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1 Introduction

The stochastic gradient descent (SGD) and its variants have been predominantly applied
in machine learning [1] due to the overall computational efficiency and robustness. In
a typical training task, the objective function f (x) is expressed as an empirical risk,

f (x) = E[ f (x; ω)]. (1.1)

Here, the randomness of ω stems from the sampling of training data set. The standard
SGD updates the iterations by sampling the gradient ∇ f (xn, ωn). With this unbiased es-
timator, we let ξn := ∇ f (xn, ωn)− ∇ f (xn) be the noise induced by the sampling of the
gradient. Then the iteration formula can be expressed as follows:

SGD : xn+1 = xn − an

(

∇ f (xn) + ξn

)

, (1.2)

where we have adopted the notation from [28], and for simplicity, we set the batch size to
be 1. Here, an is known as the learning rate.

In the case when f is convex, convergence properties for SGD have been well estab-
lished, examples include the stepsize policy [1], comparison to stochastic averaging meth-
ods [29], validation analysis [10], etc. On the other hand, a remarkable observation, as
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demonstrated in many recent studies, is that the stochastic gradient algorithms still per-
form well in non-convex optimization, e.g. the training of neural networks [4, 12, 32], and
such success has intrigued many theoretical developments to explore convergence proper-
ties for non-convex optimization problems. It is important though, to point out that most
of these results are obtained under some global assumptions, such as the global Lipschitz
constant [14,25,27] or global Hölder constant [22] for the gradient or the globally bounded
variance of the noise [18].

Despite these important theoretical results, training tasks with actual non-convex loss
functions have exhibited many issues that are still difficult to interpret based on these
analyses. For instance, the performance of training neural networks can be very sensitive
to the initialization [8,11,24]. Intuitively, upon convergence, the behavior of SGD is largely
determined by local properties. However, many of the existing results on non-convex
optimizations are established under global assumptions, which may not hold for many
practical training tasks, e.g., the lack of a global Lipschitz constant [16, 38], and globally
bounded variance of the noise [13]. One recent development toward addressing this issue
is the work [28] which proved the convergence of SGD under local assumptions on the
initialization, the gradient, and the noise, but in the case of isolated local minima.

In addition to the aforementioned issues, another interesting issue in non-convex op-
timization is the presence of non-isolated minima, as observed in [3, 6, 9, 35]. Despite the
clear intuition from Fig. 1.1, formulating local convexity conditions around such a set to
precisely describe the behavior of the loss function in (1.1) is a non-trivial task. More
importantly, it creates an important gap between practical optimization and theoretical
analysis. This important scenario has received little attention until the recent analysis
under some local convexity assumptions [7, 33]. Meanwhile, questions still remain as to
whether more general characterizations exist for a wider variety of loss functions with
non-isolated local minima, and more importantly, whether the convergence SGD can still
be established for these general optimization problems. From a practical viewpoint, such
convergence analysis will help interpret many observations from training algorithms, e.g.,
the roles of hyperparameters in stochastic optimization.

Figure 1.1: The landscape of a non-convex function with non-isolated global minima (red).
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The main objective of this paper is two-fold: First, we introduce locally-defined math-
ematical conditions for the loss function with non-isolated minima. We establish relation-
ships among such conditions, including those proposed in prior works [7, 15, 18]. Second,
we prove that non-isolated minima still have a finite probability of attracting SGD iter-
ates (1.2). Specifically, we establish concentration properties of SGD iterations, which lead
to convergence to X in probability and complexity bounds. These results are obtained
only with local conditions, which sharpens results from those analyses obtained under
global conditions. In the case where X is compact, under more relaxed assumptions than
those in [7], we prove a more general concentration inequality of SGD. Furthermore, even
under the same assumption as in [7], our concentration inequalities are improved.

