2 µ(dy) ≤

∫ 1

0
(N θ(y)− f (y))2 µ(dy) = L(θ). (2.127)

Observe that Lemma 2.4 and the fact that Q(h) ≤ h − 1 show that there exists ϑ ∈ Rd

which satisfies
N ϑ = h. (2.128)

Note that (2.127) and (2.128) ensure that L(ϑ) ≤ L(θ), Q(N ϑ) = Q(h) ≤ Q(N θ), and
Lip(N ϑ) = Lip(h) ≤ hL. This establishes (2.129) in the case Q(N θ) < h. The proof of
Lemma 2.13 is thus complete.

7Observe that we can choose h = g in (2.103) in the case where Q(g) < Q(g).
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Proposition 2.2. Assume Setting 2.1 and let θ ∈ Rd. Then there exists ϑ ∈ Rd such that

L(ϑ) ≤ L(θ), Q(N ϑ) ≤ Q(N θ), and Lip(N ϑ) ≤ hL (2.129)

(cf. Definitions 2.1 and 2.4).

Proof of Proposition 2.2. Observe that Lemma 2.3 proves that N θ ∈ L and Q(N θ) ≤ h (cf.

Definition 2.2). In the following we distinguish between the case Q(N θ) < h and the case

Q(N θ) = h. We first prove (2.129) in the case

Q(N θ) < h. (2.130)

Note that (2.130) and Lemma 2.13 show that there exists ϑ ∈ Rd such that L(ϑ) ≤ L(θ),
Q(N ϑ) ≤ Q(N θ), and Lip(N ϑ) ≤ hL. This establishes (2.129) in the case Q(N θ) < h.
In the next step we prove (2.129) in the case

Q(N θ) = h. (2.131)

Observe that (2.131) and Corollary 2.2 imply that there exists k ∈ N, i1, i2, . . . , ik ∈ N

which satisfy k
2 /∈ N, 1 ≤ i1 < i2 < · · · < ik ≤ h + 1, and ∑

k
j=1(−1)j Aij

(N θ) (cf.

Definition 2.3). Combining this with Lemma 2.12 ensures that there exists h ∈ L which
satisfies

∫ 1
0 (h(y)− f (y))2 µ(dy) ≤

∫ 1
0 (N

θ(y)− f (y))2 µ(dy) = L(θ), Q(h) ≤ Q(N θ),
(2.132)

and

(Q(N θ)− Q(h)− 1)
(
∣

∣∑
k
j=1(−1)j Aij

(h)
∣

∣+ max{Lip(h)− Q(N θ)L, 0}
)

≥ 0. (2.133)

Hence, we obtain that
∫ 1

0 (h(y)− f (y))2 µ(dy) ≤ L(θ), Q(h) ≤ h, (2.134)

(h− Q(h)− 1)
(
∣

∣∑
k
j=1(−1)j Aij

(h)
∣

∣+ max{Lip(h)− hL, 0}
)

≥ 0. (2.135)

Therefore, we get that (h− Q(h)− 1)
∣

∣∑
k
j=1(−1)j Aij

(h)
∣

∣ ≥ 0. Combining Corollary 2.2 and

(2.134) hence shows that there exist ψ ∈ Rd which satisfies

N ψ = h. (2.136)

Note that (2.134), (2.135), and (2.136) demonstrate that

L(ψ) ≤ L(θ), Q(N ψ) ≤ h, and (h− Q(N ψ)− 1)max{Lip(N ψ)− hL, 0} ≥ 0.
(2.137)

Lemma 2.13 hence implies that there exists ϑ ∈ Rd which satisfies

L(ϑ) ≤ L(ψ) ≤ L(θ), Q(N ϑ) ≤ Q(N ψ) ≤ h = Q(N θ), and Lip(N ϑ) ≤ hL.
(2.138)

This proves (2.129) in the case Q(N θ) = h. The proof of Proposition 2.2 is thus complete.
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As a simple consequence of Proposition 2.2 we obtain in Corollary 2.5 below that the
new network parameter vector ϑ ∈ Rd can be chosen in such a way that in addition to the

Lipschitz constant also the supremum norm of its realization function N ϑ is bounded by
a constant depending only on h and the target function f .

Corollary 2.5. Assume Setting 2.1 and let θ ∈ Rd. Then there exists ϑ ∈ Rd such that L(ϑ) ≤
L(θ), Q(N ϑ) ≤ Q(N θ), supx∈[0,1]|N

ϑ(x)| ≤ hL + supx∈[0,1]| f (x)|, and Lip(N ϑ) ≤ hL

(cf. Definition 2.4).

Proof of Corollary 2.5. Note that Proposition 2.2 establishes that there exist ψ ∈ Rd, r ∈
[0, ∞) which satisfy

L(ψ) ≤ L(θ), Q(N ψ) ≤ Q(N θ), (2.139a)

Lip(N ψ) ≤ hL, r = inf
x∈[0,1]

|N ψ(x)− f (x)|. (2.139b)

Observe that (2.139) assures that there exist y ∈ [0, 1], k ∈ {−1, 1} which satisfy N ψ(y)−
f (y) = kr. In the following let ϑ ∈ Rd satisfy for all i ∈ {1, 2, . . . , 3h} that ϑi = ψi and

ϑd = ψd − kr. Note that the fact that for all x ∈ [0, 1] it holds that N ϑ(x) = N ψ(x)− kr
and (2.139) show that Lip(N ϑ) = Lip(N ψ) ≤ hL and Q(N ϑ) = Q(N ψ) ≤ Q(N θ). The

fact that N ϑ(y) = N ψ(y)− kr = f (y) and the triangle inequality therefore imply for all
z ∈ [0, 1] that

|N ϑ(z)| ≤ |N ϑ(y)|+ |N ϑ(z)−N ϑ(y)| = | f (y)|+ |N ϑ(z)−N ϑ(y)|

≤ supx∈[0,1]| f (x)|+ hL|z − y| ≤ supx∈[0,1]| f (x)|+ hL. (2.140)

It remains to prove that L(ϑ) ≤ L(ψ). For this we assume without loss of generality that

r > 0. (2.141)

Observe that (2.139), (2.141), and the fact that [0, 1] ∋ x 7→ N ψ(x)− f (x) ∈ R is continu-
ous imply for all x ∈ [0, 1] that k(N ψ(x)− f (x)) ≥ r. Hence, we obtain for all x ∈ [0, 1]
that

|N ϑ(x)− f (x)| = |N ψ(x)− f (x)− kr| = |k(N ψ(x)− f (x))− r|

= k(N ψ(x)− f (x))− r ≤ k(N ψ(x)− f (x))

≤ |N ψ(x)− f (x)|. (2.142)

This demonstrates that L(ϑ) ≤ L(ψ). The proof of Corollary 2.5 is thus complete.

2.6 Existence of global minima for shallow ANNs

In this subsection we establish in Proposition 2.3 the existence of a global minimizer of the
risk function under the assumptions of Setting 2.1. For the proof, we combine Corollary 2.5
with the Arzelà–Ascoli theorem to extract a convergent subsequence from a minimizing
sequence. Due to the fact that the set of realization functions of shallow ReLU ANNs with
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fixed architecture is closed in the set of continuous functions with respect to the supre-
mum norm (cf. Petersen et al. [61, Theorem 3.8]) the limit is again equal to the realization
function of a suitable ANN.

Proposition 2.3. Assume Setting 2.1. Then there exists θ ∈ Rd such that L(θ) = infϑ∈Rd L(ϑ),
Lip(N θ) ≤ hL, and supx∈[0,1]|N

θ(x)| ≤ hL + supx∈[0,1]| f (x)| (cf. Definition 2.4).

Proof of Proposition 2.3. Note that there exists φ = (φn)n∈N : N → Rd which satisfies

lim supn→∞ L(φn) = infϑ∈Rd L(ϑ). (2.143)

Observe that Corollary 2.5 implies that there exists ψ = (ψn)n∈N : N → Rd which satisfies
for all n ∈ N that

L(ψn) ≤ L(φn), supx∈[0,1]|N
ψn(x)| ≤ hL + supx∈[0,1]| f (x)|, and Lip(N ψn) ≤ hL.

(2.144)
Note that (2.143) and (2.144) show that

infϑ∈Rd L(ϑ) ≤ lim supn→∞ L(ψn) ≤ lim supn→∞ L(φn) = infϑ∈Rd L(ϑ). (2.145)

Hence, we obtain that limn→∞ L(ψn) = infϑ∈Rd L(ϑ). Furthermore, observe that (2.144)
and the Arzela–Ascoli theorem demonstrate that there exist g ∈ C([0, 1], R) and a strictly
increasing k : N → N such that

lim supn→∞ supx∈[0,1]|N
ψk(n)(x)− g(x)| = 0. (2.146)

Next note that Petersen et al. [61, Theorem 3.8] assures that {h ∈ C([0, 1], R) : (∃ ϑ ∈
Rd : N ϑ = h)} is a closed subset of C([0, 1], R) with respect to the supremum norm on
C([0, 1], R). Combining this with (2.146) implies that there exists θ ∈ Rd which satisfies

N θ = g. (2.147)

Observe that (2.146), (2.147), and Lebesgue’s theorem of dominated convergence ensure
that

L(θ) =
∫ 1

0
(N θ(y)− f (y))2 µ(dy) =

∫ 1

0
(g(y)− f (y))2 µ(dy)

=
∫ 1

0

[

lim
n→∞

(N ψk(n)(y)− f (y))2
]

µ(dy) = lim
n→∞

[

∫ 1

0
(N ψk(n)(y)− f (y))2 µ(dy)

]

= lim
n→∞

L(ψk(n)) = inf
ϑ∈Rd

L(ϑ). (2.148)

Furthermore, note that (2.144), (2.146), and (2.147) demonstrate that supx∈[0,1]|N
θ(x)| ≤

hL + supx∈[0,1]| f (x)| and Lip(N θ) ≤ hL. The proof of Proposition 2.3 is thus complete.

Proposition 2.3 is formulated only for the input domain [0, 1]. In Theorem 2.2 we gen-
eralize this result to a general input interval [a, b] ⊆ R by employing a suitable coordinate
transformation.
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Theorem 2.2. Let h, d ∈ N, L, a ∈ R, b ∈ (a, ∞), f ∈ C([a, b], R) satisfy for all x, y ∈ [a, b]
that d = 3h+ 1 and | f (x)− f (y)| ≤ L|x − y|, let µ : B([a, b]) → [0, ∞] be a finite measure, for
every θ = (θ1, . . . , θd) ∈ Rd let N θ : R → R satisfy for all x ∈ R that

N θ(x) = θd + ∑
h
j=1 θ2h+j max{θh+j + θjx, 0}, (2.149)

and let L : Rd → R satisfy for all θ ∈ Rd that L(θ) =
∫ b

a ( f (x) − N θ(x))2 µ(dx). Then

there exists θ ∈ Rd such that L(θ) = infϑ∈Rd L(ϑ), supx∈[a,b]|N
θ(x)| ≤ hL(b − a) +

supx∈[a,b]| f (x)|, and

supx,y∈[a,b],x 6=y

[ |N θ(x)−N θ(y)|
|x−y|

]

≤ hL. (2.150)

Proof of Theorem 2.2. Throughout this proof let f : [0, 1] → [a, b] and F : Rd → Rd satisfy for
all x ∈ [0, 1], θ = (θ1, . . . , θd) ∈ Rd that f(x) = a + (b − a)x and

F(θ) = ((b − a)θ1, . . . , (b − a)θh, θh+1 + aθ1, . . . , θ2h + aθh, θ2h+1, . . . , θ3h, θ3h+1), (2.151)

let g ∈ C([0, 1], R) satisfy for all x ∈ [0, 1] that g(x) = f (f(x)), and let ν : B([0, 1]) →
[0, ∞] satisfy for all E ∈ B([0, 1]) that ν(E) = µ(f(E)). Observe that f and F are bijective.
Moreover, note that for all x ∈ [0, 1], θ = (θ1, . . . , θd) ∈ Rd it holds that

N F(θ)(x) = θd + ∑
h
j=1 θ2h+j max{(b − a)θjx + θh+j + aθj, 0}

= θd + ∑
h
j=1 θ2h+j max{θjf(x) + θh+j, 0} = N θ(f(x)). (2.152)

In addition, observe that for all x, y ∈ [0, 1] we have that

|g(x)− g(y)| = | f (f(x))− f (f(y))| ≤ L|f(x)− f(y)| = L(b − a)|x − y|. (2.153)

Proposition 2.3 hence demonstrates that there exists ψ ∈ Rd which satisfies Lip(N ψ) ≤
hL(b − a), supx∈[0,1]|N

ψ(x)| ≤ hL(b − a) + supx∈[0,1]|g(x)|, and

∫ 1

0
(N ψ(x)− g(x))2 ν(dx) = inf

ϑ∈Rd

[

∫ 1

0
(N ϑ(x)− g(x))2 ν(dx)

]

(2.154)

(cf. Definition 2.4). In the following let θ ∈ Rd satisfy θ = F−1(ψ). Note that (2.152) and
the integral transformation theorem assure for all ϑ ∈ Rd that

L(ϑ) =
∫ b

a
(N ϑ(x)− f (x))2 µ(dx) =

∫ 1

0
(N ϑ(f(x))− f (f(x)))2 ν(dx)

=
∫ 1

0
(N F(ϑ)(x)− g(x))2 ν(dx). (2.155)

Combining this with (2.154) and the fact that F is bijective shows that

L(θ) =
∫ 1

0
(N ψ(x)− g(x))2 ν(dx) = inf

ϑ∈Rd

[

∫ 1

0
(N ϑ(x)− g(x))2 ν(dx)

]

= inf
ϑ∈Rd

[

∫ 1

0
(N F(ϑ)(x)− g(x))2 ν(dx)

]

= inf
ϑ∈Rd

L(ϑ). (2.156)
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In addition, observe that (2.152) ensures for all x ∈ [a, b] that

|N θ(x)| = |N ψ(f−1(x))| ≤ hL(b − a) + supy∈[0,1]|g(y)|

= hL(b − a) + supy∈[a,b]| f (y)|. (2.157)

Finally, note that (2.152) demonstrates for all x, y ∈ [a, b] that

|N θ(x)−N θ(y)| = |N ψ(f−1(x))−N ψ(f−1(y))| ≤ hL(b − a)|f−1(x)− f−1(y)|

= hL|x − y|. (2.158)

The proof of Theorem 2.2 is thus complete.

2.7 Existence of regular global minima for shallow ANNs

In the final result of this section, Corollary 2.6, we strengthen Theorem 2.2 by showing that
there also exists a global minimizer of the risk function which admits a neighborhood on
which the risk function is continuously differentiable. Furthermore, the gradient on this
neighborhood can be obtained from a sequence of approximate realization functions using
suitable differentiable approximations of the ReLU function, as outlined in the introduc-
tion. The proof relies on regularity results from our previous article Eberle et al. [28].

Corollary 2.6. Let h, d ∈ N, L, a ∈ R, b ∈ (a, ∞), f ∈ C([a, b], R) satisfy for all x, y ∈ [a, b]
that d = 3h+ 1 and | f (x)− f (y)| ≤ L|x− y|, let p : [a, b] → [0, ∞) be bounded and measurable,
let Rr : R → R, r ∈ N ∪ {∞}, satisfy for all x ∈ R that (∪r∈N{Rr}) ⊆ C1(R, R), R∞(x) =
max{x, 0}, supr∈N supy∈[−|x|,|x|] |(Rr)′(y)| < ∞, and

lim supr→∞(|Rr(x)−R∞(x)|+ |(Rr)
′(x)− 1(0,∞)(x)|) = 0, (2.159)

for every r ∈ N ∪ {∞} let Lr : Rd → R satisfy for all θ = (θ1, . . . , θd) ∈ Rd that

Lr(θ) =
∫ b

a ( f (x)− θd − ∑
h
j=1 θ2h+j[Rr(θh+j + θjx)])

2 p(x)dx, (2.160)

let U ⊆ Rd satisfy

U =
{

θ = (θ1, . . . , θd) ∈ Rd :
(

∀ i ∈ {1, 2, . . . , h} : |θi|+ |θh+i| > 0
)}

, (2.161)

and let G : Rd → Rd satisfy for all θ ∈ {ϑ ∈ Rd : ((∇Lr)(ϑ))r∈N is convergent} that G(θ) =
limr→∞(∇Lr)(θ). Then

(i) it holds that U is open,

(ii) it holds that (L∞)|U ∈ C1(U, R),

(iii) it holds that U ∋ θ 7→ (∇L∞)(θ) ∈ Rd is locally Lipschitz continuous,

(iv) it holds for all θ ∈ U that (∇L∞)(θ) = G(θ), and
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(v) it holds that there exists θ ∈ U such that L∞(θ) = infϑ∈Rd L∞(ϑ), supx∈[a,b]|N
θ(x)| ≤

hL(b − a) + supx∈[a,b]| f (x)|, and supx,y∈[a,b],x 6=y(|x − y|−1|N θ(x)−N θ(y)|) ≤ hL.

Proof of Corollary 2.6. Throughout this proof for every θ = (θ1, . . . , θd) ∈ Rd, r ∈ N ∪ {∞}
let N θ

r : R → R satisfy for all x ∈ R that

N θ
r (x) = θd + ∑

h
j=1 θ2h+j[Rr(θh+j + θjx)]. (2.162)

Observe that (2.161) proves item (i). Note that Eberle et al. [28, Proposition 2.3] estab-
lishes items (ii) and (iv). Observe that Eberle et al. [28, Corollary 2.7] and item (iv) prove
item (iii). Note that Theorem 2.2 (applied with8 µ x (B([a, b]) ∋ E 7→

∫

E p(x)dx ∈
[0, ∞]) in the notation of Theorem 2.2) proves that there exists ψ ∈ Rd which satis-
fies supx∈[a,b]|N

ψ(x)| ≤ hL(b − a) + supx∈[a,b]| f (x)|, supx,y∈[a,b],x 6=y(|x − y|−1|N ψ(x)−

N ψ(y)|) ≤ hL, and
L∞(ψ) = infϑ∈Rd L∞(ϑ). (2.163)

In the following let θ = (θ1, . . . , θd) satisfy for all i ∈ N ∩ ([1, h] ∪ (2h, d]), j ∈ N ∩ (h, 2h]
that

θi = ψi and θj = ψj − 1{0}(|ψj−h|+ |ψj|). (2.164)

Observe that (2.164) shows for all i ∈ {1, 2, . . . , h}, x ∈ R that max{θh+i + θix, 0} =

max{ψh+i + ψix, 0}. Therefore, we obtain for all x ∈ R that N θ
∞ (x) = N

ψ
∞ (x). Combining

this with (2.163) establishes item (v). The proof of Corollary 2.6 is thus complete.

3 Regularity analysis for generalized gradients in the training of

deep ANNs

In this section we introduce in Setting 3.1 in Subsection 3.1 below our mathematical frame-
work for deep ReLU ANNs. As in [13, 36, 41] we approximate the ReLU activation func-
tion R∞ : R → R through continuously differentiable functions Rr : R → R, r ∈ [1, ∞),
in order to define an appropriate generalized gradient G : Rd → Rd of the risk function
L∞ : Rd → R; see (3.3) and (3.6) in Setting 3.1.

In Proposition 3.1 in Subsection 3.2 below (explicit representation and pointwise ap-
proximations for G), in Lemma 3.1 in Subsection 3.3 below (local Lipschitz continuity of
L∞), and in Lemma 3.2 in Subsection 3.4 below (uniform local boundedness for ∇Lr , r ∈
[1, ∞)) we then state several important regularity properties of the risk function L : Rd →
R and its generalized gradient function G : Rd → Rd. Proposition 3.1 is proved in Hutzen-
thaler et al. [36, Theorem 2.9], Lemma 3.1 follows, e.g., from Hutzenthaler et al. [36,
Lemma 2.10], and Lemma 3.2 is a consequence from Hutzenthaler et al. [36, Lemma 3.6].

In Corollary 3.1 in Subsection 3.4 we show that the risk function L∞ : Rd → R is weakly
differentiable with the generalized gradient function G : Rd → Rd serving as a weak gra-
dient function.

8Here and in the remainder of this article, when applying another theorem/lemma/proposition we use the notation x

to indicate which values are assigned to the variables in the applied result. In this particular case, Theorem 2.2, where µ is
an arbitrary finite measure on [a, b], is applied with the specific measure B([a, b]) ∋ E 7→

∫

E p(x)dx ∈ [0, ∞].



J. Mach. Learn., 1(2):141-246 188

In Proposition 3.2 in Subsection 3.5 below we establish that the risk function L∞ : Rd →
R is differentiable Lebesgue almost everywhere with its gradients agreeing Lebesgue al-
most everywhere with the generalized gradient function G : Rd → Rd. Our proof of
Proposition 3.2 relies on Lemma 3.1, Corollary 3.1, and well-known results on weak deriva-
tives of locally Lipschitz continuous functions (cf. Evans [29]).

In Subsection 3.6 below we gather several known notions and lemmas regarding Fréchet
subdifferentials. In particular, in the scientific literature Definition 3.1 can be found, e.g.,
as Rockafellar & Wets [63, Definition 8.3] and Bolte et al. [10, Definition 2.10], items (iii),
(iv), and (v) in Lemma 3.3 are proved, e.g., as [63, Theorem 8.6 and Exercise 8.8], and
Lemma 3.4 is a reformulation of the well-known fact that the limiting Fréchet subdifferen-
tial of a continuous function has a closed graph (see, e.g., [63, Proposition 8.7]).

Finally, in Proposition 3.3 in Subsection 3.9 below (the main result of this section) we es-
tablish that for every ANN parameter vector θ ∈ Rd it holds that the generalized gradient
G(θ) is a limiting subgradient of the risk function L∞ at θ. Our proof of Proposition 3.3
relies on Proposition 3.2, on Lemma 3.3, as well as on the continuity type result for the
generalized gradient function in Lemma 3.7 in Subsection 3.8. Our proof of Lemma 3.7, in
turn, is based on local underestimate type result in Lemma 3.5 in Subsection 3.7 as well as
on the conditional continuity result for the generalized gradient function in Lemma 3.6 in
Subsection 3.8 below.

3.1 Mathematical framework for deep ANNs with ReLU activation

Setting 3.1. Let a ∈ R, b ∈ [a, ∞), ∈ (0, ∞), ∈ (, ∞), (ℓk)k∈N0
⊆ N, L, d ∈ N satisfy d =

∑
L
k=1 ℓk(ℓk−1 + 1), for every θ = (θ1, . . . , θd) ∈ Rd let wk,θ = (wk,θ

i,j )(i,j)∈{1,...,ℓk}×{1,...,ℓk−1}
∈

Rℓk×ℓk−1 , k ∈ N, and bk,θ = (bk,θ
1 , . . . , bk,θ

ℓk
) ∈ Rℓk , k ∈ N, satisfy for all k ∈ {1, . . . , L},

i ∈ {1, . . . , ℓk}, j ∈ {1, . . . , ℓk−1} that

wk,θ
i,j = θ

(i−1)ℓk−1+j+∑
k−1
h=1 ℓh(ℓh−1+1)

and bk,θ
i = θ

ℓkℓk−1+i+∑
k−1
h=1 ℓh(ℓh−1+1)

, (3.1)

for every k ∈ N, θ ∈ Rd let Aθ
k = (Aθ

k,1, . . . ,Aθ
k,ℓk

) : Rℓk−1 → Rℓk satisfy for all x ∈ Rℓk−1

that
Aθ

k(x) = bk,θ +wk,θ x, (3.2)

let Rr : R → R, r ∈ [1, ∞], satisfy for all r ∈ [1, ∞), x ∈ (−∞, r−1], y ∈ R, z ∈ [r−1, ∞) that

Rr ∈ C1(R, R), Rr(x) = 0, 0 ≤ Rr(y) ≤ R∞(y) = max{y, 0}, and Rr(z) = z,
(3.3)

assume supr∈[1,∞) supx∈R |(Rr)′(x)| < ∞, for every r ∈ [1, ∞], k ∈ N let Mr,k : Rℓk → Rℓk

satisfy for all x = (x1, . . . , xℓk
) ∈ Rℓk that

Mr,k(x) = (Rr(x1), . . . ,Rr(xℓk
)), (3.4)
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for every θ ∈ Rd let N k,θ
r = (N k,θ

r,1 , . . . ,N k,θ
r,ℓk

) : Rℓ0 → Rℓk , k ∈ N, r ∈ [1, ∞], and X k,θ
i ⊆

Rℓ0 , k, i ∈ N, satisfy for all k ∈ N, r ∈ [1, ∞], i ∈ {1, . . . , ℓk} that

N 1,θ
r = Aθ

1, N k+1,θ
r = Aθ

k+1 ◦Mr1/k,k ◦ N
k,θ
r , and X k,θ

i = {x ∈ [a, b]ℓ0 : N k,θ
∞,i(x) > 0},

(3.5)
let f = ( f1, . . . , fℓL

) : [a, b]ℓ0 → RℓL be measurable, let µ : B([a, b]ℓ0) → [0, ∞] be a finite

measure, for every r ∈ [1, ∞] let Lr : Rd → R satisfy for all θ ∈ Rd that

Lr(θ) =
∫

[a,b]ℓ0‖N
L,θ
r (x)− f (x)‖2 µ(dx), (3.6)

and let G = (G1, . . . ,Gd) : Rd → Rd satisfy for all θ ∈ {ϑ ∈
Rd : ((∇Lr)(ϑ))r∈[1,∞) is convergent} that G(θ) = limr→∞(∇Lr)(θ).

3.2 Explicit representations for the generalized gradient function

In Proposition 3.1 we show that the approximating sequence of gradients (∇Lr)(θ), r ∈
[1, ∞), in Setting 3.1 converges for every θ ∈ Rd. Furthermore, we derive in items (iii)
and (iv) explicit formulae for the limit G(θ). This explicit representation of G agrees
with the standard generalized gradient obtained by formally defining the derivative of
the ReLU as the left derivative 1(0,∞) and applying the chain rule.

Proposition 3.1. Assume Setting 3.1 and let θ = (θ1, . . . , θd) ∈ Rd. Then

(i) it holds for all r ∈ [1, ∞) that Lr ∈ C1(Rd, R),

(ii) it holds that lim supr→∞ (|Lr(θ)−L∞(θ)|+ ‖(∇Lr)(θ)− G(θ)‖) = 0,

(iii) it holds for all k ∈ {1, . . . , L}, i ∈ {1, . . . , ℓk}, j ∈ {1, . . . , ℓk−1} that

G
(i−1)ℓk−1+j+∑

k−1
h=1 ℓh(ℓh−1+1)

(θ)

= ∑
vk,vk+1,...,vL∈N,

∀ w∈N∩[k,L] : vw≤ℓw

∫

[a,b]ℓ0
2
[

R∞(N
max{k−1,1},θ
∞,j (x))1(1,L](k) + xj1{1}(k)

]

·
[

1{i}(vk)
][

N L,θ
∞,vL

(x)− fvL
(x)
][

∏
L
n=k+1

(

w
n,θ
vn,vn−1

1X n−1,θ
vn−1

(x)
)

]

µ(dx), (3.7)

(iv) it holds for all k ∈ {1, . . . , L}, i ∈ {1, . . . , ℓk} that

G
ℓkℓk−1+i+∑

k−1
h=1 ℓh(ℓh−1+1)

(θ)

= ∑
vk,vk+1,...,vL∈N,

∀ w∈N∩[k,L] : vw≤ℓw

∫

[a,b]ℓ0
2
[

1{i}(vk)
]

·
[

N L,θ
∞,vL

(x)− fvL
(x)
][

∏
L
n=k+1

(

wn,θ
vn,vn−1

1X n−1,θ
vn−1

(x)
)

]

µ(dx). (3.8)

Proof of Proposition 3.1. Note that [36, Items (i), (iv), (v), and (vi) in Theorem 2.9] establishes
items (i), (ii), (iii), and (iv) The proof of Proposition 3.1 is thus complete.
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3.3 Local Lipschitz continuity of the risk function

Lemma 3.1. Assume Setting 3.1 and let K ⊆ Rd be compact. Then there exists C ∈ R such that
for all θ, ϑ ∈ K it holds that

|L∞(θ)−L∞(ϑ)|+
(

supx∈[a,b]ℓ0‖N
L,θ
∞ (x)−N L,ϑ

∞ (x)‖
)

≤ C‖θ − ϑ‖. (3.9)

Proof of Lemma 3.1. Observe that, e.g., [36, Lemma 2.10] establishes (3.9). The proof of
Lemma 3.1 is thus complete.

3.4 Weak differentiability properties of the risk function

Lemma 3.2. Assume Setting 3.1 and let K ⊆ Rd be non-empty and compact. Then

supθ∈K supr∈[1,∞)(|Lr(θ)|+ |L∞(θ)|+ ‖(∇Lr)(θ)‖+ ‖G(θ)‖) < ∞. (3.10)

Proof of Lemma 3.2. Note that [36, Lemma 3.6] and item (i) in Proposition 3.1 show
for all s ∈ (0, ∞) that supθ∈{ϑ∈Rd : ‖ϑ‖≤s} supr∈[1,∞)‖(∇Lr)(θ)‖ < ∞. The fun-

damental theorem of calculus and the fact that for all r ∈ [1, ∞) it holds
that Lr(0) = L∞(0) hence demonstrate that for all s ∈ (0, ∞) we have that
supθ∈{ϑ∈Rd : ‖ϑ‖≤s} supr∈[1,∞)(|Lr(θ)|+ ‖(∇Lr)(θ)‖) < ∞. Combining this with item (ii)

in Proposition 3.1 establishes (3.10). The proof of Lemma 3.2 is thus complete.

As a consequence of Proposition 3.1 and the uniform boundedness result in Lemma 3.2
we obtain in Corollary 3.1 that the generalized gradient G serves as a weak gradient of the
risk function L∞.

Corollary 3.1 (Weak differentiability). Assume Setting 3.1, let ϕ =
(ϕ(θ))θ=(θ1,...,θd)∈Rd : Rd → R be compactly supported and continuously differentiable,

and let i ∈ {1, 2, . . . , d}. Then
∫

Rd |L∞(θ) ( ∂
∂θi

ϕ)(θ)|+ |Gi(θ) ϕ(θ)|dθ < ∞ and

∫

Rd
L∞(θ) ( ∂

∂θi
ϕ)(θ)dθ = −

∫

Rd
Gi(θ) ϕ(θ)dθ. (3.11)

Proof of Corollary 3.1. Observe that the assumption that ϕ has a compact support ensures
that there exists R ∈ (0, ∞) which satisfies for all θ ∈ Rd\[−R, R]d that

ϕ(θ) = 0. (3.12)

Note that Lemma 3.2 demonstrates that

supθ∈[−R,R]d supr∈[1,∞)

(

|Lr(θ)|+ |L∞(θ)|+ ‖(∇Lr)(θ)‖+ ‖G(θ)‖
)

< ∞. (3.13)

This and (3.12) assure that for all r ∈ [1, ∞), θ = (θ1, . . . , θd) ∈ Rd it holds that

|Lr(θ)(
∂

∂θi
ϕ)(θ)|+ |( ∂

∂θi
Lr)(θ)ϕ(θ)|

≤
[

supϑ∈[−R,R]d sups∈[1,∞)

(

|Ls(ϑ)|+ ‖(∇Ls)(ϑ)‖+ |ϕ(ϑ)|+ ‖(∇ϕ)(ϑ)‖
)]

1[−R,R]d(θ)

< ∞. (3.14)
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Proposition 3.1, Lebesgue’s dominated convergence theorem, (3.12), and integration by
parts therefore ensure that

∫

Rd
L∞(θ) ( ∂

∂θi
ϕ)(θ)dθ = lim

r→∞

[

∫

Rd
Lr(θ) (

∂
∂θi

ϕ)(θ)dθ

]

= lim
r→∞

[

∫

[−R,R]d
Lr(θ) (

∂
∂θi

ϕ)(θ)dθ

]

= −

(

lim
r→∞

[

∫

[−R,R]d
( ∂

∂θi
Lr)(θ) ϕ(θ)dθ

])

. (3.15)

Proposition 3.1, (3.14), and Lebesgue’s dominated convergence theorem hence show that

∫

Rd
L∞(θ) ( ∂

∂θi
ϕ)(θ)dθ = −

∫

[−R,R]d

[

lim
r→∞

( ∂
∂θi

Lr)(θ)
]

ϕ(θ)dθ

= −
∫

Rd
Gi(θ) ϕ(θ)dθ. (3.16)

This, (3.12), and (3.13) establish (3.11). The proof of Corollary 3.1 is thus complete.

3.5 Strong differentiability properties of the risk function

We next establish in Proposition 3.2 that the risk function is a.e. strongly differentiable
with gradient G . The proof relies on Corollary 3.1, the local Lipschitz continuity result in
Lemma 3.1, Rademacher’s theorem, and the fact that locally Lipschitz continuous func-
tions are weakly differentiable with the weak gradient a.e. equal to the strong gradient
(cf. Evans [29]).

Proposition 3.2. Assume Setting 3.1. Then there exists E ∈ B(Rd) such that

(i) it holds that
∫

Rd\E 1 dθ = 0,

(ii) it holds for all θ ∈ E that L∞ is differentiable at θ, and

(iii) it holds for all θ ∈ E that (∇L∞)(θ) = G(θ).

Proof of Proposition 3.2. Throughout this proof let G = (G1, . . . , Gd) : Rd → Rd satisfy for
all θ ∈ Rd that

G(θ) =

{

(∇L∞)(θ) : L∞ is differentiable at θ,

0 : L∞ is not differentiable at θ.
(3.17)

Observe that (3.17), the fact that for all measurable gn : Rd → Rd, n ∈ N, it holds that {θ ∈
Rd : (gn(θ))n∈N is a Cauchy sequence} is measurable, and the fact that for all measurable
and pointwise convergent gn : Rd → Rd, n ∈ N, it holds that Rd ∋ θ 7→ limn→∞ gn(θ) ∈
Rd is measurable establish that G is measurable. Furthermore, note that Lemma 3.1 en-
sures that L∞ is locally Lipschitz continuous. Rademacher’s theorem (cf. Evans [29, The-
orem 5.8.6]) therefore demonstrates that there exists E ∈ {A ∈ B(Rd) :

∫

Rd\A 1 dθ = 0}

which satisfies for all θ ∈ E that L∞ is differentiable at θ. Lemma 3.1, Evans [29, Theorems
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5.8.4 and 5.8.5], and (3.17) hence show for all compactly supported ϕ ∈ C∞(Rd, R) and all

i ∈ {1, 2, . . . , d} that
∫

Rd |L∞(θ) ( ∂
∂θi

ϕ)(θ)|+ |Gi(θ) ϕ(θ)|dθ < ∞ and

∫

Rd
L∞(θ) ( ∂

∂θi
ϕ)(θ)dθ = −

∫

Rd
Gi(θ) ϕ(θ)dθ. (3.18)

Combining this with Corollary 3.1 and the fundamental lemma of calculus of varia-
tions (cf., e.g., Hörmander [34, Theorem 1.2.5]) implies that there exists E ∈ {A ∈
B(Rd) :

∫

Rd\A 1 dθ = 0} which satisfies for all θ ∈ E that

G(θ) = G(θ). (3.19)

Observe that (3.17), (3.19), and the fact that for all θ ∈ E it holds that L∞ is differentiable
at θ assure that for all θ ∈ (E ∩ E) it holds that

G(θ) = (∇L∞)(θ). (3.20)

Moreover, note that the fact that E ∈ {A ∈ B(Rd) :
∫

Rd\A 1 dθ = 0} and the fact that

E ∈ {A ∈ B(Rd) :
∫

Rd\A 1 dθ = 0} ensure that (E ∩ E) ∈ {A ∈ B(Rd) :
∫

Rd\A 1 dθ = 0}.

Combining this and the fact that for all θ ∈ (E ∩ E) it holds that L∞ is differentiable
at θ with (3.20) establishes items (i), (ii), and (iii). The proof of Proposition 3.2 is thus
complete.

3.6 Fréchet subdifferentials and limiting Fréchet subdifferentials

Definition 3.1 (Fréchet subdifferentials and limiting Fréchet subdifferentials). Let n ∈ N,
f ∈ C(Rn, R), x ∈ Rn. Then we denote by (D f )(x) ⊆ Rn the set given by

(D f )(x) =

{

y ∈ Rn :

[

lim inf
Rn\{0}∋h→0

(

f (x + h)− f (x)− 〈y, h〉

‖h‖

)

≥ 0

]}

(3.21)

and we denote by (D f )(x) ⊆ Rn the set given by

(D f )(x) =
⋂

ε∈(0,∞)

[

∪y∈{z∈Rn : ‖x−z‖<ε}(D f )(y)
]

. (3.22)

Lemma 3.3 (Properties of Fréchet subdifferentials). Let n ∈ N, f ∈ C(Rn, R). Then

(i) it holds for all x ∈ Rn that

(D f )(x) =
{

y ∈ Rn :
[

∃ z = (z1, z2) : N → Rn × Rn :
([

∀ k ∈ N : z2(k) ∈ (D f )(z1(k))
]

∧
[

lim supk→∞(‖z1(k)− x‖+ ‖z2(k)− y‖) = 0
])]}

, (3.23)

(ii) it holds for all x ∈ Rn that (D f )(x) ⊆ (D f )(x),

(iii) it holds for all x ∈ {y ∈ Rn : f is differentiable at y} that (D f )(x) = {(∇ f )(x)},
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(iv) it holds for all x ∈ ∪U⊆Rn , U is open, f |U∈C1(U,R)U that (D f )(x) = {(∇ f )(x)}, and

(v) it holds for all x ∈ Rn that (D f )(x) is closed.

(cf. Definition 3.1).

Proof of Lemma 3.3. Throughout this proof let Zx,y = (Z
x,y
1 , Z

x,y
2 ) : N → Rn × Rn, x, y ∈

Rn, satisfy for all x, y ∈ Rn, k ∈ N that

Z
x,y
1 (k) = x and Z

x,y
2 (k) = y. (3.24)

Observe that (3.22) establishes item (i). Note that (3.24) shows for all x ∈ Rn, y ∈ (D f )(x)
that

[

∀ k ∈ N :
(

Z
x,y
2 (k) ∈ (D f )(Z

x,y
1 (k))

)

]

∧

[

lim sup
k→∞

(

‖Z
x,y
1 (k)− x‖+ ‖Z

x,y
2 (k)− y‖

)

= 0

]

. (3.25)

This establishes item (ii). Next observe that Rockafellar & Wets [63, Exercise 8.8] estab-
lishes items (iii) and (iv). Finally, [63, Theorem 8.6] establishes item (v). The proof of
Lemma 3.3 is thus complete.

Lemma 3.4 (Limits of limiting Fréchet subgradients). Let n ∈ N, f ∈ C(Rn, R), let
(xk)k∈N0

⊆ Rn and (yk)k∈N0
⊆ Rn satisfy lim supk→∞(‖xk − x0‖ + ‖yk − y0‖) = 0, and

assume for all k ∈ N that yk ∈ (D f )(xk) (cf. Definition 3.1). Then y0 ∈ (D f )(x0).

Proof of Lemma 3.4. Note that, e.g., [63, Proposition 8.7] implies that y0 ∈ (D f )(x0). The
proof of Lemma 3.4 is thus complete.

3.7 Local underestimates for the realization functions of DNNs

Next we establish in Lemma 3.5 a technical lemma that will be used in the proof of
Lemma 3.7 below. Roughly speaking, since we work with the left derivative of the ReLU
function we need to approximate the realization functions from below to obtain conver-
gence of the generalized gradients.

Lemma 3.5. Assume Setting 3.1 and let θ ∈ Rd, ε ∈ (0, ∞). Then there exists a non-empty and

open U ⊆ Rd such that for all ϑ ∈ U, k ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , ℓk}, x ∈ [a, b]ℓ0 it holds
that

‖ϑ − θ‖ < ε and N k,ϑ
∞,i (x) ≤ N k,θ

∞,i(x). (3.26)

Proof of Lemma 3.5. Throughout this proof let Ck ∈ (0, ∞), k ∈ N, satisfy for all k ∈ N that
C1 = max{ℓ0|a|, ℓ0|b|, 1} and

Ck+1 = 2Ck(k + 1)max{1, |a|, |b|}(max{1, ‖θ‖+ 2Ck})
k
[

∏
k
j=0(ℓj + 1)

]

, (3.27)
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let δ ∈ (0, ∞) satisfy δ = min{1, ε(2CLd)
−1}, and let U ⊆ Rd satisfy

U =

{

ϑ ∈ Rd :

(

[

∀ k ∈ {1, . . . , L}, i ∈ {1, . . . , ℓk}, j ∈ {1, . . . , ℓk−1} : |wk,ϑ
i,j −wk,θ

i,j | < δ
]

∧
[

∀ k ∈ {1, . . . , L}, i ∈ {1, . . . , ℓk} : bk,θ
i − 2Ckδ < bk,ϑ

i < bk,θ
i − Ckδ

]

)}

. (3.28)

Observe that (3.28) ensures that U ⊆ Rd is non-empty and open. Furthermore, note that
(3.27) shows for all k ∈ N that Ck+1 > 2Ck and Ck ≥ 1. Combining this with (3.28) assures
for all ϑ ∈ U, i ∈ {1, 2, . . . , d} that

|ϑi − θi| < max{δ, 2C1δ, 2C2δ, . . . , 2CLδ} = 2CLδ ≤ 2CL

(

ε(2CLd)
−1
)

= d−1ε. (3.29)

Therefore, we obtain for all ϑ ∈ U that

‖ϑ − θ‖ =
[

∑
d
i=1|ϑi − θi|

2]1/2
≤ d

[

maxi∈{1,2,...,L}|ϑi − θi|
]

< ε. (3.30)

Moreover, observe that (3.2), (3.5), and (3.28) ensure for all ϑ ∈ U, i ∈ {1, 2, . . . , ℓ1}, x =
(x1, . . . , xℓ0

) ∈ [a, b]ℓ0 that

N 1,ϑ
∞,i (x)−N 1,θ

∞,i(x) = (b1,ϑ
i − b1,θ

i ) + ∑
ℓ0
j=1(w

1,ϑ
i,j −w1,θ

i,j )xj

< −C1δ + ∑
ℓ0
j=1 |(w

1,ϑ
i,j −w1,θ

i,j )xj| (3.31)

≤ −C1δ + δ
(

∑
ℓ0
j=1|xj|

)

≤ −C1δ + ℓ0δ max{|a|, |b|} ≤ 0. (3.32)

It thus remains to prove an analogous inequality for the subsequent layers. For this let

ϑ ∈ U, k ∈ N ∩ (0, L), i ∈ {1, 2, . . . , ℓk+1}, x ∈ [a, b]ℓ0 , let d ∈ N satisfy d = ℓk+1ℓk + 1 +

∑
k
j=1 ℓj(ℓj−1 + 1), let D ∈ N satisfy D = ∑

k+1
j=1 ℓj(ℓj−1 + 1), and let ψ ∈ Rd satisfy

ψ = (ϑ1, ϑ2, . . . , ϑd−1, θd, θd+1, . . . , θd). (3.33)

Note that (3.2), (3.5), (3.28), and (3.33) show that

N k+1,ϑ
∞,i (x) = N

k+1,ψ
∞,i (x) + (bk+1,ϑ

i − b
k+1,ψ
i )

= N
k+1,ψ
∞,i (x) + (bk+1,ϑ

i − bk+1,θ
i ) < N

k+1,ψ
∞,i (x)− Ck+1δ. (3.34)

Next note that, e.g., [6, Theorem 2.1] (applied with a x a, b x b, d x D, L x k + 1,
ℓ x (ℓ0, ℓ1, . . . , ℓk+1) in the notation of [6, Theorem 2.36]) demonstrates that

|N k+1,θ
∞,i (x)−N

k+1,ψ
∞,i (x)|

≤ (k + 1)max{1, |a|, |b|}
[

max
{

1, maxi∈{1,2,...,D}|θi|, maxi∈{1,2,...,D}|ψi|
}]k

·
[

∏
k
m=0(ℓm + 1)

]

[

maxi∈{1,2,...,D}|θi − ψi|
]

. (3.35)
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In addition, observe that (3.28) ensures that

maxi∈{1,2,...,D}|θi − ψi| = maxi∈{1,2,...,d−1}|θi − ϑi|

≤ max{δ, 2C1δ, 2C2δ, . . . , 2Ckδ} = 2Ckδ. (3.36)

Combining this with (3.27) and (3.35) proves that

|N k+1,θ
∞,i (x)−N

k+1,ψ
∞,i (x)|

≤ (k + 1)max{1, |a|, |b|}
[

max
{

1, 2Ckδ + maxi∈{1,2,...,D}|θi|, maxi∈{1,2,...,D}|θi|
}

]k

·
[

∏
k
m=0(ℓm + 1)

][

2Ckδ
]

≤ 2Ckδ(k + 1)max{1, |a|, |b|}
[

∏
k
m=0(ℓm + 1)

][

max{1, ‖θ‖+ 2Ck}
]k

= Ck+1δ. (3.37)

This and (3.34) assure that

N k+1,ϑ
∞,i (x) < N

k+1,ψ
∞,i (x)− Ck+1δ = N k+1,θ

∞,i (x) +
(

N
k+1,ψ
∞,i (x)−N k+1,θ

∞,i (x)
)

− Ck+1δ

≤ N k+1,θ
∞,i (x) + |N

k+1,ψ
∞,i (x)−N k+1,θ

∞,i (x)| − Ck+1δ ≤ N k+1,θ
∞,i (x). (3.38)

The proof of Lemma 3.5 is thus complete.

3.8 Continuity properties for the generalized gradient function

Lemma 3.6 (Continuity points of the generalized gradient function). Assume Setting 3.1

and let θ = (θn)n∈N0
: N0 → Rd satisfy for all k ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , ℓk}, x ∈ [a, b]ℓ0

that

lim supn→∞

(

‖θn − θ0‖+ |1(0,∞)(N
k,θn
∞,i (x))− 1(0,∞)(N

k,θ0
∞,i (x))|

)

= 0. (3.39)

Then lim supn→∞ ‖G(θn)− G(θ0)‖ = 0.

Proof of Lemma 3.6. Note that Lemma 3.1 (applied for every k ∈ {1, 2, . . . , L} with L x k
in the notation of Lemma 3.1), (3.1), (3.2), and (3.5) assure that for all k ∈ {1, 2, . . . , L},
j ∈ {1, 2, . . . , ℓk} it holds that

lim supn→∞ sup
x∈[a,b]ℓ0 |N

k,θn
∞,j (x)−N k,θ0

∞,j (x)| = 0. (3.40)

Furthermore, observe that (3.5) and (3.39) ensure for all x ∈ [a, b]ℓ0 , k ∈ {1, 2, . . . , L},
i ∈ {1, 2, . . . , ℓk} that lim supn→∞ |1X k,θn

i
(x)− 1X

k,θ0
i

(x)| = 0. Combining this, (3.39), and
(3.40) with Proposition 3.1 and Lebesgue’s dominated convergence theorem establishes
that lim supn→∞ ‖G(θn)− G(θ0)‖ = 0. The proof of Lemma 3.6 is thus complete.

As a consequence of Lemmas 3.5 and 3.6 we show in Lemma 3.7 that, loosely speaking,
the generalized gradient G(θ) at an arbitrary point θ ∈ Rd can be represented as the limit
of generalized gradients of a sequence ϑn → θ, even after removing an arbitrary set of
zero measure.
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Lemma 3.7. Assume Setting 3.1 and let θ ∈ Rd, E ∈ B(Rd) satisfy
∫

Rd\E 1 dϑ = 0. Then there

exists ϑ = (ϑn)n∈N : N → E such that

lim supn→∞

(

‖ϑn − θ‖+ ‖G(ϑn)− G(θ)‖
)

= 0. (3.41)

Proof of Lemma 3.7. Note that Lemma 3.5 assures that there exist non-empty and open
Un ⊆ Rd, n ∈ N, which satisfy for all n ∈ N, ϑ ∈ Un, k ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , ℓk},

x ∈ [a, b]ℓ0 that

‖ϑ − θ‖ <
1
n and N k,ϑ

∞,i (x) ≤ N k,θ
∞,i(x). (3.42)

Observe that the assumption that
∫

Rd\E 1 dϑ = 0 implies for all n ∈ N that (Un ∩ E) 6= ∅.