Specifically, we summarize our contributions as follows:

• We propose several conditions that describe loss functions with non-isolated min-
ima, including a locally-defined restrict secant inequality (LRSI), the weak quasar-
convexity (WQC) the non-negative support (NNS) conditions. Their mathematical
expressions, as well as those from the existing literature, are summarized in Table 1.1.

• We propose a new approach to analyze SGD iterations. The approach combines the
Lyapunov function approach [20] based on the optional stopping theorem [39], and
yields nearly sharp theoretical results under only locally defined conditions. With the
help of these results, we explicitly formulate the probability of convergence when the
iteration from SGD starts near a set of non-isolated minima. This provides theoretical
support for several empirical observations from the training of neural networks.

• We show the concentration properties of SGD that are also applicable to the regime of
small batch sizes for a large class of landscapes arising in non-convex optimization.
As an example, the result qualitatively elucidates the slowdown of SGD in a highly
flat landscape near global minima. Additionally, we found that convergence proper-
ties of SGD near global minima are still very similar to those from strongly convex
functions when the local landscape of non-isolated global minima satisfies the LRSI
condition.

Table 1.1: The concentration results by previous works and this work under local conditions: the Local Strong
Convexity (LSC), a locally-defined Polyak- Lojasiewicz condition (PL*), the Hession of the constant positive rank
(HCPRC) on a Compact submanifold of global minima, a locally-defined restrict secant inequality (LRSI), the
weak quasar-convexity (WQC) as an extension of the quasar convexity (QC) in [15] and the non-negative support
(NNS). In these conditions, x∗ refers to a local minimum, and xp denotes a metric projection of x.

Condition Definition Concentration Inequality

LSC ([28]) (∇ f (x), x − x∗) ≥ µ‖x − x∗‖2
P{‖x − x∗‖2 ≥ ǫ} ≤ O(1/(ǫnβ))

PL* ([26]) ‖∇ f (x)‖2 ≥ µ( f (x)− f ∗) P{ f (x)− f ∗ ≥ ǫ} ≤ O(ρn/ǫ)

HCPRC ([7]) rank(∇2 f (x)) = d − d P{ f (x)− f ∗ ≥ ǫ} ≤ O(1/(ǫ2nβ) + n1−β)

LRSI (this work) (∇ f (x), x − xp) ≥ µ‖x − xp‖2
P{ f (x)− f ∗ ≥ ǫ} ≤ O(1/(ǫnβ))

WQC (this work) (∇ f (x), x − xp) ≥ ζ( f (x)− f ∗) P{ f (x)− f ∗ ≥ ǫ} ≤ O(1/(ǫn1−β))

NNS (this work) (∇ f (x), x − xp) ≥ h(x) ≥ 0 P{h(x) ≥ ǫ} ≤ O(1/(ǫn1−β))
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2 Preliminaries

2.1 Notation

Throughout the paper, K ⊂ R
d denotes a compact set unless it is stated otherwise. d

represents the dimension of the parameter space. We use ‖ · ‖ for the ℓ2 norm in R
d. [N]

is the set of integers [N] := {1, 2, . . . , N}. For the complexity estimates, we define big-O
notation as follows: an = O(bn) if lim supn|an/bn| < ∞.

Next, we introduce the notions of the stable path and the stochastic stability for discrete
stochastic processes.

Definition 2.1 (Stable Path). With an initial iterate x1 ∈ K, a realization {xn}∞
n=2 from a sto-

chastic algorithm is called a stable path if

xn ∈ K for all n ≥ 2. (2.1)

Since the update rule for SGD in (1.2) uses the previous information, the iteration forms
a discrete stochastic process with a filtration {Fn}∞

n=1. Formally, the stochastic stability is
defined by the measure of the set of stable paths with respect to the σ-algebra F∞ :=
σ(∪nFn) as follows.