In the following let ϑ = (ϑn)n∈N : N → E satisfy for all n ∈ N that

ϑn ∈ Un. (3.43)

Note that (3.42) assures for all n ∈ N that ‖ϑn − θ‖ <
1
n . Hence, we obtain that

lim supn→∞ ‖ϑn − θ‖ = 0. (3.44)

Lemma 3.1 (applied for every k ∈ {1, 2, . . . , L} with L x k in the notation of Lemma 3.1)

therefore implies that for all k ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , ℓk}, x ∈ [a, b]ℓ0 we have that

lim supn→∞ |N k,ϑn
∞,i (x)−N k,θ

∞,i(x)| = 0. (3.45)

Furthermore, observe that (3.42) and (3.43) assure for all n ∈ N, k ∈ {1, 2, . . . , L}, i ∈

{1, 2, . . . , ℓk}, x ∈ [a, b]ℓ0 that N k,ϑn
∞,i (x) ≤ N k,θ

∞,i(x). Combining this and (3.45) with the fact

that the function R ∋ x 7→ 1(0,∞)(x) ∈ R is left continuous demonstrates for all x ∈ [a, b]ℓ0 ,

k ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , ℓk} that lim supn→∞ |1(0,∞)(N
k,ϑn
∞,i (x))− 1(0,∞)(N

k,θ
∞,i(x))| =

0. Lemma 3.6 and (3.44) hence show that lim supn→∞ ‖G(ϑn) − G(θ)‖ = 0. Combining
this with (3.44) establishes (3.41). The proof of Lemma 3.7 is thus complete.

3.9 Generalized gradients as limiting Fréchet subdifferentials

We next employ the differentiability result from Proposition 3.2, the approximation result
for the generalized gradient from Lemma 3.7, and the definition of the limiting Fréchet
subdifferential to establish in Proposition 3.3 the main result of this section: For every
θ ∈ Rd, the generalized gradient G(θ) is an element of the limiting Fréchet subdifferential
(DL∞)(θ).

Proposition 3.3. Assume Setting 3.1 and let θ ∈ Rd. Then G(θ) ∈ (DL∞)(θ) (cf. Defini-
tion 3.1).

Proof of Proposition 3.3. Note that Proposition 3.2 ensures that there exists E ∈ B(Rd) which
satisfies

∫

Rd\E 1 dϑ = 0, which satisfies for all ϑ ∈ E that L∞ is differentiable at ϑ, and

which satisfies for all ϑ ∈ E that

(∇L∞)(ϑ) = G(ϑ). (3.46)
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Observe that (3.46) and Lemma 3.3 prove for all ϑ ∈ E that

G(ϑ) ∈ (DL∞)(ϑ). (3.47)

Furthermore, note that the fact that
∫

Rd\E 1 dϑ = 0 and Lemma 3.7 imply that there exists

ϑ = (ϑn)n∈N : N → E which satisfies

lim supn→∞

(

‖ϑn − θ‖+ ‖G(ϑn)− G(θ)‖
)

= 0. (3.48)

Observe that (3.47) and (3.48) demonstrate that G(θ) ∈ (DL∞)(θ). The proof of Proposi-
tion 3.3 is thus complete.

Finally, as a consequence of Proposition 3.3 we show in Corollary 3.2 that on every
open set on which the risk function L∞ is continuously differentiable its gradient agrees
with G . This fact will be used in the convergence analysis of GD processes in Section 8.

Corollary 3.2. Assume Setting 3.1. Then it holds for all θ ∈ ∪U⊆Rd, U is open, (L∞)|U∈C1(U,R)U

that G(θ) = (∇L∞)(θ) (cf. Definition 3.1).

Proof of Corollary 3.2. Note that item (iv) in Lemma 3.3 (applied with n x d, f x L∞ in
the notation of Lemma 3.3) and Proposition 3.3 ensure that for all open U ⊆ Rd and all
θ ∈ U with (L∞)|U ∈ C1(U, R) it holds that

G(θ) ∈ (DL∞)(θ) = {(∇L∞)(θ)}. (3.49)

Therefore, we obtain for all open U ⊆ Rd and all θ ∈ U with (L∞)|U ∈ C1(U, R) that
G(θ) = (∇L∞)(θ). The proof of Corollary 3.2 is thus complete.

4 Suitable piecewise rational functions

In this section we identify in (4.1) in Definition 4.1 a suitable subclass of the class of semi-
algebraic functions which is closed under integration (see Proposition 4.3 in Subsection 4.7
below) and which contains the realization functions of deep ReLU ANNs (see Proposi-
tion 4.4 in Subsection 4.9 below). The fact that functions in this class of suitable piecewise
rational functions are semi-algebraic is established in Proposition 4.2 below. We also sum-
marize in Subsection 4.3 some basic facts regarding semi-algebraic sets and functions. The
results from this section will be employed in Section 5 below to establish that the consid-
ered risk function in the training of deep ANNs with ReLU activation are semi-algebraic.

Closedness under integration is not a trivial issue due to the fact that, in general, the
integral of a semi-algebraic function is not necessarily semi-algebraic (in fact, in general
not even globally subanalytic, see Kaiser [44]). Our analysis of the integrals of the func-
tions considered in Definition 4.1 below crucially relies on the fact that they are piecewise
rational on regions separated by hyperplanes in the x-component. This property is also
satisfied by the realization functions of ANNs with ReLU activation.

The function class in Definition 4.1 and some of the results in this section are inspired
by the findings in our previous article Eberle et al. [28, Section 4]. In particular, Defini-
tion 4.1 extends [28, Definition 4.6], Proposition 4.2 in Subsection 4.6 below extends [28,
Lemma 4.7], and Proposition 4.3 in Subsection 4.7 below extends [28, Proposition 4.8].



J. Mach. Learn., 1(2):141-246 198

4.1 Suitable piecewise rational functions

Definition 4.1 (Vector spaces of suitable piecewise rational functions). Let m, n ∈ N0,
δ ∈ (0, ∞]. Then we denote by Fm,n,δ the R-vector space given by

Fm,n,δ = spanR

({

F : Rm × Rn → R :

[

∃ r ∈ N, R ∈ Rm,δ, Q ∈ {q ∈ Pn : deg(q) ≤ δ},

P = (Pi,j)(i,j)∈{1,2,...,r}×{0,1,...,n} ⊆ Pm :

(

∀ θ ∈ Rm, x = (x1, . . . , xn) ∈ Rn :

f (θ, x) = R(θ)Q(x)

[

r

∏
i=1

1[0,∞)(Pi,0(θ) + ∑
n
j=1 Pi,j(θ)xj)

])

]})

(4.1)

(cf. Definitions 4.2, 4.5, and 4.6).

In (4.1) above we denote by spanR the linear span of the given functions F : Rm ×Rn →
R with coefficients in R, i.e., the R-vectorspace generated by these functions.

Observe that functions in Fm,n,δ depend on two vectors θ ∈ Rm and x ∈ Rn. In the
considered deep learning framework this will be applied in the situation where θ is the
parameter vector of a suitable ANN, x is the input vector of the ANN, and f (θ, x) is the
output.

4.2 Elementary properties of suitable piecewise rational functions

Lemma 4.1. Let m, n ∈ N0. Then

(i) it holds for all δ1, δ2 ∈ (0, ∞] with δ1 ≤ δ2 that Rn,δ1
⊆ Rn,δ2

,

(ii) it holds for all δ ∈ (0, 1] that Rn,δ = Pn,

(iii) it holds for all δ1, δ2 ∈ (0, ∞] with δ1 ≤ δ2 that Fm,n,δ1
⊆ Fm,n,δ2

,

(iv) it holds that Fm,n,1 ⊆ Fm,n,∞,

(v) it holds for all f , g ∈ Fm,n,∞ that

(

Rm × Rn ∋ (θ, x) 7→ f (θ, x)g(θ, x) ∈ R
)

∈ Fm,n,∞, (4.2)

(vi) it holds for all δ ∈ (0, ∞] that

Fm,n,δ = spanR

({

F : Rm × Rn → R :
[

∃ r ∈ N,

A1, A2, . . . , Ar ∈ {{0}, [0, ∞), (0, ∞)}, R ∈ Rm,δ, Q ∈ {q ∈ Pn : deg(q) ≤ δ},

P = (Pi,j)(i,j)∈{1,2,...,r}×{0,1,...,n} ⊆ Pm :
(

∀ θ ∈ Rm : ∀ x = (x1, . . . , xn) ∈ Rn :

f (θ, x) = R(θ)Q(x)
[

∏
r
i=1 1Ai

(Pi,0(θ) + ∑
n
j=1 Pi,j(θ)xj)

]

)]})

(4.3)



J. Mach. Learn., 1(2):141-246 199

(cf. Definition 4.1).

Proof of Lemma 4.1. Note that (4.13) and the fact that for all δ1, δ2 ∈ (0, ∞] with δ1 ≤ δ2 it
holds that

{q ∈ Pn : deg(q) < δ1} ⊆ {q ∈ Pn : deg(q) < δ2} (4.4)

establish item (i). Observe that (4.13) and the fact that for all δ ∈ (0, 1] it holds that

{q ∈ Pn : deg(q) < δ} = {q ∈ Pn : deg(q) = 0} (4.5)

prove item (ii). Note that (4.1), item (i), and the fact that for all δ1, δ2 ∈ (0, ∞] with δ1 ≤ δ2

it holds that
{q ∈ Pn : deg(q) ≤ δ1} ⊆ {q ∈ Pn : deg(q) ≤ δ2} (4.6)

establish item (iii). Observe that item (iii) proves item (iv). Note that (4.1) estab-
lishes item (v). Observe that the fact that ∀ y ∈ R : 1{0}(y) = 1(−∞,0]∩[0,∞)(y) =

1(−∞,0](y)1[0,∞)(y) = 1[0,∞)(y)1[0,∞)(−y) shows that for all P0, P1, . . . , Pn ∈ Pm it holds
that

1{0}(P0(θ) + ∑
n
j=1 Pj(θ)xj)

= 1[0,∞)(P0(θ) + ∑
n
j=1 Pj(θ)xj)1[0,∞)(−P0(θ) + ∑

n
j=1(−Pj(θ))xj). (4.7)

Furthermore, note that the fact that ∀ y ∈ R : 1(0,∞)(y) = 1 − 1(−∞,0](y) = 1 − 1[0,∞)(−y)
shows that for all P0, P1, . . . , Pn ∈ Pm it holds that

1(0,∞)(P0(θ) + ∑
n
j=1 Pj(θ)xj) = 1 − 1[0,∞)(−P0(θ) + ∑

n
j=1(−Pj(θ))xj). (4.8)

Combining (4.1) and (4.7) hence shows that for all δ ∈ (0, ∞], r ∈ N, A1, A2, . . . , Ar ∈
{{0}, (0, ∞), [0, ∞)}, R ∈ Rm,δ, Q ∈ {q ∈ Pn : deg(q) ≤ δ}, P = (Pi,j){1,2,...,r}×{0,1,...,n} ⊆
Pm it holds that

(

Rm × Rn ∋ (θ, x) 7→ R(θ)Q(x)
[

∏
r
i=1 1Ai

(P0(θ) + ∑
n
j=1 Pj(θ)xj)

]

∈ R
)

∈ Fm,n,δ. (4.9)

This establishes item (vi). The proof of Lemma 4.1 is thus complete.

4.3 Semi-algebraic sets

In the following we gather several known definitions and elementary results regarding
semi-algebraic sets and functions; cf., e.g., Bochnak et al. [9], Coste [18], Shiota [67], and
Van den Dries & Miller [69].

Definition 4.2 (Set of polynomials). Let n ∈ N0. Then we denote by Pn ⊆ C(Rn, R) the set9

of all polynomials from Rn to R.

9Note that R0 = {0}, C(R0, R) = C({0}, R), and #(C(R0, R)) = #(C({0}, R)) = ∞. In particular, this shows for all
n ∈ N0 that dim(Rn) = n and #(C(Rn, R)) = ∞.
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Definition 4.3 (Multidimensional semi-algebraic sets). Let n ∈ N and let A ⊆ Rn be a set.
Then we say that A is an n-dimensional semi-algebraic set if and only if there exist M, N ∈ N and
(Pi,j,k)(i,j,k)∈{1,2,...,M}×{1,2,...,N}×{0,1} ⊆ Pn such that

A =
⋃M

i=1

(

⋂N
j=1

{

x ∈ Rn : Pi,j,0(x) = 0 < Pi,j,1(x)
})

(4.10)

(cf. Definition 4.2).

Note that in (4.10) we have that {x ∈ Rn : Pi,j,0(x) = 0 < Pi,j,1(x)} = {x ∈ Rn : [Pi,j,0(x) =
0 ∧ Pi,j,1(x) > 0]} = {x ∈ Rn : Pi,j,0(x) = 0} ∩ {x ∈ Rn : Pi,j,1(x) > 0}.

The following properties of semi-algebraic sets are well-known and not hard to show
from the definition; see, e.g., Shiota [67, (I.2.9)].

Proposition 4.1. Let m, n ∈ N. Then

(i) it holds for all n-dimensional semi-algebraic sets A, B that A ∪ B, A ∩ B, and Rn\A are
n-dimensional semi-algebraic sets,

(ii) it holds for every n-dimensional semi-algebraic set A and every m-dimensional semi-algebraic
set B that A × B is an (m + n)-dimensional semi-algebraic set,

(iii) it holds for every P ∈ Pn that {x ∈ Rn : P(x) ≥ 0} is an n-dimensional semi-algebraic set,

(iv) it holds for all a ∈ Rn that {a} ⊆ Rn is an n-dimensional semi-algebraic set

(cf. Definitions 4.2 and 4.3).

4.4 Semi-algebraic functions

Definition 4.4 (Semi-algebraic functions). Let m, n ∈ N and let f : Rm → Rn be a function.
Then we say that f is a semi-algebraic function (we say that f is semi-algebraic) if and only if it
holds that Graph( f ) is an (m + n)-dimensional semi-algebraic set (cf. Definition 4.3).

The next elementary result, Lemma 4.2, is a direct consequence of, e.g., [67, (I.2.9)]
or [9, Proposition 2.2.6] (see, e.g., also Bierstone & Milman [8, Section 1]).

Lemma 4.2. Let n ∈ N and let f : Rn → R and g : Rn → R be semi-algebraic (cf. Defini-
tion 4.4). Then

(i) it holds that Rn ∋ x 7→ f (x) + g(x) ∈ R is semi-algebraic and

(ii) it holds that Rn ∋ x 7→ f (x)g(x) ∈ R is semi-algebraic.

Lemma 4.3. Let n ∈ N and let A ⊆ Rn be an n-dimensional semi-algebraic set (cf. Defini-
tion 4.3). Then Rn ∋ x 7→ 1A(x) ∈ R is semi-algebraic (cf. Definition 4.4).

Proof of Lemma 4.3. Throughout this proof let f : Rn → R satisfy for all x ∈ Rn that

f (x) = 1A(x). (4.11)
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Observe that (4.11) shows that

Graph( f ) = (A × {1}) ∪ ((Rn\A)× {0}) ⊆ Rn+1. (4.12)

Furthermore, note that Proposition 4.1 ensures that {0} and {1} are 1-dimensional semi-
algebraic sets and that Rn\A is an n-dimensional semi-algebraic set. Combining this with
Proposition 4.1 shows that A × {1} and (Rn\A) × {0} are (n + 1)-dimensional semi-
algebraic sets. Proposition 4.1 and (4.12) therefore show that Graph( f ) is an (n + 1)-
dimensional semi-algebraic set. This establishes that f is semi-algebraic. The proof of
Lemma 4.3 is thus complete.

4.5 Rational functions as semi-algebraic functions

The next goal is to establish in Proposition 4.2 below that the functions in the classes
Fm,0,∞, m ∈ N, are semi-algebraic. As a preparation, we first recall in Lemma 4.4 be-
low the simple fact that rational functions are semi-algebraic.

Definition 4.5 (Degree10 of a polynomial). Let n ∈ N0, P ∈ Pn (cf. Definition 4.2). Then we
denote by deg(P) ∈ N0 the degree of P.

Definition 4.6 (Sets of suitable rational functions). Let n ∈ N0, δ ∈ (0, ∞]. Then we denote
by Rn,δ the set given by

Rn,δ =

{

R : Rn → R :

(

∃ P ∈ Pn, Q ∈ {q ∈ Pn : deg(q) < δ} :

[

∀ x ∈ Rn : R(x) =

{

[Q(x)]−1P(x) : Q(x) 6= 0

0 : Q(x) = 0

])}

(4.13)

(cf. Definition 4.2).

Lemma 4.4. Let n ∈ N, R ∈ Rn,∞. Then R is semi-algebraic.

Proof of Lemma 4.4. Observe that the assumption that R ∈ Rn,∞ assures that there exist
P, Q ∈ Pn which satisfy for all x ∈ Rn that

R(x) =

{

P(x)
Q(x)

: Q(x) 6= 0,

0 : Q(x) = 0.
(4.14)

Note that (4.14) ensures that

Graph(R) =
{

(x, y) ∈ Rn × R :
(

R(x) = y
)}

=
{

(x, y) ∈ Rn × R :
[(

R(x) = y
)

,
(

Q(x) = 0
)]

}

∪
{

(x, y) ∈ Rn × R :
[(

R(x) = y
)

,
(

Q(x) 6= 0
)]

}

10Observe that deg(R2 ∋ (x1, x2) 7→ x1x2 ∈ R) = 2. Furthermore, note that for all P ∈ P0 , x, y ∈ R0 = {0} it holds that
P(x) = P(y) = P(0) and deg(P) = 0.
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=
{

(x, y) ∈ Rn × R :
(

y = Q(x) = 0
)

}

∪
{

(x, y) ∈ Rn × R :
[(

P(x) = yQ(x)
)

,
(

Q(x) 6= 0
)]

}

. (4.15)

Hence, we obtain

Graph(R) =
[{

(x, y) ∈ Rn × R :
(

y = 0
)

}

∩
{

(x, y) ∈ Rn × R :
(

Q(x) = 0
)

}]

∪
[{

(x, y) ∈ Rn × R :
(

P(x)− yQ(x) = 0 < [Q(x)]2
)

}]

. (4.16)

Combining this with (4.10) establishes that R is semi-algebraic. The proof of Lemma 4.4 is
thus complete.

4.6 Suitable piecewise rational functions as semi-algebraic functions

Proposition 4.2. Let m ∈ N, f ∈ Fm,0,∞ (cf. Definition 4.1). Then Rm ∋ θ 7→ f (θ, 0) ∈ R is
semi-algebraic (cf. Definition 4.4).

Proof of Proposition 4.2. Observe that (4.1) and the assumption that f ∈ Fm,0,∞ assure that

there exist V ∈ N, r1, r2, . . . , rV ∈ N, R1, R2, . . . , RV ∈ Rm,∞, P1 = (P1
i )i∈{1,2,...,r1} ⊆ Pm,

P2 = (P2
i )i∈{1,2,...,r2} ⊆ Pm, . . . , PV = (PV

i )i∈{1,2,...,rV} ⊆ Pm which satisfy for all θ ∈ Rm

that

f (θ, 0) =
V

∑
v=1

[

Rv(θ)

[

rv

∏
i=1

1[0,∞)
(

Pv
i (θ)

)

]

]

. (4.17)

Note that (4.17) shows for all θ ∈ Rm that

f (θ, 0) =
V

∑
v=1

[

Rv(θ)

[

rv

∏
i=1

1{ϑ∈Rm : Pv
i (ϑ)≥0}(θ)

]

]

. (4.18)

Furthermore, observe that Proposition 4.1 and Lemma 4.3 prove that for all v ∈ {1, 2, . . . , V},
i ∈ {1, 2, . . . , rv} it holds that

Rm ∋ θ 7→ 1{ϑ∈Rm : Pv
i (ϑ)≥0}(θ) ∈ R (4.19)

is semi-algebraic. Moreover, note that Lemma 4.4 assures that for all v ∈ {1, 2, . . . , V} it
holds that Rv is semi-algebraic. Combining this and (4.19) with Lemma 4.2 shows that for
all v ∈ {1, 2, . . . , V} it holds that

Rm ∋ θ 7→ Rv(θ)
[

∏
rv
i=1 1{ϑ∈Rm : Pv

i (ϑ)≥0}(θ)
]

∈ R (4.20)

is semi-algebraic. Lemma 4.2 and (4.18) therefore show that Rm ∋ θ 7→ f (θ, 0) ∈ R is
semi-algebraic. The proof of Proposition 4.2 is thus complete.
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4.7 Closedness under parametric integration of suitable piecewise rational
functions

Proposition 4.3. Let m, n ∈ N, a ∈ R, b ∈ (a, ∞), f ∈ Fm,n,∞ (cf. Definition 4.1). Then

(i) it holds for all θ ∈ Rm, x1, x2, . . . , xn−1 ∈ R that
∫ b

a | f (θ, x1, x2, . . . , xn−1, xn)|dxn < ∞

and

(ii) it holds that

(

Rm × Rn−1 ∋ (θ, x1, . . . , xn−1) 7→
∫ b

a f (θ, x1, x2, . . . , xn−1, xn)dxn ∈ R
)

∈ Fm,n−1,∞.
(4.21)

Proof of Proposition 4.3. Observe that (4.1) and the fact that {q ∈ Pn : deg(q) ≤ ∞} =
Pn ⊆ C(Rn, R) prove that for all θ ∈ Rm, r ∈ (0, ∞) it holds that

supx∈[−r,r]n | f (θ, x)| < ∞. (4.22)

This shows item (i). Furthermore, note that [28, Proposition 4.8] and item (vi) in Lemma 4.1
establish item (ii). The proof of Proposition 4.3 is thus complete.

4.8 Closedness under rectification of suitable piecewise rational functions

The next result, Lemma 4.5, establishes that the function classes Fm,n,1 introduced in Defi-
nition 4.1 above are closed under composition with the ReLU function. This will be used to
show in Proposition 4.4 below that these function classes contain the realization functions
of DNNs with ReLU activation.

Lemma 4.5. Let m, n ∈ N, f ∈ Fm,n,1 (cf. Definition 4.1). Then

(

Rm × Rn ∋ v 7→ max{ f (v), 0} ∈ R
)

∈ Fm,n,1. (4.23)

Proof of Lemma 4.5. Observe that (4.1) and the assumption that f ∈ Fm,n,1 ensure that
there exist V ∈ N, r1, r2, . . . , rV ∈ N, R1, R2, . . . , RV ∈ Rm,1, Q1, Q2, . . . , QV ∈
{q ∈ Pn : deg(q) ≤ 1}, P1 = (P1

i,j)(i,j)∈{1,2,...,r1}×{0,1,...,n} ⊆ Pm, P2 =

(P2
i,j)(i,j)∈{1,2,...,r2}×{0,1,...,n} ⊆ Pm, . . . , PV = (PV

i,j)(i,j)∈{1,2,...,rV}×{0,1,...,n} ⊆ Pm which sat-

isfy for all θ ∈ Rm, x = (x1, . . . , xn) ∈ Rn that

f (θ, x) =
V

∑
v=1

[

Rv(θ)Qv(x)

[

rv

∏
i=1

1[0,∞)
(

Pv
i,0(θ) + ∑

n
j=1 Pv

i,j(θ)xj

)

]

]

. (4.24)

In the following let pv : Rm × Rn → {0, 1}, v ∈ {1, 2, . . . , V}, satisfy for all v ∈
{1, 2, . . . , V}, θ ∈ Rm, x = (x1, . . . , xn) ∈ Rn that

pv(θ, x) =
rv

∏
i=1

1[0,∞)
(

Pv
i,0(θ) + ∑

n
j=1 Pv

i,j(θ)xj

)

, (4.25)
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for every W ⊆ {1, 2, . . . , V} let pW ∈ {0, 1} satisfy

pW =

[

∏
v∈W

pv(θ, x)

][

∏
v∈{1,2,...,V}\W

(1 − pv(θ, x))

]

, (4.26)

and for every θ ∈ Rm, x ∈ Rn let Vθ,x ⊆ N satisfy

Vθ,x = {v ∈ {1, 2, . . . , V} : pv(θ, x) = 1}. (4.27)

Note that (4.25), (4.26), and (4.27) assure that for all W ⊆ {1, 2, . . . , V} it holds that

pW =

{

1 : W = Vθ,x,

0 : W 6= Vθ,x.
(4.28)

Combining this with (4.24), (4.25), and (4.27) proves that for all θ ∈ Rm, x ∈ Rn it holds
that

f (θ, x) =
V

∑
v=1

Rv(θ)Qv(x)pv(θ, x) = ∑
v∈Vθ,x

Rv(θ)Qv(x)pv(θ, x)

= ∑
v∈Vθ,x

Rv(θ)Qv(x) = ∑
W⊆{1,2,...,V}

(

pW

[

∑
v∈W

Rv(θ)Qv(x)

])

. (4.29)

This and (4.28) show that for all θ ∈ Rm, x ∈ Rn it holds that

max{ f (θ, x), 0} = ∑
W⊆{1,2,...,V}

(

pW max

{

∑
v∈W

Rv(θ)Qv(x), 0

})

. (4.30)

The fact that for all r ∈ R it holds that max{r, 0} = r1[0,∞)(r) hence demonstrates that for
all θ ∈ Rm, x ∈ Rn it holds that

max{ f (θ, x), 0} = ∑
W⊆{1,2,...,V}

(

pW

[

∑
v∈W

Rv(θ)Qv(x)

]

1[0,∞)

(

∑
v∈W

Rv(θ)Qv(x)

))

= ∑
W⊆{1,2,...,V}

∑
w∈W

(

Rw(θ)Qw(x)

[

pW1[0,∞)

(

∑
v∈W

Rv(θ)Qv(x)

)])

.