Definition 2.2 (Stochastic Stability). With an initial guess x1 ∈ K, an iteration from a stochastic
algorithm is said to be stable with probability at least 1 − η, if the following inequality is satisfied:

P {xn ∈ K for all n ≥ 2 |x1} ≥ 1 − η. (2.2)

The notion of stochastic stability can be found in [ [21], p 31].

2.2 Assumptions

Our regularity assumption on the loss function f is that it has a locally Lipschitz gradient.
For example, a large class of neural networks satisfy this condition.

Assumption 2.1. The gradient of f in the iteration (1.2) is locally Lipschitz continuous for any
compact set K, i.e., there exists a constant LK > 0 such that,

‖∇ f (x)−∇ f (y)‖ ≤ LK‖x − y‖ for all x, y ∈ K.

We make an assumption on the noise in SGD (1.2) as follows.

Assumption 2.2. The noise satisfies that

(i) E[ξ(x, ω)|x] = 0 for any x ∈ R
d, (Unbiased Stochastic Gradient).

(ii) There exists some σK > 0 for any compact set K such that

sup
x∈K

E

[

‖ξ(x, ω)‖2|x
]

≤ σK .
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The second part implies that the variance of the noise is locally bounded. This assump-
tion is equivalent to the local conditions in [7].

Next, we make the standard assumption on the learning rates [1, 34], as follows.

Assumption 2.3. The learning rates satisfy that

an > 0,
∞

∑
n=1

an = ∞,
∞

∑
n=1

a2
n < ∞. (2.3)

3 Stochastic gradient descent with local convexity conditions

In this section, we start by introducing a condition that is mild, but still sufficient to de-
scribe non-convex loss function near local minima. We present the relationships between
the new condition and other existing characterizations of such loss functions. Then, under
such conditions, we prove the concentration inequalities of the SGD method (1.2).

3.1 Local convexity conditions and their relations

Before we present the analysis of the SGD iterations (1.2), we first examine a number
of important local convexity conditions. An important emphasis will be placed on their
relations, since results that are established under one condition can be directly extended
to situations where a weaker condition holds.

We first introduce the notion of a metric projection, which will be used to pose a new
local convexity condition.

Definition 3.1. For a compact set X , the set-valued mapping ΠX : R
d → 2X is defined by

ΠX (x) =
{

z ∈ X : ‖x − z‖ = dist(x,X )
}

.

This is known as the metric projection [37] with respect to the usual Euclidean distance in our case.

We will denote by X , a compact subset of global minima with or without connectivity.
In the following assumption, we denote by Nr(X ) the closure of a r-neighborhood of X .

Assumption 3.1. There exists a non-negative function h : Nr(X ) → R such that

(

∇ f (x), x − xp

)

≥ h(x) (3.1)

for any x ∈ Nr(X ) and any projection xp ∈ ΠX (x). Due to the non-negative function h, we refer
to this condition as non-negative support (NNS) condition.

As a pictorial illustration, Fig. 3.1 shows the examples that fulfill Assumption 3.1.
As a starting point to analyze optimization algorithms for non-convex functions, nu-

merous conditions have been previously proposed to describe a non-convex loss function
near local minima: [the restricted secant inequality (RSI) [41]], [the Polyak-Łojasiewicz
(PL), the Quadratic Growth (QG) [18]], [the Łojasiewicz [5]], [the Kurdyka-Łojasiewicz
(KL) [36]], [the quasar convexity (QC) [15]] and [the star convexity (∗C) [31]]. Some of
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Figure 3.1: Examples of non-convex functions with isolated minima (left), or non-isolated minima (middle and
right). The red regions indicate sets of local minima. The functions from all three figures satisfy the NNS
condition (3.1).

these conditions were initially proposed to hold globally, but they can be easily relaxed to
local conditions, in that they are assumed to hold in the neighborhood Nr(X ). Namely,
for any x ∈ Nr(X ),

(

∇ f (x), x − xp

)

≥ µ‖x − xp‖
2 (LRSI), (3.2a)