(4.31)

Furthermore, observe that (4.26) shows that

pW =

[

∏
v∈W

pv(θ, x)

][

∑
U⊆({1,2,...,V}\W)

(−1)#(U)
[

∏v∈U pv(θ, x)
]

]

= ∑
U⊆({1,2,...,V}\W)

(

(−1)#(U)

[

∏
v∈W

pv(θ, x)

][

∏
v∈U

pv(θ, x)

])

. (4.32)
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Combining this and (4.31) proves that for all θ ∈ Rm, x ∈ Rn it holds that

max{ f (θ, x), 0} = ∑
W⊆{1,2,...,V}

∑
w∈W

∑
U⊆({1,2,...,V}\W)

(

(−1)#(U)Rw(θ)Qw(x)

·

[

1[0,∞)

(

∑
v∈W

Rv(θ)Qv(x)

)][

∏
v∈W

pv(θ, x)

][

∏
v∈U

pv(θ, x)

]

)

. (4.33)

Moreover, note that item (ii) in Lemma 4.1, (4.1), (4.25), and the fact that R1, R2, . . . , RV ∈
Rm,1 show that for all W ⊆ {1, 2, . . . , V}, U ⊆ ({1, 2, . . . , V}\W) and all w ∈ W it holds
that

(

Rm × Rn ∋ (θ, x) 7→ Rw(θ)Qw(x)

[

1[0,∞)

(

∑
v∈W

Rv(θ)Qv(x)

)]

·

[

∏
v∈W

pv(θ, x)

][

∏
v∈U

pv(θ, x)

]

∈ R

)

∈ Fm,n,1. (4.34)

Combining this and (4.33) with (4.1) establishes (4.23). The proof of Lemma 4.5 is thus
complete.

4.9 Realization functions of DNNs as suitable piecewise rational functions

Proposition 4.4. Assume Setting 3.1. Then it holds for all i ∈ {1, 2, . . . , ℓL} that

(

Rd × Rℓ0 ∋ (θ, x) 7→ N L,θ
∞,i (x) ∈ R

)

∈ Fd,ℓ0,1 (4.35)

(cf. Definition 4.1).

Proof of Proposition 4.4. Observe that (3.5) ensures for all k ∈ N0, θ ∈ Rd, i ∈
{1, 2, . . . , ℓk+1}, x = (x1, . . . , xℓ0

) ∈ Rℓ0 that

N k+1,θ
∞,i (x) =







bk+1,θ
i + ∑

ℓk
j=1 w

k+1,θ
i,j xj. : k = 0,

b
k+1,θ
i + ∑

ℓk
j=1 w

k+1,θ
i,j max{N k,θ

∞,j(x), 0}. : k > 0.
(4.36)

Next we claim that for all k ∈ {1, 2, . . . , L} it holds that

(

⋃ℓk
i=1

{

Rd × Rℓ0 ∋ (θ, x) 7→ N k,θ
∞,i(x) ∈ R

})

⊆ Fd,ℓ0,1. (4.37)

In the following we prove (4.37) by induction on k ∈ {1, 2, . . . , L}. For the base case k = 1

note that (4.36) assures that for all θ ∈ Rd, i ∈ {1, 2, . . . , ℓ1}, x = (x1, . . . , xℓ0
) ∈ Rℓ0 it

holds that
N 1,θ

∞,i(x) = b1,θ
i + ∑

ℓ0
j=1 w

1,θ
i,j xj. (4.38)
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This establishes (4.37) in the case k = 1. For the induction step observe that Lemma 4.5

implies that for all k ∈ N ∩ (0, L), j ∈ {1, 2, . . . , ℓk} with (
⋃ℓk

i=1{Rd × Rℓ0 ∋ (θ, x) 7→

N k,θ
∞,i(x) ∈ R}) ⊆ Fd,ℓ0,1 it holds that

(

Rd × Rℓ0 ∋ (θ, x) 7→ max{N k,θ
∞,j(x), 0} ∈ R

)

∈ Fd,ℓ0,1. (4.39)

Furthermore, note that (4.36) shows that for all k ∈ N ∩ (0, L), θ ∈ Rd, i ∈ {1, 2, . . . , ℓk+1},

x ∈ Rℓ0 we have that

N k+1,θ
∞,i (x) = bk+1,θ

i + ∑
ℓk
j=1 w

k+1,θ
i,j max{N k,θ

∞,j(x), 0}. (4.40)

Moreover, observe that (4.1) and (4.39) demonstrate for all k ∈ N ∩ (0, L), i ∈

{1, 2, . . . , ℓk+1}, j ∈ {1, 2, . . . , ℓk} with (
⋃ℓk

v=1{Rd × Rℓ0 ∋ (θ, x) 7→ N k,θ
∞,v(x) ∈ R}) ⊆

Fd,ℓ0,1 that

(

Rd × Rℓ0 ∋ (θ, x) 7→ wk+1,θ
i,j max{N k,θ

∞,j(x), 0} ∈ R
)

∈ Fd,ℓ0,1. (4.41)

The fact that Fd,ℓ0,1 is an R-vector space and (4.1) hence show that for all k ∈ N ∩ (0, L),

i ∈ {1, 2, . . . , ℓk+1} with (
⋃ℓk

v=1{Rd × Rℓ0 ∋ (θ, x) 7→ N k,θ
∞,v(x) ∈ R}) ⊆ Fd,ℓ0,1 it holds that

(

Rd × Rℓ0 ∋ (θ, x) 7→ b
k+1,θ
i + ∑

ℓk
j=1 w

k+1,θ
i,j max{N k,θ

∞,j(x), 0} ∈ R
)

∈ Fd,ℓ0,1. (4.42)

This and (4.40) assure that for all k ∈ N∩ (0, L) with (
⋃ℓk

i=1{Rd×Rℓ0 ∋ (θ, x) 7→ N k,θ
∞,i(x) ∈

R}) ⊆ Fd,ℓ0,1 it holds that

(

⋃ℓk+1
i=1

{

Rd × Rℓ0 ∋ (θ, x) 7→ N k+1,θ
∞,i (x) ∈ R

})

⊆ Fd,ℓ0,1. (4.43)

Induction thus proves (4.37). Note that (4.37) establishes (4.35). The proof of Proposi-
tion 4.4 is thus complete.

5 Piecewise polynomial functions

In this section we establish in Corollary 5.1 in Subsection 5.7 below that in the set-up of Set-
ting 3.1 in Subsection 3.1 above we have, under the assumption that the measure µ is ab-

solutely continuous with density p : [a, b]ℓ0 → R and the assumption that the density func-

tion p : [a, b]ℓ0 → R and every component of the target function f = ( f1, . . . , fℓL
) : [a, b]ℓ0 →

RℓL are piecewise polynomial in the sense of Definition 5.1 in Subsection 5.1 below, that

the risk function L∞ : [a, b]ℓ0 → R is semi-algebraic. In Section 6 below we will employ
Corollary 5.1 to conclude that for every ANN parameter vector θ ∈ Rd we have that the

risk function L∞ : [a, b]ℓ0 → R satisfies a generalized Kurdyka-Łojasiewicz inequality on
a neighbourhood of θ.

Throughout this work we consider fully connected feedforward ANNs. For different
network architectures such as convolutional neural networks (CNNs) or residual neural
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networks it might be possible to establish analogous results by suitably adapting our ar-
guments.

Our proof of Corollary 5.1 mainly relies on Proposition 4.3 in Subsection 4.7 above, on
Proposition 4.4 in Subsection 4.9 above, as well as on the fact that for all m ∈ N it holds
that functions in Fm,0,∞, are semi-algebraic according to Proposition 4.2 in Subsection 4.6
above.

Some of the concepts and results in this section are inspired by our previous article
Eberle et al. [28, Section 4]. In particular, Definition 5.1 is a slight extension of [28, Defini-
tion 4.9] and Corollary 5.1 extends [28, Corollary 4.10] from the situation of shallow ReLU
ANNs with one hidden layer to deep ReLU ANNs with an arbitrarily large number of
hidden layers.

It should also be noted that Corollary 5.1 is a novel contribution mainly due to the fact
that we consider the true risk defined by the integral over the entire input data. If one
considers the empirical risk (calculated from a finite set of input data) an analogous result
is already known, cf. Davis et al. [20, Corollary 5.11].

5.1 Piecewise polynomial functions

Definition 5.1 (Piecewise polynomial functions). Let d ∈ N, let A ⊆ Rd and B ⊆ R be sets,
and let f : A → B be a function. Then we say that f is piecewise polynomial if and only if there

exist n ∈ N, α1, α2, . . . , αn ∈ Rn×d, β1, β2, . . . , βn ∈ Rn, P1, P2, . . . , Pn ∈ Pd such that for all
x ∈ A it holds that

f (x) = ∑
n
i=1 Pi(x)1[0,∞)n(αix + βi) (5.1)

(cf. Definition 4.2).

5.2 Characterization results for piecewise polynomial functions

The following results, Lemma 5.1 to Proposition 5.1, are elementary consequences of the
definition of piecewise polynomial functions. They will be employed in the proof of Corol-
lary 5.1 to show that the risk function is semi-algebraic if the density function and every
component of the target function are piecewise polynomial.

Lemma 5.1. Let d ∈ N, let A ⊆ Rd be a set, and let f : A → R be a function. Then the following
three statements are equivalent:

(i) It holds that f is piecewise polynomial (cf. Definition 5.1).

(ii) There exist m, n ∈ N, α1, α2, . . . , αm ∈ Rn×d, β1, β2, . . . , βm ∈ Rn, P1, P2, . . . , Pm ∈ Pd

such that for all x ∈ A it holds that

f (x) = ∑
m
i=1 Pi(x)1[0,∞)n(αix + βi). (5.2)

(iii) There exist n ∈ N, m1, m2, . . . , mn ∈ N, α1 ∈ Rm1×d, α2 ∈ Rm2×d, . . . , αn ∈ Rmn×d,
β1 ∈ Rm1 , β2 ∈ Rm2 , . . . , βm ∈ Rmn , P1, P2, . . . , Pn ∈ Pd such that for all x ∈ A it holds
that

f (x) = ∑
n
i=1 Pi(x)1[0,∞)mi (αix + βi). (5.3)
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Proof of Lemma 5.1. Throughout this proof for every m ∈ N let e
(m)
1 , e

(m)
2 , . . . , e

(m)
m ∈ Rn

satisfy e
(m)
1 = (1, 0, . . . , 0), e

(m)
2 = (0, 1, 0, . . . , 0), . . . , e

(m)
m = (0, . . . , 0, 1) and for every

m, n ∈ N with m ≥ n let Am,n ∈ Rm×n satisfy for all x = (x1, . . . , xn) ∈ Rn that

Am,nx =
n

∑
i=1

xie
(m)
i . (5.4)

Observe that (5.4) ensures that for all n ∈ N, m1, m2, . . . , mn ∈ N, α1 ∈ Rm1×d, α2 ∈ Rm2×d,
. . . , αn ∈ Rmn×d, β1 ∈ Rm1 , β2 ∈ Rm2 , . . . , βm ∈ Rmn , P1, P2, . . . , Pn ∈ Pd, x ∈ A it holds
that

n

∑
i=1

Pi(x)1[0,∞)mi (αix + βi)

=
n

∑
i=1

[

Pmin{i,n}(x)
][

1

[0,∞)
mmin{i,n}

(

αmin{i,n}x + βmin{i,n}

)]

=
m1+...+mn

∑
i=1

[

Pmin{i,n}(x)1[1,n](i)
][

1

[0,∞)
mmin{i,n}

(

αmin{i,n}x + βmin{i,n}

)]

=
m1+...+mn

∑
i=1

[

Pmin{i,n}(x)1[1,n](i)
]

·
[

1[0,∞)m1+...+mn

([

Am1+...+mn,mmin{i,n}
αmin{i,n}

]

x +
[

Am1+...+mn,mmin{i,n}
βmin{i,n}

])]

. (5.5)

Combining this with (5.1) establishes that for all n ∈ N, m1, m2, . . . , mn ∈ N, α1 ∈ Rm1×d,

α2 ∈ Rm2×d, . . . , αn ∈ Rmn×d, β1 ∈ Rm1 , β2 ∈ Rm2 , . . . , βm ∈ Rmn , P1, P2, . . . , Pn ∈ Pd

with ∀ x ∈ A : f (x) = ∑
n
i=1 Pi(x)1[0,∞)mi (αix + βi) it holds that f is piecewise polynomial.

The proof of Lemma 5.1 is thus complete.

5.3 Sums and products of piecewise polynomial functions

Lemma 5.2. Let d ∈ N, let A ⊆ Rd be a set, and let f : A → R and g : A → R be piecewise
polynomial (cf. Definition 5.1). Then

(i) it holds that A ∋ x 7→ f (x) + g(x) ∈ R is piecewise polynomial and

(ii) it holds that A ∋ x 7→ f (x)g(x) ∈ R is piecewise polynomial.

Proof of Lemma 5.2. Note that (5.1), the assumption that f is piecewise polynomial, and
the assumption that g is piecewise polynomial ensure that there exist n, m ∈ N,

α1, α2, . . . , αn ∈ Rn×d, a1, a2, . . . , am ∈ Rm×d, β1, β2, . . . , βn ∈ Rn, b1, b2, . . . , bm ∈ Rm,
P1, P2, . . . , Pn,P1,P2, . . . ,Pm ∈ Pd which satisfy for all x ∈ A that

f (x) = ∑
n
i=1 Pi(x)1[0,∞)n(αix + βi) and g(x) = ∑

m
i=1 Pi(x)1[0,∞)m(aix + bi). (5.6)

Observe that (5.6) assures for all x ∈ A that

f (x) + g(x) =
[

∑
n
i=1 Pi(x)1[0,∞)n(αix + βi)

]

+
[

∑
m
i=1 Pi(x)1[0,∞)m(aix + bi)

]

(5.7)
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and

f (x)g(x) =
[

∑
n
i=1 Pi(x)1[0,∞)n(αix + βi)

][

∑
m
i=1 Pi(x)1[0,∞)m(aix + bi)

]

= ∑(i,j)∈{1,2,...,n}×{1,2,...,m}

[

Pi(x)Pj(x)
][

1[0,∞)n(αix + βi)1[0,∞)m(ajx + bj)
]

.

(5.8)

Combining this with Lemma 5.1 establishes items (i) and (ii). The proof of Lemma 5.2 is
thus complete.

5.4 Indicator functions as piecewise polynomial functions

Lemma 5.3. Let d ∈ N, a1, a2, . . . , ad ∈ R, b1 ∈ [a1, ∞), b2 ∈ [a2, ∞), . . . , bd ∈ [ad, ∞) and
let f : Rd → R satisfy for all x ∈ Rd that f (x) = 1[a1,b1]×...×[ad,bd]

(x). Then f is piecewise
polynomial (cf. Definition 5.1).

Proof of Lemma 5.3. Throughout this proof let α1, α2, . . . , α2d ∈ R(2d)×d satisfy for all i ∈
{1, 2, . . . , 2d}, x = (x1, . . . , xd) ∈ Rd that

αix = (x1, x2, . . . , xd,−x1,−x2, . . . ,−xd), (5.9)

let β1, β2, . . . , β2d ∈ R2d satisfy for all i ∈ {1, 2, . . . , 2d} that

βi = (−α1,−α2, . . . ,−αd, β1, β2, . . . , βd), (5.10)

and let Pi : Rd → R, i ∈ {1, 2, . . . , 2d}, satisfy for all i ∈ N ∩ (1, 2d], x ∈ Rd that P1(x) = 1
and Pi(x) = 0. Note that (5.9) and (5.10) ensure that

×d
i=1 [ai, bi]

=
{

x = (x1, . . . , xd) ∈ Rd :
(

∀ i ∈ {1, 2, . . . , d} : ai ≤ xi ≤ bi

)}

=
{

x = (x1, . . . , xd) ∈ Rd :
(

∀ i ∈ {1, 2, . . . , d} :
[

(

xi − ai ∈ [0, ∞)
)

,
(

−xi + bi ∈ [0, ∞)
)

])}

=
{

x ∈ Rd :
(

α1x + β1 ∈ [0, ∞)2d
)}

. (5.11)

Therefore, we obtain for all x ∈ Rd that

f (x) = 1{y∈Rd : α1y+β1∈[0,∞)2d}(x) = 1[0,∞)2d(α1x + β1) = P1(x)1[0,∞)2d(α1x + β1)

=
2d

∑
i=1

Pi(x)1[0,∞)2d(αix + βi). (5.12)

Combining this with the fact that P1, P2, . . . , P2d ∈ Pd establishes that f is piecewise poly-
nomial. The proof of Lemma 5.3 is thus complete.
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5.5 Extensions of piecewise polynomial functions

Lemma 5.4. Let d ∈ N, let A ⊆ Rd be a set, and let f : A → R be piecewise polynomial (cf.

Definition 5.1). Then there exists a piecewise polynomial F : Rd → R such that F|A = f .

Proof of Lemma 5.3. Observe that (5.1) and the assumption that f is piecewise polynomial

ensure that there exist n ∈ N, α1, α2, . . . , αn ∈ Rn×d, β1, β2, . . . , βn ∈ Rn, P1, P2, . . . , Pn ∈
Pd which satisfy for all x ∈ A that

f (x) = ∑
n
i=1 Pi(x)1[0,∞)n(αix + βi). (5.13)

In the following let F : Rd → R satisfy for all x ∈ Rd that

F(x) = ∑
n
i=1 Pi(x)1[0,∞)n(αix + βi). (5.14)

Note that (5.1), (5.13), and (5.14) assure that F is piecewise polynomial. Furthermore,
observe that (5.13) and (5.14) establish that F|A = f . The proof of Lemma 5.3 is thus
complete.

Proposition 5.1. Let d ∈ N, a1, a2, . . . , ad ∈ R, b1 ∈ [a1, ∞), b2 ∈ [a2, ∞), . . . , bd ∈ [ad, ∞),
A = [a1, b1]× . . . × [ad, bd], let f : A → R be piecewise polynomial, and let F : Rd → R satisfy

for all x ∈ A, y ∈ Rd\A that F(x) = f (x) and F(y) = 0 (cf. Definition 5.1). Then F is piecewise
polynomial.

Proof of Proposition 5.1. Throughout this proof let g : Rd → R satisfy for all x ∈ Rd that
g(x) = 1A(x). Note that Lemma 5.3 ensures that g is piecewise polynomial. Furthermore,

observe that Lemma 5.4 assures that there exists a piecewise polynomial f : Rd → R which
satisfies

f|A = f . (5.15)

Note that (5.15) shows for all x ∈ Rd that

f(x)g(x) = f(x)1A(x) = F(x). (5.16)

Moreover, observe that Lemma 5.2, the fact that f is piecewise polynomial, and the fact

that g is piecewise polynomial demonstrate that Rd ∋ x 7→ f(x)g(x) ∈ R is piecewise
polynomial. Combining this with (5.16) establishes that F is piecewise polynomial. The
proof of Proposition 5.1 is thus complete.

5.6 Piecewise polynomial functions as suitable piecewise rational functions

We next establish in Proposition 5.2 that every piecewise polynomial function in the sense
of Definition 5.1 is contained in a class of suitable piecewise rational functions introduced
in Definition 4.1.

Proposition 5.2. Let m, n ∈ N and let f : Rn → R be piecewise polynomial (cf. Definition 5.1).
Then

(

Rm × Rn ∋ (θ, x) 7→ f (x) ∈ R
)

∈ Fm,n,∞ (5.17)

(cf. Definition 4.1).
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Proof of Proposition 5.2. Note that the fact that for all N ∈ N, v = (v1, . . . , vN) ∈
RN it holds that 1[0,∞)N(v) = ∏

N
i=1 1[0,∞)(vi) assures that for all N ∈ N, α =

(αi,j)(i,j)∈{1,...,N}×{1,...,n} ∈ RN×n, β = (β1, . . . , βN) ∈ RN , P ∈ Pn, x = (x1, . . . , xn) ∈ Rn

it holds that

P(x)1[0,∞)N(αx + β) = P(x)
[

∏
N
i=1 1[0,∞)(βi + ∑

n
j=1 αi,jxj)

]

. (5.18)

Combining this with (4.1) demonstrates that for all N ∈ N, α ∈ RN×n, β ∈ RN , P ∈ Pn it
holds that

(

Rm × Rn ∋ (θ, x) 7→ P(x)1[0,∞)N(αx + β) ∈ R
)

∈ Fm,n,∞. (5.19)

This and (4.1) assure that for all N ∈ N, α1, α2, . . . , αN ∈ RN×n, β1, β2, . . . , βN ∈ RN ,
P1, P2, . . . , PN ∈ Pn it holds that

(

Rm × Rn ∋ (θ, x) 7→ ∑
N
i=1[Pi(x)1[0,∞)N(αix + βi)] ∈ R

)

∈ Fm,n,∞. (5.20)

Combining this and (5.1) establishes (5.17). The proof of Proposition 5.2 is thus complete.

5.7 Semi-algebraic risk functions in the training of deep ANNs

Finally, we combine the previous results to establish the main result of this section.

Corollary 5.1. Assume Setting 3.1, assume for all i ∈ {1, 2, . . . , ℓL} that fi is piecewise poly-

nomial, let p : [a, b]ℓ0 → R be piecewise polynomial, and assume for all E ∈ B([a, b]ℓ0 ) that
µ(E) =

∫

E p(x)dx (cf. Definition 5.1). Then L∞ is semi-algebraic (cf. Definition 4.4).

Proof of Corollary 5.1. Throughout this proof let F = (F1, . . . , FℓL
) : Rℓ0 → RℓL and

P : Rℓ0 → R satisfy for all i ∈ {1, 2, . . . , ℓL}, x ∈ Rℓ0 that

Fi(x) =

{

fi(x) : x ∈ [a, b]ℓ0 ,

0 : x /∈ [a, b]ℓ0 ,
and P(x) =

{

p(x) : x ∈ [a, b]ℓ0 ,

0 : x /∈ [a, b]ℓ0 .
(5.21)

Observe that Proposition 5.1 and (5.21) assure for all i ∈ {1, 2, . . . , ℓL} that Fi and P are
piecewise polynomial. Proposition 5.2 hence ensures for all i ∈ {1, 2, . . . , ℓL} that
{(

Rd × Rℓ0 ∋ (θ, x) 7→ Fi(x) ∈ R
)

,
(

Rd × Rℓ0 ∋ (θ, x) 7→ P(x) ∈ R
)}

⊆ Fd,ℓ0,∞ (5.22)

(cf. Definition 4.1). Furthermore, note that Proposition 4.4 and item (iv) in Lemma 4.1

demonstrate for all i ∈ {1, 2, . . . , ℓL} that (Rd × Rℓ0 ∋ (θ, x) 7→ N L,θ
∞,i (x) ∈ R) ∈ Fd,ℓ0,∞.

Combining this, (4.1), and (5.22) with item (v) in Lemma 4.1 establish that
(

Rd × Rℓ0 ∋ (θ, y) 7→ ∑
ℓL
i=1

[

(N L,θ
∞,i (y)− Fi(y))

2P(y)
]

∈ R
)

∈ Fd,ℓ0,∞. (5.23)

Proposition 4.3 and induction therefore prove that

(

Rd × R0 ∋ (θ, x) 7→
∫ b

a

∫ b
a · · ·

∫ b
a ∑

ℓL
i=1

[

(N L,θ
∞,i (y1, . . . , yℓ0

)

− Fi(y1, . . . , yℓ0
))2P(y1, . . . , yℓ0

)
]

dyℓ0
· · · dy2 dy1 ∈ R

)

∈ Fd,0,∞. (5.24)
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Moreover, observe that Fubini’s theorem and (3.6) show for all θ ∈ Rd that

L∞(θ) =
∫

[a,b]ℓ0 ‖N
L,θ
∞ (y)− F(y)‖2P(y)dy

=
∫ b

a

∫ b
a · · ·

∫ b
a ‖N L,θ

∞ (y1, . . . , yℓ0
)− F(y1, . . . , yℓ0

)‖2P(y1, . . . , yℓL
)dyd · · · dy2 dy1

=
∫ b

a

∫ b
a · · ·

∫ b
a ∑

ℓL
i=1

[

(N L,θ
∞,i (y1, . . . , yℓ0

)− Fi(y1, . . . , yℓ0
))2P(y1, . . . , yℓ0

)
]

dyℓ0
· · · dy2 dy1.