‖∇ f (x)‖2 ≥ µ
(

f (x)− f ∗
)

(PL∗
)

, (3.2b)

‖∇ f (x)‖β ≥ µ
(

f (x)− f ∗
)

(L∗), β ∈ (1, 2], (3.2c)

‖∇ f (x)‖ ≥ ϕ
(

f (x)
)

(KL∗), ϕ : R+ 7→ R+ non-decreasing, (3.2d)

f (x)− f ∗ ≥ µ‖x − xp‖
2 (QG∗), (3.2e)

(

∇ f (x), x − x
∗
)

≥ f (x)− f ∗ (∗C), (3.2f)
(

∇ f (x), x − x
∗) ≥ ζ

(

f (x)− f ∗
)

(QC), (3.2g)
(

∇ f (x), x − xp

)

≥ ζ
(

f (x)− f ∗
)

(WQC). (3.2h)

Here µ > 0, 0 < ζ ≤ 1 and xp is a projection of x onto X .
Another interesting characterization is in terms of the local geometry [7]. Let M :=

{x : f (x) = f ∗} be the set of all global minima and assume that there exists an open set

U ⊂ R
d with some d ∈ {0, 1, . . . , d − 1} such that M∩ U is a non-empty d-dimensional

C2-submanifold of R with f ∈ C3(U) and

rank
(

∇2 f (x)
)

= d − d for each x ∈ M∩ U. (3.3)

In particular, they also considered the case of such a submanifold being compact and with-
out boundary [7, Section 6]. We will refer to this condition as the Hessian of the constant
positive rank on a Compact submanifold (HCPRC) condition.

We now discuss the relations between various convexity conditions.
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Remark 3.1. LRSI and WQC are special cases of the NNS condition since we can choose
the following support functions respectively,

h(x) = µ‖x − xp‖
2 (for LRSI), (3.4a)

h(x) = ζ( f (x)− f ∗) (for WQC). (3.4b)

Therefore, Assumption 3.1 encompasses very general local landscapes for Nr(X ) due to
the flexibility of choosing h(x). One can make an interpretation that h(x) estimates how
close the loss value f (x) is to the minimum f ∗ by the mean value theorem,

(

∇ f (x), x − xp

)

≈ f (x)− f ∗.

Now we turn to the relationship between NNS in (3.1) and PL∗ or QG∗ in (3.2). We first
introduce a useful proposition of a projection map.

Proposition 3.1. For a compact set X ⊂ R
d and any x ∈ R

d, let xp ∈ ΠX (x). If x 6= xp, then
ΠX (y) = {xp} for any y ∈ {z : z = (1 − t)xp + tx, t ∈ (0, 1)}. That is, the projection of any
y between x and xp onto X is unique and equal to xp.

In the following example, f represents functions whose local landscape in the vicinity
of X is highly flat, in which case (3.2c) (L∗), (3.2d) (KL∗), (3.2g) (WQC) and (3.2h) (NNS)
conditions hold, but the conditions (3.2b) (PL∗) and (3.2e) (QG∗) fail.

Example 3.1 (A flat basin of attraction is neither PL∗ or QG∗ but is KL∗ and WQC). Let
f be a non-convex, continuously differentiable function and satisfy that inf

x∈Rd f (x) = 0.
Let X be a compact set. Assume that for a closed r-neighborhood, Nr(X ), and for some
C > 0 and some q > 2,

f (x) = C‖x − xp‖
q for any x ∈ Nr(X ),

where xp is a projection from x to X . Due to the projection and f ≥ 0, X consists of global
minima of f (x). By Proposition 3.1, it follows that for any x ∈ Nr(X ) and any t ∈ [0, r],

f (xp + tv) = Ctq,

where v is the unit direction from xp to x. Then, by Lemma A.1, the function f (xp + tv)
in t is ζ-quasar-convex with some ζ > 0, since it is continuously differentiable in [0, r] and
f ′(t) = 0 only if t = 0. Finally, note that the form of such a function remains the same as is
Ctq regardless of xp ∈ X . This implies the NNS condition with h(x) = ζ f (x). As a result,
f (x) is WQC (3.2) as well as NNS in (3.1). Furthermore, a simple calculation yields that

‖∇ f (x)‖ = |(∇ f (x), v)| = Cqt
q−1
0 , (3.5)

where t0 is defined by x = xp + t0v. The first equality holds since f is defined by the
distance ‖x − xp‖ and decreases the fastest towards xp at the point x, which implies that

v and ∇ f (x) are parallel. We note that by setting ϕ(x) = Cqx1−1/q for q > 2, the identity
(3.5) can be rewritten as

‖∇ f (x)‖ = C
1
q qϕ

(

f (x)
)

.

Since ϕ is an increasing function, KL∗ (3.2) is satisfied and so is L∗.
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However, we note that ‖∇ f (x)‖2 is of order t
2q−2
0 , while f (x) is of order t

q
0. Since q > 2,

we have

lim
t→0

‖∇ f (xp + tv)‖2

f (xp + tv)
= 0. (3.6)

Thus, PL∗ (3.2) does not hold even near X . Similarly, QG∗ (3.2) does not hold either, since

lim
t→0

f (xp + tv)

t2
= 0.

Now we summarize the relationships among the convexity conditions in the following
diagram:

(HCPRC)
(1)
=⇒ (LRSI)

(2)
=⇒ (NNS)

⇓(3) ⇑(4)

(QG∗) or (PL∗) (WQC)

⇓(7) ⇑(5)

(L∗) (QC)

⇓(6) ⇑(8)

(KL∗) (∗C)

(3.7)

Figure 3.2: The inclusion relations among the convexity conditions. The proof of the implication of one condition
to another: (1) [7, Lemma 14]; (2) Assumption 3.1 with h(x) = µ‖x − xp‖2; (3) [18, Appendix A], (Global
conditions are given but the same technique also applies; (4) Assumption 3.1 with h(x) = ζ( f (x)− f ∗); (5) WQC
(3.2h) with X = {x∗} → QC (3.2g); (6) [15, Observation 3]; (7) L∗ is a generalization of PL∗ [5]; (8) KL∗ is
a generalization of L∗ [36].

Note that (3) is the implication from LRSI to PL∗. The relationship between QG∗ and
LRSI and that between LRSI and WQC are open.

3.2 Main results on the convergence of SGD

The following theorem shows how likely the iterations from SGD will stay close to X and
eventually converge to X if its local landscape satisfies Assumption 3.1.

Theorem 3.1 (Stochastic Stability and Probabilistic Convergence). Suppose that there exists
a closed r-neighborhood of a compact subset of global minima X such that Nr(X ) satisfies As-
sumption 3.1. Under Assumptions 2.1 to 2.3, the following statements hold for the SGD iterations
(1.2):

(i) For any initial x1 ∈ Nr(X ), the N iterates remain in Nr(X ) with a positive probability,

P
{

xn ∈ Nr(X ) for each n ∈ [N]|x1

}

≥ 1 − CN , (3.8)
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where

CN :=
bN

r2

(

dist(x1,X )2 +
σr

I

N−1

∑
n=1

a2
n

bn+1

)

,

bn :=
n−1

∏
j=1

(

1 + L2
r a2

n

)

, b1 := 1,

(3.9)

Lr is the Lipschitz constant for Nr(X ) and I is the batch-size.

(ii) If h(x) > 0 for each x ∈ Nr(X ) \ X in Assumption 3.1, then

P

{

lim
n→∞

xn = x, f (x) = f ∗ | {xn}
∞
n=1 ⊂ Nr(X )

}

= 1. (3.10)

Consequently, these statements yield

P

{

lim
n→∞

xn = x, f (x) = f ∗|x1

}

≥ 1 − C∞.