(5.25)

This and (5.24) disclose that (Rd × R0 ∋ (θ, x) 7→ L∞(θ) ∈ R) ∈ Fd,0,∞. Proposition 4.2
hence yields that L∞ is semi-algebraic. The proof of Corollary 5.1 is thus complete.

6 Generalized Kurdyka-Łojasiewicz inequalities for the training

of deep

ANNs

The main result of this section is Proposition 6.2 below, which reveals that under the as-
sumption that the distribution of the input data has a piecewise polynomial density and
that the target function is piecewise polynomial an appropriately generalized Kurdyka-
Łojasiewicz inequality for the risk function is satisfied. We prove Proposition 6.2 by com-
bining Bolte et al. [10, Theorem 3.1]) with the fact that the considered risk function L∞ is
semi-algebraic (cf. Corollary 5.1 above). Since [10, Theorem 3.1] is formulated for subana-
lytic functions (cf. Definition 6.4 below), we state in Proposition 6.1 below the well-known
fact that every semi-algebraic function is subanalytic. We also formulate in Lemma 6.1
below the fact that the nonsmooth slope defined in (6.3) below is lower semi-continuous,
which is well-known in the literature (see [10]). Only for completeness we include in this
article a detailed proof of Lemma 6.1. As a simple consequence of Lemma 6.1 we show
in Corollary 6.1 below that the Kurdyka-Łojasiewicz inequality always holds around non-
critical points, which is also known (cf. Remark 3.2 in [10]).

For ANNs with analytic activation functions the risk function was shown to be ana-
lytic in Dereich & Kassing [21, Theorem 4.2] (for an arbitrary compactly supported input
distribution). It therefore satisfies an analogous Kurdyka-Łojasiewicz inequality.

6.1 Semi-analytic and subanalytic sets

Definition 6.1 (Set of real analytic functions). Let n ∈ N and let U ⊆ Rn be an open set. Then
we denote by AU ⊆ C∞(U, R) the set of all real analytic functions from U to R.

For the next notions see, e.g., Bolte et al. [10, Definition 2.1] and Van den Dries &
Miller [69].

Definition 6.2 (Multidimensional semi-analytic sets). Let n ∈ N and let A ⊆ Rn be a set.
Then we say that A is an n-dimensional semi-analytic set if and only if for all v ∈ Rn there exist
M, N ∈ N, an open U ⊆ Rn, and (Pi,j,k)(i,j,k)∈{1,2,...,M}×{1,2,...,N}×{0,1} ⊆ AU such that v ∈ U
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and
A ∩ U =

⋃M
i=1

(

⋂N
j=1

{

x ∈ U : Pi,j,0(x) = 0 < Pi,j,1(x)
})

(6.1)

(cf. Definition 6.1).

Definition 6.3 (Multidimensional subanalytic sets). Let n ∈ N and let A ⊆ Rn be a set. Then
we say that A is an n-dimensional subanalytic set if and only if for all v ∈ A there exist m ∈ N,
an open U ⊆ Rn, and a bounded (n + m)-dimensional semi-analytic set B ⊆ Rn+m such that
v ∈ U and

A ∩ U = {x ∈ Rn : (∃ y ∈ Rm : (x, y) ∈ B)} (6.2)

(cf. Definition 6.2).

6.2 Subanalytic functions

Definition 6.4 (Subanalytic functions). Let m, n ∈ N and let f : Rm → Rn be a function.
Then we say that f is a subanalytic function (we say that f is subanalytic) if and only if it holds
that Graph( f ) is an (m + n)-dimensional subanalytic set (cf. Definition 6.3).

Proposition 6.1. Let m, n ∈ N and let f : Rm → Rn be semi-algebraic (cf. Definition 4.4). Then
f is subanalytic (cf. Definition 6.4).

Proof of Proposition 6.1. Note that the assumption that f is semi-algebraic demonstrates
that Graph( f ) is an (m + n)-dimensional semi-algebraic set (cf. Definition 4.3). Moreover,
it is well-known that every semi-algebraic set is subanalytic (cf., e.g., [69, Section 2.5]).
Hence, we obtain that Graph( f ) is an (m + n)-dimensional subanalytic set. The proof of
Proposition 6.1 is thus complete.

6.3 Lower semi-continuity of the nonsmooth slope

Lemma 6.1. Let d ∈ N, f ∈ C(Rd, R), let M : Rd → [0, ∞] satisfy for all θ ∈ Rd that

M(θ) = inf
({

r ∈ R : (∃ h ∈ (D f )(θ) : r = ‖h‖)
}

∪ {∞}
)

, (6.3)

and let θ = (θn)n∈N0
: N0 → Rd satisfy lim supn→∞ ‖θn − θ0‖ = 0 (cf. Definition 3.1). Then

lim infn→∞ M(θn) ≥ M(θ0).

Proof of Lemma 6.1. Throughout this proof let m ∈ [0, ∞] satisfy m = lim infn→∞ M(θn)
and assume without loss of generality that

m < ∞. (6.4)

Observe that (6.4) assures that there exists a strictly increasing N : N → N which satisfies

lim supn→∞ |M(θN(n))− m| = 0 and supn∈N M(θN(n)) < ∞. (6.5)

Note that (6.3) and (6.5) prove that there exists h = (hn)n∈N : N → Rd which satisfies for
all n ∈ N that

hn ∈ (D f )(θN(n)) and ‖hn‖ ≤ M(θN(n)) + n−1. (6.6)
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Observe that (6.5) and (6.6) demonstrate that there exist h ∈ Rd and a strictly increasing
M : N → N which satisfy

lim supn→∞ ‖hM(n) − h‖ = 0. (6.7)

Note that (6.6), (6.7), and the assumption that lim supn→∞ ‖θn − θ0‖ = 0 demonstrate that
lim supk→∞(‖hM(k) − h‖+ ‖θN(M(k)) − θ0‖) = 0 and ∀ k ∈ N : hM(k) ∈ (DL∞)(θN(M(k))).

Combining this and Lemma 3.4 (applied with n x d, f x f , x0 x θ0, (xk)k∈N x

(θN(M(k)))k∈N, y0 x h, (yk)k∈N x (hM(k))k∈N in the notation of Lemma 3.4) proves that

h ∈ (D f )(θ0). This, (6.3), (6.5), (6.6), and (6.7) show that

M(θ0) ≤ ‖h‖ = lim supn→∞ ‖hM(n)‖ ≤ lim supn→∞(M(θN(M(n))) + [M(n)]−1) = m.
(6.8)

The proof of Lemma 6.1 is thus complete.

Corollary 6.1. Let d ∈ N, f ∈ C(Rd, R), let M : Rd → [0, ∞] satisfy for all θ ∈ Rd that

M(θ) = inf
({

r ∈ R : (∃ h ∈ (D f )(θ) : r = ‖h‖)
}

∪ {∞}
)

, (6.9)

let ϑ ∈ Rd satisfy 0 /∈ (D f )(ϑ), and let a ∈ [0, 1) (cf. Definition 3.1). Then there exist ε,C ∈
(0, ∞) such that for all θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < ε} it holds that | f (θ)− f (ϑ)|a ≤ CM(θ).

Proof of Corollary 6.1. Observe that item (v) in Lemma 3.3, (6.9), and the assumption that
0 /∈ (D f )(ϑ) prove that M(ϑ) > 0. Combining this with Lemma 6.1 proves that there

exists ε ∈ (0, ∞) such that for all θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < ε} it holds that 0 <
M(ϑ)

2 ≤
M(θ). Furthermore, note that the assumption that f ∈ C(Rd, R) assures that there exists
ε ∈ (0, ∞) such that for all θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < ε} it holds that | f (θ) − f (ϑ)|a ≤ 1.
The proof of Corollary 6.1 is thus complete.

6.4 Generalized Kurdyka-Łojasiewicz inequalities for the training of deep ANNs

Proposition 6.2 (Generalized Łojasiewicz inequalities). Assume Setting 3.1, assume for all

i ∈ {1, 2, . . . , ℓL} that fi is piecewise polynomial, let p : [a, b]ℓ0 → R be piecewise polynomial,

assume for all E ∈ B([a, b]ℓ0) that µ(E) =
∫

E p(x)dx, and let ϑ ∈ Rd (cf. Definition 5.1). Then

there exist ε,C ∈ (0, ∞), a ∈ [0, 1) such that for all θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < ε}, α ∈ [a, 1] it
holds that

|L∞(θ)−L∞(ϑ)|α ≤ C‖G(θ)‖. (6.10)

Proof of Proposition 6.2. Throughout this proof for every ε ∈ (0, ∞) let Bε ⊆ Rd satisfy

Bε = {θ ∈ Rd : ‖θ − ϑ‖ < ε} (6.11)

and let M : Rd → [0, ∞] satisfy for all θ ∈ Rd that

M(θ) = inf
({

r ∈ R : (∃ h ∈ (DL∞)(θ) : r = ‖h‖)
}

∪ {∞}
)

(6.12)
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(cf. Definition 3.1). Observe that Proposition 3.3 implies for all θ ∈ Rd that G(θ) ∈
(DL∞)(θ). Combining this with (6.12) shows that for all θ ∈ Rd it holds that

M(θ) ≤ ‖G(θ)‖. (6.13)

Furthermore, note that Lemma 3.1 implies that

L∞ ∈ C(Rd, R). (6.14)

Therefore, we obtain for all ε ∈ (0, ∞), r ∈ [0, 1] that

supψ∈Bε

(

|L∞(ψ)−L∞(ϑ)|r
)

≤ max
{

1, supψ∈Bε
|L∞(ψ)−L∞(ϑ)|

}

< ∞. (6.15)

Moreover, observe that Corollary 5.1 assures that L∞ is semi-algebraic. Proposition 6.1
hence proves that L∞ is subanalytic. Combining this, (6.11), (6.12), (6.14), Corollary 6.1
(applied with f x L∞ in the notation of Corollary 6.1), and Bolte et al. [10, Theorem 3.1
and (4)] (applied with n x d, f x (Rd ∋ θ 7→ L∞(θ) ∈ R ∪ {∞}) in the notation of Bolte
et al. [10, Theorem 3.1]) ensures that there exist ε,C ∈ (0, ∞), a ∈ [0, 1) which satisfy for all
θ ∈ Bε that

|L∞(θ)−L∞(ϑ)|a ≤ CM(θ). (6.16)

Note that (6.13) and (6.16) assure for all θ ∈ Bε that |L∞(θ)− L∞(ϑ)|a ≤ C‖G(θ)‖. Com-
bining this with (6.15) demonstrates that for all θ ∈ Bε, α ∈ [a, 1] it holds that

|L∞(θ)−L∞(ϑ)|α ≤ |L∞(θ)−L∞(ϑ)|a
[

supψ∈Bε

(

|L∞(ψ)−L∞(ϑ)|α−a)]

≤ |L∞(θ)−L∞(ϑ)|a
[

max
{

1, supψ∈Bε
|L∞(ψ)−L∞(ϑ)|

}]

≤ C
[

max
{

1, supψ∈Bε
|L∞(ψ)−L∞(ϑ)|

}]

‖G(θ)‖ < ∞. (6.17)

The proof of Proposition 6.2 is thus complete.

7 Convergence analysis for solutions of GF differential equations

In Proposition 7.1 below we establish an abstract local convergence result for GF processes
under the assumption that a Kurdyka-Łojasiewicz inequality is satisfied. The arguments
used in the proof of Proposition 7.1 are essentially well-known in the scientific literature;
see, e.g., Kurdyka et al. [47, Section 1], Bolte et al. [10, Theorem 4.5], Absil et al. [1, Theorem
2.2], or our previous article Eberle et al. [28] (see also [22] for a version for SDEs).

The above mentioned works [1, 10, 22, 47] assume that the objective function is C1 or
satisfies some other regularity conditions (in [10] the objective function is required to be
lower-C2 or convex). Some works, e.g. [1], also assume a certain weak decrease condi-
tion for the objective function. These assumptions are not necessary for our proof of
Proposition 7.1. In fact, we do not even assume that G is a subgradient of the objec-
tive function L at every point. The only regularity we need is the chain rule L(Θt) =

L(Θ0)−
∫ t

0‖G(Θs)‖
2 ds for all t ∈ [0, ∞). Therefore, our result is not implied by the men-

tioned previous works.
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In Corollary 7.1 below we then prove a simplified version of Proposition 7.1. After-
wards, in Proposition 7.2 and Corollary 7.2 below we derive global convergence of every
non-divergent GF trajectory. Finally, in Theorem 7.1 below we combine Corollary 7.2 with
the Kurdyka-Łojasiewicz inequality for the risk function in Proposition 6.2 and the fact
that the generalized gradient is a limiting subdifferential of the risk function (cf. Proposi-
tion 3.3) to establish the convergence of GF in the considered deep ANN framework and,
thereby, prove Theorem 1.3 from the introduction.

7.1 Abstract local convergence results for GF processes

Proposition 7.1. Let d ∈ N, ϑ ∈ Rd, c ∈ R, C, ε ∈ (0, ∞), α ∈ (0, 1), Θ ∈ C([0, ∞), Rd),
L ∈ C(Rd, R), let G : Rd → Rd be measurable, assume for all t ∈ [0, ∞) that L(Θt) = L(Θ0)−
∫ t

0 ‖G(Θs)‖2 ds and Θt = Θ0 −
∫ t

0 G(Θs)ds, and assume for all θ ∈ Rd with ‖θ − ϑ‖ < ε that

|L(θ)−L(ϑ)|α ≤ C‖G(θ)‖, c = |L(Θ0)− L(ϑ)|, (7.1a)

C(1 − α)−1c1−α + ‖Θ0 − ϑ‖ < ε, (7.1b)

and inft∈{s∈[0,∞) : ∀ r∈[0,s] : ‖Θr−ϑ‖<ε} L(Θt) ≥ L(ϑ). Then there exists ψ ∈ L−1({L(ϑ)}) such
that

(i) it holds for all t ∈ [0, ∞) that ‖Θt − ϑ‖ < ε,

(ii) it holds for all t ∈ [0, ∞) that 0 ≤ L(Θt)−L(ψ) ≤ C2c2(1{0}(c) + C2c+ c2αt)−1, and

(iii) it holds for all t ∈ [0, ∞) that

‖Θt − ψ‖ ≤
∞

∫
t
‖G(Θs)‖ds ≤ C(1 − α)−1[L(Θt)−L(ψ)]1−α

≤ C3−2αc2−2α(1 − α)−1(1{0}(c) + C2c+ c2αt)α−1. (7.2)

The assumption that inft∈{s∈[0,∞) : ∀ r∈[0,s] : ‖Θr−ϑ‖<ε} L(Θt) ≥ L(ϑ) means that for all

t ∈ [0, ∞) which satisfy that the trajectory of Θ remains within distance ε of ϑ until time
t, it holds that L(Θt) ≥ L(ϑ). This assumption is in particular satisfied if ϑ is a local
minimum of L with ∀ θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < ε} : L(θ) ≥ L(ϑ). But the statement of
Proposition 7.1 also covers more general cases, since we only assume this lower bound for
the values L(Θt) and not for all values of L in a neighborhood of ϑ.

Proof of Proposition 7.1. Throughout this proof let L : [0, ∞) → R satisfy for all t ∈ [0, ∞)
that

L(t) = L(Θt)−L(ϑ), (7.3)

let B ⊆ Rd satisfy
B = {θ ∈ Rd : ‖θ − ϑ‖ < ε}, (7.4)

let T ∈ [0, ∞] satisfy
T = inf({t ∈ [0, ∞) : Θt /∈ B} ∪ {∞}), (7.5)
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let τ ∈ [0, T] satisfy
τ = inf({t ∈ [0, T) : L(t) = 0} ∪ {T}), (7.6)

let = (t)t∈[0,∞) : [0, ∞) → [0, ∞] satisfy for all t ∈ [0, ∞) that t =
∫ ∞

t ‖G(Θs)‖ds, and let

D ∈ R satisfy D = C2c(2−2α). In the first step of our proof of items (i), (ii), and (iii) we
show that for all t ∈ [0, ∞) it holds that

Θt ∈ B. (7.7)

For this we observe that (7.1), the triangle inequality, and the assumption that for all t ∈

[0, ∞) it holds that Θt = Θ0 −
∫ t

0 G(Θs)ds ensure that for all t ∈ [0, ∞) we have that

‖Θt − ϑ‖ ≤ ‖Θt − Θ0‖+ ‖Θ0 − ϑ‖

≤

∥

∥

∥

∥

∫ t

0
G(Θs)ds

∥

∥

∥

∥

+ ‖Θ0 − ϑ‖

≤
∫ t

0
‖G(Θs)‖ds + ‖Θ0 − ϑ‖

<

∫ t

0
‖G(Θs)‖ds − C(1 − α)−1|L(Θ0)−L(ϑ)|1−α + ε. (7.8)

To establish (7.7), it thus sufficient to prove that
∫ T

0 ‖G(Θs)‖ds ≤ C(1 − α)−1|L(Θ0) −

L(ϑ)|1−α. We will accomplish this by employing an appropriate differential inequality for
a fractional power of the function L in (7.3) (see (7.13) below for details). For this we need
several technical preparations. More formally, observe that (7.3) and the assumption that
for all t ∈ [0, ∞) it holds that

L(Θt) = L(Θ0)−
∫ t

0
‖G(Θs)‖

2 ds (7.9)

imply that for almost all t ∈ [0, ∞) it holds that L is differentiable at t and satisfies

L′(t) = d
dt (L(Θt)) = −‖G(Θt)‖

2. (7.10)

Moreover, note that the assumption that inft∈{s∈[0,∞) : ∀ r∈[0,s] : ‖Θr−ϑ‖<ε} L(Θt) ≥ L(ϑ) as-

sures for all t ∈ [0, T) that
L(t) ≥ 0. (7.11)

Combining this with (7.1), (7.3), and (7.6) demonstrates for all t ∈ [0, τ) that

0 < [L(t)]α = |L(Θt)−L(ϑ)|α ≤ C‖G(Θt)‖. (7.12)

The chain rule and (7.10) hence prove that for almost all t ∈ [0, τ) it holds that

d
dt ([L(t)]1−α) = (1 − α)[L(t)]−α(−‖G(Θt)‖

2)

≤ −(1 − α)C−1‖G(Θt)‖
−1‖G(Θt)‖

2

= −C−1(1 − α)‖G(Θt)‖. (7.13)
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Next observe that (7.9) ensures that [0, ∞) ∋ t 7→ L(t) ∈ R is absolutely continuous.
This and the fact that for all r ∈ (0, ∞) it holds that [r, ∞) ∋ y 7→ y1−α ∈ R is Lipschitz
continuous demonstrate that for all t ∈ [0, τ) it holds that [0, t] ∋ s 7→ [L(s)]1−α ∈ R is
absolutely continuous. Combining this with (7.13) shows that for all s, t ∈ [0, τ) with s ≤ t
it holds that
∫ t

s
‖G(Θu)‖ du ≤ −C(1 − α)−1([L(t)]1−α − [L(s)]1−α) ≤ C(1 − α)−1[L(s)]1−α. (7.14)

In the next step we note that (7.9) ensures that [0, ∞) ∋ t 7→ L(Θt) ∈ R is non-increasing.
This and (7.3) prove that L is non-increasing. Combining (7.6) and (7.11) hence implies
that for all t ∈ [τ, T) it holds that L(t) = 0. Therefore, we obtain for all t ∈ (τ, T) that

L′(t) = 0. (7.15)

This and (7.10) assure that for almost all t ∈ (τ, T) it holds that

G(Θt) = 0. (7.16)

Combining this with (7.14) demonstrates that for all s, t ∈ [0, T) with s ≤ t it holds that

∫ t

s
‖G(Θu)‖du ≤ C(1 − α)−1[L(s)]1−α. (7.17)

Hence, we obtain for all t ∈ [0, T) that

∫ t

0
‖G(Θu)‖du ≤ C(1 − α)−1[L(0)]1−α. (7.18)

In addition, observe that (7.1) assures that Θ0 ∈ B. Combining this with (7.5) proves that
T > 0. This, (7.18), and (7.1) demonstrate that

∫ T

0
‖G(Θu)‖du ≤ C(1 − α)−1[L(0)]1−α

< ε < ∞. (7.19)

Combining (7.5) and (7.8) hence assures that

T = ∞. (7.20)

This establishes (7.7). In the next step of our proof of items (i), (ii), and (iii) we verify that
Θt ∈ Rd, t ∈ [0, ∞), is convergent (see (7.22) below). For this observe that the assumption

that for all t ∈ [0, ∞) it holds that Θt = Θ0 −
∫ t

0 G(Θs)ds demonstrates that for all r, s, t ∈
[0, ∞) with r ≤ s ≤ t it holds that

‖Θt − Θs‖ =

∥

∥

∥

∥

∫ t

s
G(Θu)du

∥

∥

∥

∥

≤
∫ t

s
‖G(Θu)‖du ≤

∫ ∞

r
‖G(Θu)‖ du = r. (7.21)

Moreover, note that (7.19) and (7.20) assure that ∞ > 0 ≥ lim supr→∞ r = 0. Combining
this with (7.21) proves that there exist ψ ∈ Rd which satisfies

lim supt→∞‖Θt − ψ‖ = 0. (7.22)
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In the next step of our proof of items (i), (ii), and (iii) we show that L(Θt), t ∈ [0, ∞),
converges to L(ψ) with convergence order 1. We accomplish this bringing a suitable dif-
ferential inequality for the reciprocal of the function L in (7.3) into play (see (7.25) below
for details). More specifically, note that (7.10), (7.20), (7.5), and (7.1) demonstrate that for
almost all t ∈ [0, ∞) it holds that

L′(t) = −‖G(Θt)‖
2 ≤ −C−2[L(t)]2α . (7.23)

Hence, we obtain that L is non-increasing. This shows for all t ∈ [0, ∞) that L(t) ≤ L(0).
This and the fact that for all t ∈ [0, τ) it holds that L(t) > 0 show that for almost all
t ∈ [0, τ) we have that

L′(t) ≤ −C−2[L(t)](2α−2)[L(t)]2 ≤ −C−2[L(0)](2α−2)[L(t)]2 = −D−1[L(t)]2 . (7.24)

Therefore, we obtain that for almost all t ∈ [0, τ) it holds that

d

dt

(

D

L(t)

)

= −

(

DL′(t)

[L(t)]2

)

≥ 1. (7.25)

Moreover, observe that the fact that for all t ∈ [0, τ) it holds that [0, t] ∋ s 7→ L(s) ∈ (0, ∞)
is absolutely continuous proves that for all t ∈ [0, τ) we have that [0, t] ∋ s 7→ D[L(s)]−1 ∈
(0, ∞) is absolutely continuous. This and (7.25) imply for all t ∈ [0, τ) that D

L(t)
− D

L(0)
≥ t.

Hence, we obtain for all t ∈ [0, τ) that D
L(t)

≥ D
L(0)

+ t. Therefore, we get for all t ∈ [0, τ)

that D ( D
L(0)

+ t)−1 ≥ L(t). This implies for all t ∈ [0, τ) that

L(t) ≤ D (D[L(0)]−1 + t)−1 = C2c2−2α(C2c1−2α + t)−1 = C2c2(C2c+ c2αt)−1. (7.26)

The fact that for all t ∈ [τ, ∞) it holds that L(t) = 0 and (7.6) therefore prove that for all
t ∈ [0, ∞) it holds that

0 ≤ L(t) ≤ C2c2(1{0}(c) + C2c+ c2αt)−1. (7.27)

Next note that (7.22) and the assumption that L ∈ C(Rd, R) assure that lim supt→∞|L(Θt)−
L(ψ)| = 0. Combining this with (7.27) demonstrates that L(ψ) = L(ϑ). This and (7.27)
ensure for all t ∈ [0, ∞) that

0 ≤ L(Θt)−L(ψ) ≤ C2c2(1{0}(c) + C2c+ c2αt)−1. (7.28)

In the final step of our proof of items (i), (ii), and (iii) we establish convergence rates for
the real numbers ‖Θt − ψ‖, t ∈ [0, ∞). Observe that (7.22), (7.21), and (7.17) assure for all
t ∈ [0, ∞) that

‖Θt − ψ‖ = ‖Θt − [lims→∞ Θs]‖ = lims→∞‖Θt − Θs‖ ≤ t ≤ C(1 − α)−1[L(t)]1−α. (7.29)

This and (7.28) ensure for all t ∈ [0, ∞) that

‖Θt − ψ‖ ≤ t ≤ C(1 − α)−1[L(Θt)−L(ψ)]1−α

≤ C(1 − α)−1
[

C2c2(1{0}(c) + C2c+ c2αt)−1
]1−α

= C3−2αc2−2α(1 − α)−1(1{0}(c) + C2c+ c2αt)α−1. (7.30)
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Combining this with (7.7) and (7.28) establishes items (i), (ii), and (iii). The proof of Propo-
sition 7.1 is thus complete.