Remark 3.2. The inequality explicitly shows the role of the hyperparameters (e.g. x1, an,
I, σr, Lr, r) (3.8) in the stochastic stability of SGD in non-convex optimization. A quali-
tative interpretation is that if one starts with a good initialization and the initial guess x1

lies in a large nearly convex region (i.e., r ≫ 1) near a set of global optima X , then the
optimization algorithm has little chance of leaving the region.

Remark 3.3. In terms of stochastic stability, we observe that C∞ in the definition (3.9) can
be finite even for some small batch size, e.g. I = 1, as long as an is sufficiently small,
since the learning rate an satisfies ∑n a2

n < ∞ in Assumption 2.3. Thus, our result (3.8)
theoretically ensures the regime of small constant batch size for SGD [12] with general
learning rate an, which is in contrast to the similar result by [7] that requires a policy of
increasing batch-size I as a polynomial order of the number of iterations N to keep the
stability of the iteration.

Theorem 3.1 also allows us to examine the stochastic stability of SGD for both decreas-
ing and constant learning rates, as follows.

Corollary 3.2 (Upper Bounds of Learning Rates for Non-Convex Loss). Under the as-
sumptions in Theorem 3.1, the following statements hold for iterations of SGD:

(i) If the learning rate is decreasing, an = a/nβ with β ∈ (1/2, 1] and n ≥ 1, the stochas-
tic stability that 1 − C∞ > 0 in Theorems 3.1 is satisfied for any damping parameter
a > 0 such that

e
2βLr
2β−1 a2

(

dist(x1,X )2 +
2βσra2

(2β − 1)I

)

< r2. (3.11)

(ii) If the learning rate is a constant, an = a for n ∈ [N], the stochastic stability that
1 − CN > 0 is satisfied if the learning rate a and the number of iteration N fulfill that

(

1 + L2
r a2
)N−1

(

dist(x1,X )2 +
σr

IL2
r

(

1 −

(

1

1 + L2
r a2

)N−1
))

< r2. (3.12)



J. Mach. Learn., 2(2):138-160 147

Remark 3.4. In previous works, upper bounds for learning rates in the context of convex
optimization have been studied for the optimization error in [1, 30]. As discussed in both
works, upper bounds of learning rates are related to the optimal error f (xn)− f ∗ and the
condition number µ/L, where µ is the parameter in terms of the strong convexity and L
is the global Lipschitz constant for the gradient. Corollary 3.2 suggests another type of
upper bound pertaining to the stochastic stability in non-convex optimization.

In addition, Corollary 3.2 implies that for a large number of iterations (N ≫ 1), using
decreasing learning rates requires less effort than constant learning rates in terms of hy-
perparameters (x1, Lr, σr, a, etc.). Specifically, while the parameter a in the second term
of (3.11) directly reduces the variance σr, such reduction in (3.12) occurs when a careful
balance is struck between the number of iterations N and the batch-size I given a constant
learning rate a.

Remark 3.5. When an empirical risk satisfies the NNS condition (3.1) for a compact set
X (not necessarily a set of local minima), and that h(x) > 0 holds in (3.1) whenever x ∈
Nr(X ) \X , the mean value theorem guarantees that X is a setwise strict local minimum as
defined in [23, Definition 3.4]. If the empirical risk is constructed under mild assumptions
suggested in [23, Assumption 1], according to [23, Theorem 3.8], no suboptimal strict local
minimum exists in X .

Now, we consider the application of the SGD to the empirical risk with an initial guess
in Nr(X ). Similar to the analysis in (4.15), we can achieve stochastic stability as the first
result in Theorem 3.1 by giving an upper bound for the term a2

n‖∇ f (xn)‖2 in (4.15), for
instance,

(

sup
x∈Nr(X )

‖∇ f (x)‖2

)

a2
n. (3.13)

Note that this upper bound is still on the order of a2
n. Thus, a similar trick in our proof

of Theorem 3.1 yields the stochastic stability of the SGD. By Lemma 4.3, the iterate con-
verges to some stationary point of the empirical risk with a positive probability. On the
other hand, [23, Theorem 3.8] guarantees that the stationary point is not a suboptimal local
minimum.