Corollary 7.1. Let d ∈ N, ϑ ∈ Rd, c ∈ [0, 1], C, ε ∈ (0, ∞), α ∈ (0, 1), Θ ∈ C([0, ∞), Rd),
L ∈ C(Rd, R), let G : Rd → Rd be measurable, assume for all t ∈ [0, ∞) that L(Θt) = L(Θ0)−
∫ t

0 ‖G(Θs)‖2 ds and Θt = Θ0 −
∫ t

0 G(Θs)ds, and assume for all θ ∈ Rd with ‖θ − ϑ‖ < ε that

|L(θ)−L(ϑ)|α ≤ C‖G(θ)‖, c = |L(Θ0)− L(ϑ)|, (7.31a)

C(1 − α)−1c1−α + ‖Θ0 − ϑ‖ < ε, (7.31b)

and inft∈{s∈[0,∞) : ∀ r∈[0,s] : ‖Θr−ϑ‖<ε} L(Θt) ≥ L(ϑ). Then there exists ψ ∈ L−1({L(ϑ)}) such

that for all t ∈ [0, ∞) it holds that ‖Θt − ϑ‖ < ε, 0 ≤ L(Θt)−L(ψ) ≤ (1 + C−2t)−1, and

‖Θt − ψ‖ ≤ ∫∞
t ‖G(Θs)‖ ds ≤ C(1 − α)−1(1 + C−2t)α−1. (7.32)

Proof of Corollary 7.1. Observe that Proposition 7.1 ensures that exists ψ ∈ L−1({L(ϑ)})
which satisfies that

(i) it holds for all t ∈ [0, ∞) that ‖Θt − ϑ‖ < ε,

(ii) it holds for all t ∈ [0, ∞) that 0 ≤ L(Θt)−L(ψ) ≤ C2c2(1{0}(c) + C2c+ c2αt)−1, and

(iii) it holds for all t ∈ [0, ∞) that

‖Θt − ψ‖ ≤
∞

∫
t
‖G(Θs)‖ds ≤ C(1 − α)−1[L(Θt)−L(ψ)]1−α

≤ C3−2αc2−2α(1 − α)−1(1{0}(c) + C2c+ c2αt)α−1. (7.33)

Note that item (ii) and the assumption that c ≤ 1 imply that for all t ∈ [0, ∞) it holds that

0 ≤ L(Θt)−L(ψ) ≤ c2(C−2
1{0}(c) + c+ C−2c2αt)−1 ≤ (1 + C−2t)−1. (7.34)

This and item (iii) ensure that for all t ∈ [0, ∞) it holds that

‖Θt − ψ‖ ≤
∞

∫
t
‖G(Θs)‖ds ≤ C(1 − α)−1[L(Θt)− L(ψ)]1−α

≤ C(1 − α)−1(1 + C−2t)α−1. (7.35)

Combining this with item (i) and (7.34) establishes (7.32). The proof of Corollary 7.1 is
thus complete.

7.2 Abstract global convergence results for GF processes

We next employ Corollary 7.1 to establish under a Kurdyka-Łojasiewicz assumption the
convergence of every non-divergent GF trajectory. To prove Proposition 7.2 we note that
the trajectory must have a convergent subsequence with limit ϑ ∈ Rd. Hence, for a suffi-
ciently large time the GF reaches a neighborhood of ϑ where the conditions of Corollary 7.1
in (7.31) are satisfied, and thus we get convergence of the entire trajectory.
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Proposition 7.2. Let d ∈ N, Θ ∈ C([0, ∞), Rd), L ∈ C(Rd, R), let G : Rd → Rd be measur-
able, assume that for all ϑ ∈ Rd there exist ε,C ∈ (0, ∞), α ∈ (0, 1) such that for all θ ∈ Rd with
‖θ − ϑ‖ < ε it holds that |L(θ)−L(ϑ)|α ≤ C‖G(θ)‖, and assume for all t ∈ [0, ∞) that

lim infs→∞‖Θs‖ < ∞, L(Θt) = L(Θ0)−
∫ t

0 ‖G(Θs)‖2 ds, (7.36a)

Θt = Θ0 −
∫ t

0
G(Θs)ds. (7.36b)

Then there exist ϑ ∈ Rd, C, τ, β ∈ (0, ∞) such that for all t ∈ [τ, ∞) it holds that

‖Θt − ϑ‖ ≤
(

1 + C−1(t − τ)
)−β

and 0 ≤ L(Θt)−L(ϑ) ≤
(

1 + C−1(t − τ)
)−1

.
(7.37)

Proof of Proposition 7.2. Observe that (7.36) implies that [0, ∞) ∋ t 7→ L(Θt) ∈ R is non-
increasing. Therefore, we obtain that there exists m ∈ [−∞, ∞) which satisfies

m = lim supt→∞ L(Θt) = lim inft→∞ L(Θt) = inft∈[0,∞) L(Θt). (7.38)

Furthermore, note that that the assumption that lim inft→∞‖Θt‖ < ∞ ensures that there
exist ϑ ∈ Rd and δ = (δn)n∈N : N → [0, ∞) which satisfy

lim infn→∞ δn = ∞ and lim supn→∞‖Θδn
− ϑ‖ = 0. (7.39)

Observe that (7.38), (7.39), and the fact that L is continuous show that

L(ϑ) = m ∈ R and ∀ t ∈ [0, ∞) : L(Θt) ≥ L(ϑ). (7.40)

Next let ε,C ∈ (0, ∞), α ∈ (0, 1) satisfy for all θ ∈ Rd with ‖θ − ϑ‖ < ε that

|L(θ)−L(ϑ)|α ≤ C‖G(θ)‖. (7.41)

Note that (7.39) and the fact that L is continuous demonstrate that there exist n ∈ N,
c ∈ [0, 1] which satisfy

c = |L(Θδn
)−L(ϑ)| and C(1 − α)−1c1−α + ‖Θδn

− ϑ‖ < ε. (7.42)

Next let Φ : [0, ∞) → Rd satisfy for all t ∈ [0, ∞) that

Φt = Θδn+t. (7.43)

Observe that (7.36), (7.40), and (7.43) assure that for all t ∈ [0, ∞) it holds that

L(Φt) = L(Φ0)−
∫ t

0‖G(Φs)‖
2 ds, Φt = Φ0 −

∫ t
0 G(Φs)ds, and L(Φt) ≥ L(ϑ).

(7.44)
Combining this with (7.41), (7.42), (7.43), and Corollary 7.1 (applied with Θ x Φ in the
notation of Corollary 7.1) establishes that there exists ψ ∈ L−1({L(ϑ)}) which satisfies for
all t ∈ [0, ∞) that

0 ≤ L(Φt)−L(ψ) ≤ (1 + C−2t)−1 and ‖Φt − ψ‖ ≤ C(1 − α)−1(1 + C−2t)α−1.
(7.45)
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Note that (7.43) and (7.45) assure for all t ∈ [0, ∞) that 0 ≤ L(Θδn+t) − L(ψ) ≤ (1 +

C−2t)−1 and ‖Θδn+t −ψ‖ ≤ C(1− α)−1(1+C−2t)α−1. Hence, we obtain for all τ ∈ [δn, ∞),
t ∈ [τ, ∞) that

0 ≤ L(Θt)−L(ψ) ≤ (1 + C−2(t − δn))
−1

= (1 + C−2(t − τ) + C−2(τ − δn))
−1

≤ (1 + C−2(t − τ))−1 (7.46)

and

‖Θt − ψ‖ ≤ C(1 − α)−1(1 + C−2(t − δn))
α−1

=
[

[

C(1 − α)−1]
1

α−1 (1 + C−2(t − δn))
]α−1

=

[

[

C(1 − α)−1]
1

α−1
[

1 + C−2(τ − δn)
]

+
[

[

C(1 − α)−1
]

1
1−α C2

]−1
(t − τ)

]α−1

.

(7.47)

Next let C , τ ∈ (0, ∞) satisfy

C = max
{

C2,
[

C(1 − α)−1
]

1
1−αC2

}

and τ = δn + C2
[

C(1 − α)−1]
1

1−α . (7.48)

Observe that (7.47) and (7.48) demonstrate for all t ∈ [τ, ∞) that

0 ≤ L(Θt)−L(ψ) ≤ (1 + C−2(t − τ))−1 ≤ (1 + C−1(t − τ))−1 (7.49)

and

‖Θt − ψ‖ ≤
[

[

C(1 − α)−1]
1

α−1
[

1 + C−2(τ − δn)
]

+ C−1(t − τ)
]α−1

=
[

[

C(1 − α)−1]
1

α−1
[

1 +
[

C(1 − α)−1]
1

1−α
]

+ C−1(t − τ)
]α−1

≤
[

1 + C−1(t − τ)
]α−1

. (7.50)

The proof of Proposition 7.2 is thus complete.

The next result, Corollary 7.2, is a simplified version of Proposition 7.2 where the suffi-
ciently large finite time τ ∈ [0, ∞) is incorporated in the constant C .

Corollary 7.2. Let d ∈ N, Θ ∈ C([0, ∞), Rd), L ∈ C(Rd, R), let G : Rd → Rd be measurable,
assume that for all ϑ ∈ Rd there exist ε,C ∈ (0, ∞), α ∈ (0, 1) such that for all θ ∈ Rd with
‖θ − ϑ‖ < ε it holds that |L(θ)−L(ϑ)|α ≤ C‖G(θ)‖, and assume for all t ∈ [0, ∞) that

lim infs→∞‖Θs‖ < ∞, L(Θt) = L(Θ0)−
∫ t

0 ‖G(Θs)‖2 ds, (7.51a)

Θt = Θ0 −
∫ t

0
G(Θs)ds. (7.51b)

Then there exist ϑ ∈ Rd, C , β ∈ (0, ∞) which satisfy for all t ∈ [0, ∞) that

‖Θt − ϑ‖ ≤ C (1 + t)−β and 0 ≤ L(Θt)−L(ϑ) ≤ C (1 + t)−1. (7.52)
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Proof of Corollary 7.2. Note that Proposition 7.2 demonstrates that there exist ϑ ∈ Rd, C, τ, β ∈
(0, ∞) which satisfy for all t ∈ [τ, ∞) that

‖Θt − ϑ‖ ≤
(

1 + C−1(t − τ)
)−β

and 0 ≤ L(Θt)−L(ϑ) ≤
(

1 + C−1(t − τ)
)−1

.
(7.53)

In the following let C ∈ (0, ∞) satisfy

C = max
{

1 + τ, (1 + τ)β,C,Cβ, (1 + τ)β
(

sups∈[0,τ]‖Θs − ϑ‖
)

, (1 + τ)|L(Θ0)−L(ϑ)|
}

.

(7.54)
Observe that (7.53), (7.54), and the fact that [0, ∞) ∋ t 7→ L(Θt) ∈ R is non-increasing
show for all t ∈ [0, τ] that

‖Θt − ϑ‖ ≤ sups∈[0,τ]‖Θs − ϑ‖ ≤ C (1 + τ)−β ≤ C (1 + t)−β (7.55)

and
0 ≤ L(Θt)−L(ϑ) ≤ L(Θ0)−L(ϑ) ≤ C (1 + τ)−1 ≤ C (1 + t)−1. (7.56)

Furthermore, note that (7.53) and (7.54) imply for all t ∈ [τ, ∞) that

‖Θt − ϑ‖ ≤
(

1 + C−1(t − τ)
)−β

= C
(

C
1/β + C

1/βC−1(t − τ)
)−β

≤ C
(

C
1/β + t − τ

)−β
≤ C (1 + t)−β. (7.57)

Moreover, observe that (7.53) and (7.54) demonstrate for all t ∈ [τ, ∞) that

0 ≤ L(Θt)−L(ϑ) ≤ C
(

C + C−1C (t − τ)
)−1

≤ C
(

C − τ + t
)−1

≤ C (1 + t)−1. (7.58)

The proof of Corollary 7.2 is thus complete.

7.3 Convergence of GF processes in the training of deep ANNs

Due to the Kurdyka-Łojasiewicz inequality for the risk function from Proposition 6.2 we
are now able to apply Corollary 7.2 to the risk function L∞ from Setting 3.1.

Theorem 7.1. Assume Setting 3.1, assume for all i ∈ {1, 2, . . . , ℓL} that fi is piecewise polyno-

mial, let p : [a, b]ℓ0 → R be piecewise polynomial, assume for all E ∈ B([a, b]ℓ0) that µ(E) =
∫

E p(x)dx, and let Θ ∈ C([0, ∞), Rd) satisfy lim inft→∞‖Θt‖ < ∞ and ∀ t ∈ [0, ∞) : Θt =

Θ0 −
∫ t

0 G(Θs)ds (cf. Definition 5.1). Then there exist ϑ ∈ Rd, C , β ∈ (0, ∞) with 0 ∈
(DL∞)(ϑ) such that for all t ∈ [0, ∞) it holds that

‖Θt − ϑ‖ ≤ C (1 + t)−β and 0 ≤ L∞(Θt)−L∞(ϑ) ≤ C (1 + t)−1 (7.59)

(cf. Definition 3.1).
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Proof of Theorem 7.1. Note that Proposition 3.1 shows that G is measurable. Furthermore,
observe that [36, Lemma 3.7] ensures that for all t ∈ [0, ∞) it holds that

L∞(Θt) = L∞(Θ0)−
∫ t

0
‖G(Θs)‖

2 ds. (7.60)

Moreover, note that Lemma 3.1 assures that

L∞ ∈ C(Rd, R). (7.61)

In addition, observe that Proposition 6.2 shows that for all ϑ ∈ Rd there exist ε,C ∈ (0, ∞),
α ∈ (0, 1) such that for all θ ∈ Rd with ‖θ − ϑ‖ < ε it holds that |L∞(θ)− L∞(ϑ)|α ≤
C‖G(θ)‖. Corollary 7.2, the fact that G is measurable, (7.60), and (7.61) therefore demon-
strate that there exist ϑ ∈ Rd, C , β ∈ (0, ∞) which satisfy for all t ∈ [0, ∞) that

‖Θt − ϑ‖ ≤ C (1 + t)−β and 0 ≤ L∞(Θt)−L∞(ϑ) ≤ C (1 + t)−1. (7.62)

Furthermore, note that (7.60) demonstrates that
∫ ∞

0 ‖G(Θs)‖
2 ds < ∞. Hence, we ob-

tain lim infs→∞‖G(Θs)‖ = 0. This implies that there exists a strictly increasing τ =
(τn)n∈N : N → [0, ∞) which satisfies

lim infn→∞ τn = ∞ and lim supn→∞‖G(Θτn)‖ = 0. (7.63)

Moreover, observe that (7.62) assures that lim supt→∞ ‖Θt − ϑ‖ = 0. Combining this with
(7.63) shows that

lim supn→∞‖G(Θτn)‖ = lim supn→∞‖Θτn − ϑ‖ = 0. (7.64)

In addition, note that Proposition 3.3 assures that for all θ ∈ Rd it holds that G(θ) ∈
(DL∞)(θ). Therefore, we obtain for all n ∈ N that

G(Θτn) ∈ (DL∞)(Θτn). (7.65)

Combining this and (7.64) with Lemma 3.4 demonstrates that 0 ∈ (DL∞)(ϑ). Combining
this with (7.62) establishes (7.59). The proof of Theorem 7.1 is thus complete.

8 Convergence analysis for GD processes

In this section we establish in Proposition 8.1 below an abstract local convergence result
for GD under a Kurdyka-Łojasiewicz assumption. In the scientific literature related ab-
stract convergence results for GD type processes under a Łojasiewicz assumption can be
found, e.g., in Absil et al. [1], Attouch & Bolte [3], and Dereich & Kassing [21]. Similar
arguments have recently been employed in the analysis of optimization algorithms for
tensor decomposition [70], deep neural networks [20], and residual neural networks [71].
The latter two works consider the empirical risk, which is measured with respect to a fi-
nite set of training data, while we focus on the true risk defined as the expectation over
the entire input distribution.
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Except for [70] the above mentioned works prove convergence of GD type processes to
a critical point, but do not show explicit convergence rates. On the other hand, the authors
of [70] consider block coordinate descent under the assumption that the objective function
is convex with respect to each block. This property is in general not satisfied for objective
functions that arise in the training of DNNs with ReLU activation. The novel contribution
of Proposition 8.1 is to establish a precise convergence rate with explicit constants and
without such convexity assumptions.

To prove Proposition 8.1 we transfer the ideas from the continuous-time setting in
Section 7 to the discrete-time setting. In addition, we require the descent statement in
Lemma 8.1 below. Lemma 8.1 below is well-known, see, e.g., Lei et al. [50, Lemma 1],
Attouch et al. [4, Lemma 3.1], or Karimi et al. [45]. The elementary proof is only included
for completeness.

In Corollaries 8.3 and 8.4 below we establish two simplified versions of Proposition 8.1,
and as a consequence we obtain in Corollary 8.5 below the convergence of GD with ran-
dom initializations in an abstract setting. Afterwards, in Proposition 8.3 below we derive
the convergence of GD with random initializations in the considered deep ANN frame-
work in Setting 3.1 under the assumption that there exists a global minimum of the risk
function around which suitable regularity assumptions are satisfied. Our proof of Propo-
sition 8.3 also uses the ANN approximation result in Proposition 8.2 below which, in turn,
relies on the universal approximation theorem; cf., e.g., Leshno et al. [51], Cybenko [19],
Hornik [35], Lu et al. [54], and Shen et al. [66]. As a consequence of Proposition 8.3 we
obtain Theorem 8.1 below and, thereby, prove Theorem 1.4 from the introduction. Finally,
in Proposition 8.4 below we combine Proposition 8.3 with the existence result for global
minima in Corollary 2.6 to establish the convergence of GD with random initializations in
the case of shallow ANNs. As a consequence of Proposition 8.4 we derive Corollary 8.6
below and, thereby, prove Theorem 1.2 from the introduction.

8.1 One-step descent property for GD processes

Lemma 8.1. Let d ∈ N, L ∈ R, let U ⊆ Rd be open and convex, let f ∈ C1(U, R), and assume
for all x, y ∈ U that ‖(∇ f )(x)− (∇ f )(y)‖ ≤ L‖x − y‖. Then it holds for all x, y ∈ U that

f (y) ≤ f (x) + 〈(∇ f )(x), y − x〉+ L
2 ‖x − y‖2. (8.1)

Proof of Lemma 8.1. Observe that the fundamental theorem of calculus, the Cauchy-Schwarz
inequality, and the assumption that for all x, y ∈ U it holds that ‖(∇ f )(x) − (∇ f )(y)‖ ≤
L‖x − y‖ assure that for all x, y ∈ U we have that

f (y)− f (x) =
[

f (x + r(y − x))
]r=1

r=0

=
∫ 1

0
〈(∇ f )(x + r(y − x)), y − x〉dr

= 〈(∇ f )(x), y − x)〉+
∫ 1

0
〈(∇ f )(x + r(y − x))− (∇ f )(x), y − x〉dr
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≤ 〈(∇ f )(x), y − x)〉+
∫ 1

0
|〈(∇ f )(x + r(y − x))− (∇ f )(x), y − x〉|dr

≤ 〈(∇ f )(x), y − x)〉+

[

∫ 1

0
‖(∇ f )(x + r(y − x))− (∇ f )(x)‖ dr

]

‖y − x‖

≤ 〈(∇ f )(x), y − x)〉+ L‖y − x‖

[

∫ 1

0
‖r(y − x)‖dr

]

= 〈(∇ f )(x), y − x)〉+ L
2 ‖x − y‖2. (8.2)

The proof of Lemma 8.1 is thus complete.

Corollary 8.1. Let d ∈ N, L, γ ∈ R, let U ⊆ Rd be open and convex, let f ∈ C1(U, R), and
assume for all x, y ∈ U that ‖(∇ f )(x) − (∇ f )(y)‖ ≤ L‖x − y‖. Then it holds for all x ∈ U
with x − γ(∇ f )(x) ∈ U that

f (x − γ(∇ f )(x)) ≤ f (x) + γ
( Lγ

2 − 1
)

‖(∇ f )(x)‖2. (8.3)

Proof of Corollary 8.1. Note that Lemma 8.1 ensures for all x ∈ U with x − γ(∇ f )(x) ∈ U
that

f (x − γ(∇ f )(x)) ≤ f (x) + 〈(∇ f )(x),−γ(∇ f )(x)〉 + L
2 ‖γ(∇ f )(x)‖2

= f (x)− γ‖(∇ f )(x)‖2 + Lγ2

2 ‖(∇ f )(x)‖2. (8.4)

This establishes (8.3). The proof of Corollary 8.1 is thus complete.

Corollary 8.2. Let d ∈ N, L ∈ (0, ∞), γ ∈ [0, L−1], let U ⊆ Rd be open and convex, let
f ∈ C1(U, R), and assume for all x, y ∈ U that ‖(∇ f )(x) − (∇ f )(y)‖ ≤ L‖x − y‖. Then it
holds for all x ∈ U with x − γ(∇ f )(x) ∈ U that

f (x − γ(∇ f )(x)) ≤ f (x)− γ
2 ‖(∇ f )(x)‖2 ≤ f (x). (8.5)

Proof of Corollary 8.2. Observe that Corollary 8.1, the fact that γ ≥ 0, and the fact that
Lγ
2 − 1 ≤ − 1

2 establish (8.5). The proof of Corollary 8.2 is thus complete.

8.2 Abstract local convergence results for GD processes

Proposition 8.1. Let d ∈ N, c ∈ R, ε, L,C ∈ (0, ∞), α ∈ (0, 1), γ ∈ (0, L−1], ϑ ∈ Rd, let
B ⊆ Rd satisfy B = {θ ∈ Rd : ‖θ − ϑ‖ < ε}, let L ∈ C(Rd, R) satisfy L|B ∈ C1(B, R),
let G : Rd → Rd satisfy for all θ ∈ B that G(θ) = (∇L)(θ), assume G(ϑ) = 0, assume for all
θ1, θ2 ∈ B that ‖G(θ1)− G(θ2)‖ ≤ L‖θ1 − θ2‖, let Θ : N0 → Rd satisfy for all n ∈ N0 that
Θn+1 = Θn − γG(Θn), and assume for all θ ∈ B that

|L(θ)−L(ϑ)|α ≤ C‖G(θ)‖, c = |L(Θ0)− L(ϑ)|, (8.6a)

2C(1 − α)−1c1−α + ‖Θ0 − ϑ‖ <
ε

γL+1 , (8.6b)

and infn∈{m∈N0 : ∀ k∈N0∩[0,m] : Θk∈B} L(Θn) ≥ L(ϑ). Then there exists ψ ∈ L−1({L(ϑ)}) ∩

G−1({0}) such that
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(i) it holds for all n ∈ N0 that Θn ∈ B,

(ii) it holds for all n ∈ N0 that 0 ≤ L(Θn)−L(ψ) ≤ 2C2c2(1{0}(c) + c2αnγ + 2C2c)−1, and

(iii) it holds for all n ∈ N0 that

‖Θn − ψ‖ ≤ ∑
∞
k=n‖Θk+1 − Θk‖ ≤ 2C(1 − α)−1|L(Θn)−L(ψ)|1−α

≤ 22−αC3−2αc2−2α(1 − α)−1(1{0}(c) + c2αnγ + 2C2c)α−1. (8.7)

Observe that the assumption that infn∈{m∈N0 : ∀ k∈N0∩[0,m] : Θk∈B} L(Θn) ≥ L(ϑ) is in

particular satisfied if ϑ is a local minimum of L with ∀ θ ∈ B : L(θ) ≥ L(ϑ). Hence Propo-
sition 8.1 implies as a consequence a local convergence result of GD to a local minimum.
But our assumption also covers more general cases, since we only require an estimate on
the values of L(Θn) and not for all values L(θ) with θ ∈ B.

Proof of Proposition 8.1. Throughout this proof let T ∈ N0 ∪ {∞} satisfy

T = inf({n ∈ N0 : Θn /∈ B} ∪ {∞}), (8.8)

let L : N0 → R satisfy for all n ∈ N0 that L(n) = L(Θn)− L(ϑ), and let τ ∈ N0 ∪ {∞}
satisfy

τ = inf({n ∈ N0 ∩ [0, T) : L(n) = 0} ∪ {T}). (8.9)

In the first step of our proof we verify that T = ∞, i.e., that the Gd iterates remain inside
the neighborhood B at all times. Note that the assumption that G(ϑ) = 0 implies for all
θ ∈ B that

γ‖G(θ)‖ = γ‖G(θ)− G(ϑ)‖ ≤ γL‖θ − ϑ‖. (8.10)

This, the fact that ‖Θ0 − ϑ‖ < ε, and the fact that

‖Θ1 − ϑ‖ ≤ ‖Θ1 − Θ0‖+ ‖Θ0 − ϑ‖

= γ‖G(Θ0)‖+ ‖Θ0 − ϑ‖

≤ (γL + 1)‖Θ0 − ϑ‖ < ε (8.11)

ensure that T ≥ 2. Next observe that the assumption that

inf
n∈{m∈N0 : ∀ k∈N0∩[0,m] : Θk∈B}

L(Θn) ≥ L(ϑ) (8.12)

proves for all n ∈ N0 ∩ [0, T) that L(n) ≥ 0. In addition, note that the fact that B ⊆ Rd is
open and convex, Corollary 8.2, and (8.6) demonstrate for all n ∈ N0 ∩ [0, T − 1) that

L(n + 1)− L(n) = L(Θn+1)−L(Θn) ≤ −γ
2 ‖G(Θn)‖

2

= − 1
2‖G(Θn)‖‖γG(Θn)‖

= − 1
2‖G(Θn)‖‖Θn+1 − Θn‖

≤ −(2C)−1|L(Θn)−L(ϑ)|α‖Θn+1 − Θn‖

= −(2C)−1[L(n)]α‖Θn+1 − Θn‖ ≤ 0. (8.13)
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Therefore, we obtain that N0 ∩ [0, T) ∋ n 7→ L(n) ∈ [0, ∞) is non-increasing. Combining
this with (8.9) shows for all n ∈ N0 ∩ [τ, T) that L(n) = 0. This and (8.13) demonstrate

for all n ∈ N0 ∩ [τ, T − 1) that 0 = L(n + 1)− L(n) ≤ −γ
2 ‖G(Θn)‖

2 ≤ 0. The fact that
γ > 0 therefore assures for all n ∈ N0 ∩ [τ, T − 1) that G(Θn) = 0. Hence, we obtain for
all n ∈ N0 ∩ [τ, T) that

Θn = Θτ. (8.14)

In addition, observe that (8.9) and (8.13) ensure for all n ∈ N0 ∩ [0, τ) ∩ [0, T − 1) that

‖Θn+1 − Θn‖ ≤
2C(L(n)− L(n + 1))

[L(n)]α
= 2C

∫ L(n)

L(n+1)
[L(n)]−α du

≤ 2C
∫ L(n)

L(n+1)
u−α du =

2C
(

[L(n)]1−α − [L(n + 1)]1−α
)

1 − α
. (8.15)

This and (8.14) show for all n ∈ N0 ∩ [0, T − 1) that

‖Θn+1 − Θn‖ ≤
2C
(

[L(n)]1−α − [L(n + 1)]1−α
)

1 − α
. (8.16)

Combining this with the triangle inequality proves for all m, n ∈ N0 ∩ [0, T) with m ≤ n
that

‖Θn − Θm‖ ≤
n−1

∑
k=m

‖Θk+1 − Θk‖

≤
2C

1 − α

[

n−1

∑
k=m

(

[L(k)]1−α − [L(k + 1)]1−α
)

]

=
2C
(

[L(m)]1−α − [L(n)]1−α
)

1 − α
≤

2C[L(m)]1−α

1 − α
. (8.17)

This and (8.6) demonstrate for all n ∈ N0 ∩ [0, T) that

‖Θn − Θ0‖ ≤
2C[L(0)]1−α

1 − α
=

2C|L(Θ0)−L(ϑ)|1−α

1 − α
= 2C(1 − α)−1c1−α. (8.18)

Combining this with (8.10), (8.6), and the triangle inequality shows for all n ∈ N0 ∩ [0, T)
that

‖Θn+1 − ϑ‖ ≤ ‖Θn+1 − Θn‖+ ‖Θn − ϑ‖ = γ‖G(Θn)‖+ ‖Θn − ϑ‖

≤ (γL + 1)‖Θn − ϑ‖ ≤ (γL + 1)(‖Θn − Θ0‖+ ‖Θ0 − ϑ‖)

≤ (γL + 1)(2C(1 − α)−1c1−α + ‖Θ0 − ϑ‖) < ε. (8.19)

Hence, we obtain that
T = ∞. (8.20)
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Combining this with (8.6) and (8.17) proves that

∞

∑
k=0

‖Θk+1 − Θk‖ = lim
n→∞

[

n

∑
k=0

‖Θk+1 − Θk‖

]

≤
2C[L(0)]1−α

1 − α
=

2Cc1−α

1 − α
< ε < ∞. (8.21)

Therefore, we obtain that there exists ψ ∈ Rd which satisfies

lim supn→∞‖Θn − ψ‖ = 0. (8.22)

This establishes convergence of the GD process. We next deduce explicit convergence
rates. Note that (8.19), (8.20), and (8.22) imply that ‖ψ − ϑ‖ ≤ (γL+ 1)(2C(1− α)−1c1−α +
‖Θ0 − ϑ‖) < ε. Therefore, we obtain that ψ ∈ B. Next observe that (8.13), (8.6), and the
fact that for all n ∈ N0 it holds that L(n) ≤ L(0) = c ensure that for all n ∈ N0 ∩ [0, τ) we
have that

−L(n) ≤ L(n + 1)− L(n) ≤ −γ
2 ‖G(Θn)‖

2

≤ − γ
2C2 [L(n)]2α ≤ − γ

2C2c2−2α [L(n)]2. (8.23)

This assures for all n ∈ N0 ∩ [0, τ) that 0 < L(n) ≤ 2C2c2−2α

γ . Combining this and (8.23)

demonstrates for all n ∈ N0 ∩ [0, τ − 1) that

1

L(n)
−

1

L(n + 1)
≤

1

L(n)
−

1

L(n)(1 − γ
2C2c2−2α L(n))

=

(

1 − γ
2C2c2−2α L(n)

)

− 1

L(n)
(

1 − γ
2C2c2−2α L(n)

) =
− γ

2C2c2−2α
(

1 − γ
2C2c2−2α L(n)

)

= −
1

( 2C2c2−2α

γ − L(n))
< −

γ

2C2c2−2α
. (8.24)

Therefore, we get for all n ∈ N0 ∩ [0, τ) that

1

L(n)
=

1

L(0)
+

n−1

∑
k=0

[

1

L(k + 1)
−

1

L(k)

]

≥
1

L(0)
+

nγ

2C2c2−2α
=

1

c
+

nγ

2C2c2−2α
. (8.25)

Hence, we obtain for all n ∈ N0 ∩ [0, τ) that L(n) ≤ 2C2c2−2α

nγ+2C2c1−2α . Combining this with the

fact that for all n ∈ N0 ∩ [τ, ∞) it holds that L(n) = 0 shows that for all n ∈ N0 we have
that

L(n) ≤
2C2c2

1{0}(c) + c2αnγ + 2C2c
. (8.26)
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This, (8.22), and the assumption that L is continuous prove that

L(ψ) = limn→∞ L(Θn) = L(ϑ). (8.27)

Combining this with (8.26) assures for all n ∈ N0 that

0 ≤ L(Θn)−L(ψ) ≤
2C2c2

1{0}(c) + c2αnγ + 2C2c
. (8.28)

Furthermore, note that the fact that B ∋ θ 7→ G(θ) ∈ Rd is continuous, the fact that ψ ∈ B,
and (8.22) imply that

G(ψ) = limn→∞ G(Θn) = limn→∞(γ−1(Θn − Θn+1)) = 0. (8.29)

Next observe that (8.26) and (8.17) ensure for all n ∈ N0 that

‖Θn − ψ‖ = lim
m→∞

‖Θn − Θm‖ ≤
∞

∑
k=n

‖Θk+1 − Θk‖ ≤
2C[L(n)]1−α

1 − α

≤
22−αC3−2αc2−2α

(1 − α)(1{0}(c) + c2αnγ + 2C2c)1−α
. (8.30)

Combining this with (8.27), (8.20), (8.29), and (8.28) establishes items (i), (ii), and (iii). The
proof of Proposition 8.1 is thus complete.

The next result, Corollary 8.3, specializes Proposition 8.1 to the case where ϑ ∈ Rd is a
local minimum of L in the sense that for all θ ∈ B we have that L(θ) ≥ L(ϑ), where B is
a suitable neighborhood of ϑ.

Corollary 8.3. Let d ∈ N, c ∈ [0, 1], ε, L,C ∈ (0, ∞), α ∈ (0, 1), γ ∈ (0, L−1], ϑ ∈ Rd, let
B ⊆ Rd satisfy B = {θ ∈ Rd : ‖θ − ϑ‖ < ε}, let L ∈ C(Rd, R) satisfy L|B ∈ C1(B, R),
let G : Rd → Rd satisfy for all θ ∈ B that G(θ) = (∇L)(θ), assume for all θ1, θ2 ∈ B that
‖G(θ1) − G(θ2)‖ ≤ L‖θ1 − θ2‖, let Θ = (Θn)n∈N0

: N0 → Rd satisfy for all n ∈ N0 that
Θn+1 = Θn − γG(Θn), and assume for all θ ∈ B that

|L(θ)−L(ϑ)|α ≤ C‖G(θ)‖, c = |L(Θ0)− L(ϑ)|, (8.31a)

2C(1 − α)−1c1−α + ‖Θ0 − ϑ‖ <
ε

γL+1 , (8.31b)

and L(θ) ≥ L(ϑ). Then there exists ψ ∈ L−1({L(ϑ)}) ∩ G−1({0}) such that for all n ∈ N0 it
holds that Θn ∈ B, 0 ≤ L(Θn)−L(ψ) ≤ 2(2 + C−2γn)−1, and

‖Θn − ψ‖ ≤ ∑
∞
k=n‖Θk+1 − Θk‖ ≤ 22−αC(1 − α)−1(2 + C−2γn)α−1. (8.32)

Proof of Corollary 8.3. Note that the fact that L(ϑ) = infθ∈B L(θ) ensures that G(ϑ) =
(∇L)(ϑ) = 0 and infn∈{m∈N0 : ∀ k∈N0∩[0,m] : Θk∈B} L(Θn) ≥ L(ϑ). Combining this with

Proposition 8.1 implies that there exists ψ ∈ L−1({L(ϑ)}) ∩ G−1({0}) such that

(I) it holds for all n ∈ N0 that Θn ∈ B,
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(II) it holds for all n ∈ N0 that 0 ≤ L(Θn)−L(ψ) ≤ 2C2c2

1{0}(c)+c2αnγ+2C2c
, and

(III) it holds for all n ∈ N0 that

‖Θn − ψ‖ ≤
∞

∑
k=n

‖Θk+1 − Θk‖ ≤
2C|L(Θn)−L(ψ)|1−α

1 − α

≤
22−αC3−2αc2−2α

(1 − α)(1{0}(c) + c2αnγ + 2C2c)1−α
. (8.33)

Observe that item (II) and the assumption that c ≤ 1 show for all n ∈ N0 that

0 ≤ L(Θn)−L(ψ) ≤ 2c2
(

C−2
1{0}(c) + C−2c2αnγ + 2c

)−1

≤ 2(2 + C−2γn)−1. (8.34)

This and item (III) demonstrate for all n ∈ N0 that

‖Θn − ψ‖ ≤
∞

∑
k=n

‖Θk+1 − Θk‖ ≤
2C|L(Θn)−L(ψ)|1−α

1 − α

≤

[

22−αC

1 − α

]

(2 + C−2γn)α−1. (8.35)

The proof of Corollary 8.3 is thus complete.

8.3 Abstract global convergence results for GD processes

In Corollary 8.4 we reformulate Corollary 8.3 to show that around every local minimum
point which admits a Kurdyka-Łojasiewicz inequality and a certain regularity condition
there exists an open neighborhood such that the risk of every GD sequence started in this
neighborhood converges with rate 1 to the risk of the local minimum.

Corollary 8.4. Let d ∈ N, ε, L,C ∈ (0, ∞), α ∈ (0, 1), ϑ ∈ Rd, let B ⊆ Rd satisfy B = {θ ∈
Rd : ‖θ − ϑ‖ < ε}, let L ∈ C(Rd, R) satisfy L|B ∈ C1(B, R), let G : Rd → Rd satisfy for all
θ ∈ B that G(θ) = (∇L)(θ), assume for all θ1, θ2 ∈ B that ‖G(θ1)−G(θ2)‖ ≤ L‖θ1 − θ2‖, for

every θ ∈ Rd, γ ∈ R let Θγ,θ = (Θγ,θ
n )n∈N0

: N0 → Rd satisfy for all n ∈ N0 that Θ
γ,θ
0 = θ

and Θ
γ,θ
n+1 = Θ

γ,θ
n − γG(Θγ,θ

n ), and assume for all θ ∈ B that

|L(θ)−L(ϑ)|α ≤ C‖G(θ)‖ and L(θ) ≥ L(ϑ). (8.36)

Then there exist δ, C ∈ (0, ∞) such that for all θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < δ}, γ ∈ (0, L−1],

n ∈ N0 it holds that 0 ≤ L(Θγ,θ
n )−L(ϑ) ≤ C (1 + γn)−1.
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Proof of Corollary 8.4. Note that the fact that L is continuous ensures that there exist c ∈
[0, 1], δ ∈ (0, ε) which satisfy for all θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < δ}, γ ∈ (0, L−1] that

c = |L(θ)−L(ϑ)| and 2C(1 − α)−1c1−α + ‖θ − ϑ‖ < ε
2 ≤ ε

γL+1 . (8.37)

Observe that (8.37) and Corollary 8.3 (applied for every θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < δ},

γ ∈ (0, L−1] with ε x δ, γ x γ, B x {ψ ∈ Rd : ‖ψ − ϑ‖ < δ}, Θ x Θγ,θ in the notation
of Corollary 8.3) demonstrate that for all θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < δ}, γ ∈ (0, L−1] there
exists ψ ∈ L−1({L(ϑ)}) such that for all n ∈ N0 it holds that

0 ≤ L(Θγ,θ
n )−L(ψ) ≤ 2(2 + C−2γn)−1. (8.38)

Hence, we obtain for all θ ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < δ}, γ ∈ (0, L−1], n ∈ N0 that

0 ≤ L(Θγ,θ
n )−L(ϑ) ≤ 2(2 + C−2γn)

−1

≤ 2(min{2,C−2}(1 + γn))−1

= max{1, 2C2}(1 + γn)−1. (8.39)

The proof of Corollary 8.4 is thus complete.

8.4 Abstract convergence result for GD with random initializations

The next result, Corollary 8.5, establishes convergence in probability of the GD method
with multiple random initializations under a Łojasiewicz type assumption. The proof
relies on Corollary 8.4 and the fact that for a sufficiently high number of initializations at
least one of the GD trajectories will start in a suitable open domain of attraction with high
probability.

Corollary 8.5. Let d ∈ N, ε, L,C, γ ∈ (0, ∞), α ∈ (0, 1), ϑ ∈ Rd satisfy γL ≤ 1, let B ⊆
Rd satisfy B = {θ ∈ Rd : ‖θ − ϑ‖ < ε}, let L ∈ C(Rd, R) satisfy L|B ∈ C1(B, R), let
G : Rd → Rd satisfy for all θ ∈ B that G(θ) = (∇L)(θ), assume for all θ1, θ2 ∈ B that
‖G(θ1)− G(θ2)‖ ≤ L‖θ1 − θ2‖, assume for all θ ∈ B that

|L(θ)−L(ϑ)|α ≤ C‖G(θ)‖ and L(θ) ≥ L(ϑ), (8.40)

let (Ω,F , P) be a probability space, for every K, n ∈ N0 let ΘK
n : Ω → Rd and kK

n : Ω → N be
random variables, assume that ΘK

0 , K ∈ N, are i.i.d., assume for all δ ∈ (0, ∞) that P(‖Θ1
0 −

ϑ‖ < δ) > 0, and assume for all K ∈ N, n ∈ N0, ω ∈ Ω that

ΘK
n+1(ω) = ΘK

n (ω)− γG(ΘK
n (ω)) and kK

n (ω) ∈ arg minκ∈{1,2,...,K} L(Θ
κ
n(ω)).

(8.41)
Then

lim infK→∞ P
(

lim supn→∞ L(Θ
kK

n
n ) ≤ L(ϑ)

)

= 1. (8.42)
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Proof of Corollary 8.5. Note that (8.41) shows for all K ∈ N that

P
(

lim supn→∞ L
(

Θ
kK

n
n

)

≤ L(ϑ)
)

≥ P(∃ κ ∈ {1, 2, . . . , K} : lim supn→∞ L(Θκ
n) ≤ L(ϑ)). (8.43)

Furthermore, observe that Corollary 8.4 demonstrates that there exist δ, C ∈ (0, ∞) which
satisfy for all κ ∈ N, ω ∈ {w ∈ Ω : ‖Θκ

0(w) − ϑ‖ < δ}, n ∈ N0 that 0 ≤ L(Θκ
n(ω)) −

L(ϑ) ≤ C (1+ γn)−1. Therefore, we obtain for all κ ∈ N, ω ∈ {w ∈ Ω : ‖Θκ
0(w)− ϑ‖ < δ}

that
lim supn→∞ L(Θκ

n(ω)) ≤ L(ϑ). (8.44)

This shows for all κ ∈ N that

{ω ∈ Ω : ‖Θκ
0(ω)− ϑ‖ < δ} ⊆

{

ω ∈ Ω : lim sup
n→∞

L(Θκ
n(ω)) ≤ L(ϑ)

}

. (8.45)

Hence, we obtain for all K ∈ N that

P
(

∃ κ ∈ {1, 2, . . . , K} : ‖Θκ
0 − ϑ‖ < δ

)

= P
(

∪K
κ=1{‖Θκ

0 − ϑ‖ < δ}
)

≤ P
(

∪K
κ=1{lim supn→∞ L(Θκ

n) ≤ L(ϑ)}
)

= P
(

∃ κ ∈ {1, 2, . . . , K} : lim supn→∞ L(Θκ
n) ≤ L(ϑ)

)

. (8.46)

Moreover, note that the assumption that Θκ
0, κ ∈ N, are i.i.d. proves that for all K ∈ N we

have that

P
(

∃ κ ∈ {1, 2, . . . , K} : ‖Θκ
0 − ϑ‖ < δ

)

= 1 − P
(

∀ κ ∈ {1, 2, . . . , K} : ‖Θκ
0 − ϑ‖ ≥ δ

)

= 1 −
[

P
(

‖Θ1
0 − ϑ‖ ≥ δ

)]K
. (8.47)

The fact that P(‖Θ1
0 − ϑ‖ ≥ δ) = 1 − P(‖Θ1

0 − ϑ‖ < δ) < 1 therefore implies that

lim infK→∞ P
(

∃ κ ∈ {1, 2, . . . , K} : ‖Θκ
0 − ϑ‖ < δ

)

= 1. (8.48)

Combining this with (8.43) and (8.46) establishes (8.42). The proof of Corollary 8.5 is thus
complete.

8.5 Approximation results for deep ANNs

We next show an L2-universal approximation result for shallow ANNs. In Lemma 8.2
the target function is not necessarily continuous and takes values in a multidimensional

space Rδ. We establish Lemma 8.2 by employing the universal approximation theorem
for R-valued functions in Leshno et al. [51, Proposition 1 in Section 4]. The proof is only
included for completeness.
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Lemma 8.2. Let d, δ ∈ N, a ∈ R, b ∈ (a, ∞), ε ∈ (0, ∞) and let f = ( f1, . . . , fδ) : [a, b]d → Rδ

and p : [a, b]d → [0, ∞) be bounded and measurable. Then there exist n ∈ N, w1,w2, . . . ,wn ∈
R1×d, b1, b2, . . . , bn ∈ R, v1, v2, . . . , vn ∈ Rδ such that

∫

[a,b]d‖ f (x)− ∑
n
i=1 vi max{wix + bi, 0}‖2

p(x)dx < ε. (8.49)

Proof of Lemma 8.2. Throughout this proof let µ : B(Rd) → [0, ∞] satisfy for all E ∈ B(Rd)
that

µ(E) =
∫

[a,b]d∩E p(x)dx (8.50)

and for every i ∈ {1, 2, . . . , δ} let Fi : Rd → R satisfy for all x ∈ [a, b]d, y ∈ Rd\[a, b]d that

Fi(x) = fi(x) and Fi(y) = 0. (8.51)

Observe that (8.50) and the assumption that p is bounded and measurable ensure that µ is
a finite, absolutely continuous, and compactly supported measure. The assumption that f

is bounded hence implies that for all i ∈ {1, 2, . . . , δ} it holds that
∫

Rd |Fi(x)|2 µ(dx) < ∞.
Combining this, the universal approximation theorem (cf. Leshno et al. [51, Proposition 1
in Section 4] (applied with σ x (R ∋ x 7→ max{x, 0} ∈ R), µ x µ, p x 2 in the notation
of [51, Proposition 1 in Section 4])), (8.50), (8.51), and the fact that µ is a finite, absolutely
continuous, and compactly supported measure proves that for every i ∈ {1, 2, . . . , δ} there

exist n(i) ∈ N, w
(i)
1 , w

(i)
2 , . . . , w

(i)

n(i) ∈ R1×d, b
(i)
1 , b

(i)
2 , . . . , b

(i)

n(i) , v
(i)
1 , v

(i)
2 , . . . , v

(i)

n(i) ∈ R which

satisfy
∫

[a,b]d | fi(x)− ∑
n(i)

k=1 v
(i)
k max{w

(i)
k x + b

(i)
k , 0}|2 p(x)dx

=
∫

Rd |Fi(x)− ∑
n(i)

k=1 v
(i)
k max{w

(i)
k x + b

(i)
k , 0}|2 µ(dx) < ε

δ . (8.52)

In the following let e1, e2, . . . , eδ ∈ Rδ satisfy e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),

. . . , eδ = (0, . . . , 0, 1), let n ∈ N satisfy n = ∑
δ
i=1 n(i), and let w1,w2, . . . ,wn ∈ R1×d,

b1, b2, . . . , bn ∈ R, v1, v2, . . . , vn ∈ Rδ satisfy for all j ∈ {1, 2, . . . , δ}, k ∈ {1, 2, . . . , n(j)} that

w
k+∑

j−1
i=1 n(i) = w

(j)
k , b

k+∑
j−1
i=1 n(i) = b

(j)
k , and v

k+∑
j−1
i=1 n(i) = v

(j)
k ej. (8.53)

Note that (8.53) assures that for all c1, c2, . . . , cn ∈ R, x ∈ [a, b]d it holds that
∥

∥ f (x)− ∑
n
i=1 civi

∥

∥

2
= ∑

δ
j=1

∣

∣ fj(x)− ∑
n(j)

k=1 v
(j)
k c

k+∑
j−1
i=1 n(i)

∣

∣

2
. (8.54)

Combining this with (8.52) and (8.53) demonstrates that
∫

[a,b]d

∥

∥ f (x)− ∑
n
i=1

[

max{wix + bi, 0}
]

vi

∥

∥

2
p(x)dx

=
δ

∑
j=1

∫

[a,b]d

∣

∣ fj(x)− ∑
n(j)

k=1 v
(j)
k max{w

k+∑
j−1
i=1 n(i)x + b

k+∑
j−1
i=1 n(i) , 0}

∣

∣

2
p(x)dx

=
δ

∑
j=1

∫

[a,b]d

∣

∣ fj(x)− ∑
n(j)

k=1 v
(j)
k max{w

(j)
k x + b

(j)
k , 0}

∣

∣

2
p(x)dx < δ

[

ε
δ

]

= ε. (8.55)
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The proof of Lemma 8.2 is thus complete.

As a consequence of Lemma 8.2 we show in Proposition 8.2 a universal approximation
result for deep ANNs as the width increases to infinity.

Proposition 8.2. Let d, δ ∈ N, a ∈ R, b ∈ [a, ∞), (ρa)a∈N ⊆ (N ∩ (1, ∞)), let ℓa =
(ℓa0, ℓa1, . . . , ℓaρa) ∈ {d} × Nρa−1 × {δ}, a ∈ N, satisfy

lim infa→∞ min{ℓa1, ℓa2, . . . , ℓaρa−1} = ∞, (8.56)

for every a ∈ N let da = ∑
ρa
k=1 ℓ

a
k(ℓ

a
k−1 + 1), let f : [a, b]d → Rδ and p : [a, b]d → [0, ∞) be

bounded and measurable, for every a ∈ N, k ∈ {1, 2, . . . , ρa}, θ = (θ1, . . . , θda) ∈ Rda let

wk,θ
a = (wk,θ

a,i,j)(i,j)∈{1,...,ℓak }×{1,...,ℓak−1}
∈ Rℓak ×ℓak−1 and bk,θ

a = (bk,θ
a,1, . . . , bk,θ

a,ℓak
) ∈ Rℓak satisfy for

all i ∈ {1, 2, . . . , ℓak}, j ∈ {1, 2, . . . , ℓak−1} that

wk,θ
a,i,j = θ

(i−1)ℓak−1+j+∑
k−1
h=1 ℓ

a
h (ℓ

a
h−1+1)

and bk,θ
a,i = θ

ℓak ℓ
a
k−1+i+∑

k−1
h=1 ℓ

a
h (ℓ

a
h−1+1)

, (8.57)

let M : (∪n∈NRn) → (∪n∈NRn) satisfy for all n ∈ N, x = (x1, . . . , xn) ∈ Rn that M(x) =

(max{x1, 0}, . . . , max{xn, 0}), for every a ∈ N, θ ∈ Rda let N k,θ
a : Rd → Rℓak , k ∈ N ∩ [1, ρa],

satisfy for all k ∈ N ∩ [1, ρa), x ∈ Rd that

N 1,θ
a (x) = b1,θ

a +w1,θ
a x and N k+1,θ

a (x) = bk+1,θ
a +wk+1,θ

a

(

M(N k,θ
a (x))

)

, (8.58)

and for every a ∈ N let La : Rda → R satisfy for all θ ∈ Rda that La(θ) =
∫

[a,b]d‖N
ρa,θ
a (x)−

f (x)‖2
p(x)dx. Then

lim supa→∞ infθ∈Rda La(θ) = 0. (8.59)

Proof of Proposition 8.2. Throughout this proof let ε ∈ (0, ∞). Observe that Lemma 8.2

proves that there exist n ∈ N, w ∈ Rn×d, b ∈ Rn, v ∈ Rδ×n which satisfy

∫

[a,b]d‖vM(wx + b)− f (x)‖2
p(x)dx < ε. (8.60)

Furthermore, note that (8.56) assures that there exists A ∈ N which satisfies for all a ∈
N ∩ [A, ∞), i ∈ N ∩ (1, ρa) that ℓa1 ≥ n and ℓai ≥ 2δ. Combining this with Beck et al. [6,
Lemma 2.10] (applied for every a ∈ N ∩ [A, ∞) with L x 2, (l0, l1, l2) x (d, n, δ), d x

n(d + 1) + δ(n + 1), L x ρa, (l0, l1, . . . , lL) x ℓa, d x da in the notation of [6, Lemma
2.10]) shows for every a ∈ N ∩ [A, ∞) that there exists θa ∈ Rda which satisfies for all

x ∈ Rd that
N

ρa,θa
a (x) = vM(wx + b). (8.61)

Observe that (8.60) and (8.61) ensure for all a ∈ N ∩ [A, ∞) that

infϑ∈Rda La(ϑ) ≤ La(θa) =
∫

[a,b]d‖N
ρa,θa
a (x)− f (x)‖2

p(x)dx < ε. (8.62)

This completes the proof of Proposition 8.2.
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8.6 Convergence of GD with random initializations in the training of deep
ANNs

We next combine the Kurdyka-Łojasiewicz inequality from Proposition 6.2 with the ab-
stract convergence result for GD with random initializations from Corollary 8.5 to prove
convergence in probability of GD with random initializations for deep ANNs with a fixed
architecture. In Proposition 8.3 the parameter vector ϑ ∈ Rd is assumed to be a local
minimum of the risk function L∞ in a neighborhood of which the regularity assumptions
in Corollary 8.5 are satisfied. The convergence holds for every sufficiently small positive
learning rate γ ∈ (0, g].

Proposition 8.3. Assume Setting 3.1, assume for all i ∈ {1, 2, . . . , ℓL} that fi is piecewise

polynomial, let p : [a, b]ℓ0 → R be piecewise polynomial, assume for all E ∈ B([a, b]ℓ0 ) that
µ(E) =

∫

E p(x)dx, let U ⊆ Rd be open, assume (L∞)|U ∈ C1(U, R), let G : Rd → Rd satisfy
for all θ ∈ U that G(θ) = (∇L∞)(θ), assume that G|U is locally Lipschitz continuous, let ϑ ∈ U
satisfy L∞(ϑ) = infθ∈U L∞(θ), let (Ω,F , P) be a probability space, for every K, n ∈ N0, γ ∈ R

let Θ
K,γ
n : Ω → Rd and k

K,γ
n : Ω → N be random variables, assume for all γ ∈ R that Θ

K,γ
0 ,

K ∈ N, are i.i.d., assume for all γ, δ ∈ (0, 1) that P(‖Θ
1,γ
0 − ϑ‖ < δ) > 0, and assume for all

K ∈ N, n ∈ N0, γ ∈ R, ω ∈ Ω that

Θ
K,γ
n+1(ω) = Θ

K,γ
n (ω)− γG(ΘK,γ

n (ω)), (8.63a)

k
K,γ
n (ω) ∈ arg minκ∈{1,2,...,K} L∞(Θκ,γ

n (ω)) (8.63b)

(cf. Definition 5.1). Then there exists g ∈ (0, ∞) such that for all γ ∈ (0, g] it holds that

lim infK→∞ P
(

lim supn→∞ L∞(Θk
K,γ
n ,γ

n ) ≤ infθ∈U L∞(θ)
)

= 1. (8.64)

Proof of Proposition 8.3. Note that Corollary 3.2 assures for all open V ⊆ Rd and all θ ∈ V
with (L∞)|V ∈ C1(V, R) that G(θ) = (∇L∞)(θ). The assumption that U ⊆ Rd is open,
the assumption that (L∞)|U ∈ C1(U, R), and the assumption that for all θ ∈ U it holds
that G(θ) = (∇L∞)(θ) therefore demonstrates that for all θ ∈ U it holds that

G(θ) = (∇L∞)(θ) = G(θ). (8.65)

Furthermore, observe that Proposition 6.2, the assumption that U ⊆ Rd is open, and the
assumption that G|U is locally Lipschitz continuous assure that there exist L, ε,C ∈ (0, ∞),
α ∈ (0, 1) which satisfy for all v, w ∈ {ψ ∈ Rd : ‖ψ − ϑ‖ < ε} that

v ∈ U, |L∞(v)−L∞(ϑ)|α ≤ C‖G(v)‖, (8.66a)

‖G(v)−G(w)‖ ≤ L‖v − w‖. (8.66b)

Moreover, note that Lemma 3.1 shows that L∞ ∈ C(Rd, R). Combining this, (8.65), (8.66),
Corollary 8.5 (applied for every γ ∈ (0, L−1] ∩ (0, 1) with d x d, ε x ε, L x L, C x C,
γ x γ, α x α, ϑ x ϑ, L x L∞, G x G in the notation of Corollary 8.5), and the
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assumption that L∞(ϑ) = infθ∈U L∞(θ) assures that for all γ ∈ (0, L−1] ∩ (0, 1) it holds
that

lim infK→∞ P
(

lim supn→∞ L∞

(

Θ
k

K,γ
n ,γ

n

)

≤ infθ∈U L∞(θ)
)

= lim infK→∞ P

(

lim supn→∞ L∞

(

Θ
k

K,γ
n ,γ

n

)

≤ L∞(ϑ)
)

= 1. (8.67)

The proof of Proposition 8.3 is thus complete.

As a consequence of Proposition 8.3 and the universal approximation result from Propo-
sition 8.2 we verify in Theorem 8.1 that the risk of the GD method with random initializa-
tions converges in probability to 0 as the number of GD steps, the number of random
initializations, and the width of the ANNs increase to ∞ and as the step size of the GD
method decreases to 0. In item (i) we establish convergence in probability, and as a con-
sequence we obtain in item (ii) convergence with respect to the metric E[min{|X −Y|, 1}]
on the space of random variables.

Theorem 8.1. Let d, δ ∈ N, a ∈ R, b ∈ [a, ∞), (ρa)a∈N ⊆ (N ∩ (1, ∞)), let ℓa =
(ℓa0, ℓa1, . . . , ℓaρa) ∈ {d} × Nρa−1 × {δ}, a ∈ N, satisfy

lim infa→∞ min{ℓa1, ℓa2, . . . , ℓaρa−1} = ∞, (8.68)

for every a ∈ N let da = ∑
ρa
k=1 ℓ

a
k(ℓ

a
k−1 + 1), let f = ( f1, . . . , fδ) : [a, b]d → Rδ and p : [a, b]d →

[0, ∞) be functions, assume for all i ∈ {1, 2, . . . , δ} that fi and p are piecewise polynomial, for every

a ∈ N, k ∈ {1, 2, . . . , ρa}, θ = (θ1, . . . , θda) ∈ Rda let wk,θ
a = (wk,θ

a,i,j)(i,j)∈{1,...,ℓak }×{1,...,ℓak−1}
∈

Rℓak ×ℓak−1 and bk,θ
a = (bk,θ

a,1, . . . , bk,θ
a,ℓak

) ∈ Rℓak satisfy for all i ∈ {1, 2, . . . , ℓak}, j ∈ {1, 2, . . . , ℓak−1}

that

wk,θ
a,i,j = θ

(i−1)ℓak−1+j+∑
k−1
h=1 ℓ

a
h (ℓ

a
h−1+1)

and bk,θ
a,i = θ

ℓak ℓ
a
k−1+i+∑

k−1
h=1 ℓ

a
h (ℓ

a
h−1+1)

, (8.69)

let M : (∪n∈NRn) → (∪n∈NRn) satisfy for all n ∈ N, x = (x1, . . . , xn) ∈ Rn that M(x) =

(max{x1, 0}, . . . , max{xn, 0}), for every a ∈ N, θ ∈ Rda let N k,θ
a : Rd → Rℓak , k ∈ N ∩ [1, ρa],

satisfy for all k ∈ N ∩ [1, ρa), x ∈ Rd that

N 1,θ
a (x) = b1,θ

a +w1,θ
a x and N k+1,θ

a (x) = bk+1,θ
a +wk+1,θ

a

(

M(N k,θ
a (x))

)

, (8.70)

for every a ∈ N let La : Rda → R satisfy for all θ ∈ Rda that La(θ) =
∫

[a,b]d‖N
ρa,θ
a (x) −

f (x)‖2
p(x)dx, for every a ∈ N let ϑa ∈ (La)−1({infθ∈Rda La(θ)}), εa ∈ (0, 1) satisfy that

La|{θ∈Rda : ‖θ−ϑa‖<εa} has a Lipschitz continuous derivative, for every a ∈ N let Ga : Rda → Rda

satisfy for all θ ∈ ∪U⊆Rda , U is open,La|U∈C1(U,R)U that Ga(θ) = (∇La)(θ), let (Ω,F , P) be a

probability space, for every n, a, K ∈ N0, γ ∈ R let Θ
K,γ
a,n : Ω → Rda and k

K,γ
a,n : Ω → N be

random variables, assume for all a ∈ N, γ ∈ R that Θ
K,γ
a,0 , K ∈ N, are i.i.d., assume for all
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a ∈ N, γ, r ∈ (0, 1), θ ∈ Rda that P(‖Θ
1,γ
a,0 − θ‖ < r) > 0, and assume for all n ∈ N0,

a, K ∈ N, γ ∈ R, ω ∈ Ω that

Θ
K,γ
a,n+1(ω) = Θ

K,γ
a,n (ω)− γGa(Θ

K,γ
a,n (ω)), (8.71a)

k
K,γ
a,n (ω) ∈ arg minκ∈{1,2,...,K} La(Θ

κ,γ
a,n (ω)) (8.71b)

(cf. Definition 5.1). Then

(i) there exist A : R → R and g : N → (0, ∞) such that

infε∈(0,∞) infa∈N∩[A(ε),∞) infγ∈(0,g(a)] lim infK→∞ P
(

lim supn→∞ La

(

Θ
k

K,γ
a,n ,γ

a,n

)

≤ ε
)

= 1
(8.72)

and

(ii) it holds that

lim supa→∞ lim supγց0 lim supK→∞ E
[

lim supn→∞ min
{

La

(

Θ
k

K,γ
a,n ,γ

a,n

)

, 1
}]

= 0.

(8.73)

Proof of Theorem 8.1. Throughout this proof for every a ∈ N let Ua ⊆ Rda satisfy

Ua = {θ ∈ Rda : ‖θ − ϑa‖ < εa}. (8.74)

Observe the assumption that p is piecewise polynomial and the assumption that for all
i ∈ {1, 2, . . . , δ} it holds that fi is piecewise polynomial imply that f and p are bounded and
measurable. Combining this, [36, Lemma 2.4], Proposition 8.3 (applied for every a ∈ N

with a x a, b x b, x 1/2, x 1, (N0 ∋ k 7→ ℓk ∈ N) x (N0 ∋ k 7→ ℓmin{k,ρa}a ∈ N),

L x ρa, d x da, f x f , µ x (B([a, b]d) ∋ E 7→
∫

E p(x) dx ∈ [0, ∞]), U x Ua, G x Ga,
ϑ x ϑa in the notation of Proposition 8.3), and the fact that for all a ∈ N it holds that

La(ϑa) = infθ∈Rda La(θ) = infθ∈Ua
La(θ) (8.75)

proves that there there exists g : N → (0, ∞) which satisfies for all a ∈ N, γ ∈ (0, g(a)]
that

lim infK→∞ P

(

lim supn→∞ La

(

Θ
k

K,γ
a,n ,γ

a,n

)

≤ infθ∈Rda La(θ)
)

= 1. (8.76)

Proposition 8.2 hence establishes that there exists A : R → R which satisfies for all ε ∈
(0, ∞), a ∈ N ∩ [A(ε), ∞) that

infθ∈Rda La(θ) ≤ ε. (8.77)

Note that (8.76) and (8.77) assure that for all ε ∈ (0, ∞), a ∈ N ∩ [A(ε), ∞), γ ∈ (0, g(a)] it
holds that

lim infK→∞ P
(

lim supn→∞ La

(

Θ
k

K,γ
a,n ,γ

a,n

)

≤ ε
)

≥ lim infK→∞ P
(

lim supn→∞ La

(

Θ
k

K,γ
a,n ,γ

a,n

)

≤ infθ∈Rda La(θ)
)

= 1. (8.78)
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This establishes item (i). Observe that for all ε ∈ (0, ∞) and all random variables Zn : Ω →
[0, ∞), n ∈ N, it holds that

E[lim supn→∞ min{Zn, 1}]

≤ E
[

min
{

lim supn→∞ Zn, 1
}]

≤ E
[

min
{

lim supn→∞ Zn, 1
}

1{lim supn→∞ Zn>ε}

]

+ E
[

min
{

lim supn→∞ Zn, 1
}

1{lim supn→∞ Zn≤ε}

]

≤ E
[

1{lim supn→∞ Zn>ε}

]

+ E
[

min{ε, 1}1{lim supn→∞ Zn≤ε}

]

≤ P
(

lim supn→∞ Zn > ε
)

+ min{ε, 1}

≤ P(lim supn→∞ Zn > ε) + ε. (8.79)

Furthermore, note that (8.78) assures that for all ε ∈ (0, ∞), a ∈ N∩ [A(ε), ∞), γ ∈ (0, g(a)]
it holds that

lim supK→∞ P
(

lim supn→∞ La

(

Θ
k

K,γ
a,n ,γ

a,n

)

> ε
)

= lim supK→∞

[

1 − P
(

lim supn→∞ La

(

Θ
k

K,γ
a,n ,γ

a,n

)

≤ ε
)]

= 0. (8.80)

Combining this with (8.79) ensures that for all ε ∈ (0, ∞), a ∈ N ∩ [A(ε), ∞), γ ∈ (0, g(a)]
it holds that

lim supK→∞ E
[

lim supn→∞ min
{

La

(

Θ
k

K,γ
a,n ,γ

a,n

)

, 1
}]

≤ ε. (8.81)

This establishes item (ii). The proof of Theorem 8.1 is thus complete.

8.7 Convergence of GD with random initializations in the training of shallow
ANNs

In this section we employ the general convergence results for deep ANNs from Subsec-
tion 8.6 to establish convergence of the risk of the GD method for shallow ANNs. This time
the regularity assumptions can be omitted, since they follow from the existence result for
regular global minima for shallow ANNs in Corollary 2.6.

Proposition 8.4. Assume Setting 3.1, assume L = 2, assume f ∈ C([a, b], R), assume that f
is piecewise polynomial, let p : [a, b] → R be piecewise polynomial, assume for all E ∈ B([a, b])
that µ(E) =

∫

E p(x)dx, let G : Rd → Rd satisfy for all θ ∈ {ϑ ∈ Rd : L∞ is differentiable at ϑ}
that G(θ) = (∇L∞)(θ), let (Ω,F , P) be a probability space, for every K, n ∈ N0, γ ∈ R let

Θ
K,γ
n : Ω → Rd and k

K,γ
n : Ω → N be random variables, assume for all γ ∈ R that Θ

K,γ
0 , K ∈ N,

are i.i.d., assume for all γ, δ ∈ (0, 1) that P(‖Θ
1,γ
0 − ϑ‖ < δ) > 0, and assume for all K ∈ N,

n ∈ N0, γ ∈ R, ω ∈ Ω that

Θ
K,γ
n+1(ω) = Θ

K,γ
n (ω)− γG(ΘK,γ

n (ω)), (8.82a)

k
K,γ
n (ω) ∈ arg minκ∈{1,2,...,K} L∞(Θκ,γ

n (ω)) (8.82b)
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(cf. Definition 5.1). Then there exists g ∈ (0, ∞) such that for all γ ∈ (0, g] it holds that

lim infK→∞ P
(

lim supn→∞ L∞

(

Θ
k

K,γ
n ,γ

n

)

= infθ∈Rd L∞(θ)
)

= 1. (8.83)

Proof of Proposition 8.4. Observe that the assumption that f ∈ C([a, b], R) and the assump-
tion that f is piecewise polynomial imply that f is Lipschitz continuous. Furthermore,
note that (3.3) and the assumption that supr∈[1,∞) supx∈R |(Rr)

′(x)| < ∞ assure that for

all x ∈ R it holds that (∪r∈N{Rr}) ⊆ C1(R, R), R∞(x) = max{x, 0}, supr∈N supy∈[−|x|,|x|]

|(Rr)′(y)| < ∞, and

lim supr→∞(|Rr(x)−R∞(x)|+ |(Rr)
′(x)− 1(0,∞)(x)|) = 0. (8.84)

Combining this, Corollary 2.6, and item (ii) in Proposition 3.1 with the fact that f is Lips-
chitz continuous shows that there exist ϑ ∈ Rd and an open U ⊆ Rd which satisfy that

(i) it holds that (L∞)|U ∈ C1(U, R),

(ii) it holds for all θ ∈ U that G(θ) = (∇L∞)(θ),

(iii) it holds that G|U is locally Lipschitz continuous,

(iv) it holds that ϑ ∈ U, and

(v) it holds that L∞(ϑ) = infθ∈Rd L∞(θ).

Observe that item (iv) and item (v) ensure that

L∞(ϑ) = infθ∈Rd L∞(θ) = infθ∈U L∞(θ). (8.85)

Moreover, note that item (i), item (ii), and the assumption that for all θ ∈ {ϑ ∈ R3h+1 : L∞ is
differentiable at ϑ} it holds that G(θ) = (∇L∞)(θ) assure that for all θ ∈ U it holds that

G(θ) = (∇L∞)(θ) = G(θ). (8.86)

Therefore, we obtain that G|U = G|U. This and item (iii) ensure that G|U is locally Lips-
chitz continuous. Combining this, item (i), (8.85), (8.86), Proposition 8.3, and the fact that
U ⊆ Rd is open proves that there exists g ∈ (0, ∞) such that for all γ ∈ (0, g] it holds that

lim infK→∞ P

(

lim supn→∞ L∞(Θk
K,γ
n ,γ

n ) = infθ∈Rd L∞(θ)
)

= lim infK→∞ P
(

lim supn→∞ L∞(Θk
K,γ
n ,γ

n ) ≤ infθ∈Rd L∞(θ)
)

= lim infK→∞ P

(

lim supn→∞ L∞(Θk
K,γ
n ,γ

n ) ≤ infθ∈U L∞(θ)
)

= 1. (8.87)

The proof of Proposition 8.4 is thus complete.
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Corollary 8.6. Let N ∈ N, 0, 1, . . . , N , a, b ∈ R satisfy a = 0 < 1 < . . . < N = b, let
f ∈ C([a, b], R), let p : [a, b] → [0, ∞) be a function, assume for all i ∈ {1, 2, . . . , N} that
f |(i−1 ,i)

and p|(i−1,i)
are polynomials, for every h ∈ N let Lh : R3h+1 → R satisfy for all θ =

(θ1, . . . , θ3h+1) ∈ R3h+1 that

Lh(θ) =
∫ b

a

(

f (x)− θd − ∑
h
j=1 θ2h+j max{θjx + θh+j, 0}

)2
p(x)dx, (8.88)

for every h ∈ N let Gh : R3h+1 → R3h+1 satisfy for all θ ∈ {ϑ ∈ R3h+1 : Lh is differentiable
at ϑ} that Gh(θ) = (∇Lh)(θ), let (Ω,F , P) be a probability space, for every n, h, K ∈ N0,

γ ∈ R let Θ
K,γ
h,n : Ω → R3h+1 and k

K,γ
h,n : Ω → N be random variables, assume for all h ∈ N,

γ ∈ R that Θ
K,γ
h,0 , K ∈ N, are i.i.d., assume for all h ∈ N, γ, r ∈ (0, 1), θ ∈ R3h+1 that

P(‖Θ
1,γ
h,0 − θ‖ < r) > 0, and assume for all n, h ∈ N0, K ∈ N, γ ∈ R, ω ∈ Ω that

Θ
K,γ
h,n+1(ω) = Θ

K,γ
h,n (ω)− γGh(Θ

K,γ
h,n (ω)), (8.89a)

k
K,γ
h,n (ω) ∈ arg minκ∈{1,2,...,K} Lh(Θ

κ,γ
h,n(ω)). (8.89b)

Then

(i) there exist H : R → R and g : N → (0, ∞) such that

infε∈(0,∞) infh∈N∩[H(ε),∞) infγ∈(0,g(h)] lim infK→∞ P
(

lim supn→∞ Lh

(

Θ
k

K,γ
h,n ,γ

h,n

)

≤ ε
)

= 1

(8.90)
and

(ii) it holds that

lim suph→∞ lim supγց0 lim supK→∞ E
[

lim supn→∞ min
{

Lh

(

Θ
k

K,γ
h,n ,γ

h,n

)

, 1
}]

= 0.

(8.91)

Proof of Corollary 8.6. Observe that Corollary 2.6 demonstrates that for every h ∈ N there
exist ϑh ∈ R3h+1, Lh ∈ R, and an open Vh ⊆ R3h+1 which satisfy that

(I) it holds that ϑh ∈ Vh,

(II) it holds that Lh(ϑh) = infψ∈R3h+1 Lh(ψ),

(III) it holds that Lh|Vh
∈ C1(Vh, R), and

(IV) it holds for all θ1, θ2 ∈ Vh that ‖(∇Lh)(θ1)− (∇Lh)(θ2)‖ ≤ Lh‖θ1 − θ2‖.

Furthermore, note that the fact that for all h ∈ N, θ ∈ {ϑ ∈ R3h+1 : Lh is differentiable
at ϑ} it holds that

Gh(θ) = (∇Lh)(θ) (8.92)
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proves that for all h ∈ N, θ ∈ ∪U⊆R3h+1 , U is open,Lh|U∈C1(U,R)V it holds that

Gh(θ) = (∇Lh)(θ). (8.93)

Combining this, item (I), item (II), item (III), item (IV), and item (i) in Theorem 8.1 (applied
with d x 1, δ x 1, a x a, b x b, (N ∋ a 7→ ρa ∈ N ∩ (1, ∞)) x (N ∋ a 7→ 2 ∈
N ∩ (1, ∞)), (N ∋ a 7→ ℓa ∈ N3) x (N ∋ a 7→ (d, a, δ) ∈ N3), (N ∋ a 7→ da ∈ N) x
(N ∋ a 7→ (3a+ 1) ∈ N), (N ∋ a 7→ ϑa ∈ (∪k∈NRk)) x (N ∋ a 7→ ϑa ∈ (∪k∈NRk))
in the notation of Theorem 8.1) establishes items (i) and (ii). The proof of Corollary 8.6 is
thus complete.
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