The main idea for proving Theorem 3.1 will directly yield a concentration inequality of
SGD to achieve h(x) ≤ ǫ as defined in Assumption 3.1. We provide more precise concen-
tration properties of SGD for the non-isolated global minima, X , under local conditions as
follows.

Theorem 3.3 (Concentration Inequalities of SGD for Non-Convex Loss). With the same
assumptions and the notation in Theorem 3.1, SGD (1.2) with initialization x1 ∈ Nr(X ) satisfies
that for any tolerance ǫ > 0,

P

{

min
1≤n≤N

h(xn) > ǫ|x1

}

≤
1

ǫ
·

dist(x1,X )2 + σr/I ∑
N
n=1 a2

n/bn+1

2 ∑
N
n=1 an/bn+1

+ CN+1. (3.14)

Let a′ > 0 satisfy the inequality (3.11) for the case of decreasing learning rates. Then, for the
learning rate an = a/nβ with β ∈ (1/2, 1),
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(i) If f satisfies the WQC condition (3.2h) with a ∈ (0, a′), then

P

{

min
1≤n≤N

f (xn)− f ∗ > ǫ|x1

}

≤ O

(

1

ǫN1−β

)

+ CN+1. (3.15)

(ii) If f satisfies the HCPRC condition (3.3) with a ∈ (0, min{1/2C, Lr/c2, a′}) where C is
defined in (4.11) and c in (4.23), then

P
{

f (xN)− f ∗ > ǫ|x1

}

≤ O

(

1

ǫNβ

)

+ CN+1. (3.16)

More generally, the same concentration result (3.16) is obtained if f satisfies the LRSI condi-
tion (3.2a).

Remark 3.6. The first result of Theorem 3.3 can quantitatively measure the slowdown of
the convergence of SGD within a highly flat basin of attraction, which depends on the
loss function f , the initialization x1, the learning rate an, etc. As discussed after Assump-
tion 3.1, the function h can be an implicit estimate for the optimization error. For example,
in the case of a large flat landscape around global minima, h can be approximately equal

to O(‖x − xp‖q(x)) for some degree function q(x) ≫ 1 depending on x. In this case, to
reach a tolerance ǫ > 0, SGD needs a very large number of iterations, since the right-hand

side of (3.14) is of order O(1/ǫqN1−β) for some large degree q ≫ 1. For a general WQC
(3.2h) loss function, we can make the same interpretation with (3.15).

On the other hand, if the loss function f starts with good initialization near which a
submanifold of global minima fulfills the HCPRC condition (3.3), then SGD shows a better

convergence rate as shown in (3.16) with an order of O(1/ǫNβ). As β approaches 1, the
rate of convergence becomes sublinear, O(1/ǫN) with the first term (The second term
accounts for the stochastic stability (3.8)). If we focus on the first term in (3.16), then the
result (3.16) generalizes the convergence result for strongly convex functions with isolated
minima [17, 29]. More importantly, our result (3.16) improves the bound in [7] whose

concentration inequality involves the term O(N1−β) under equivalent assumptions.

4 Convergence analysis

In this section, we give the proof of the main result. First, we briefly review the notation
for stopped stochastic processes introduced in [20, Section 4.5].

4.1 Stopped stochastic processes

Let x1 be the initialization and {(xn,Fn)}∞
n=1 be the iteration from SGD or a stochastic pro-

cess with a filtration. Let V(·), k(·) be real-valued and non-negative functions on R
d. Es-

pecially, V(·) will represent a Lyapunov function. In addition, we will denote a perturbed
Lyapunov function by Vn(xn) and a non-negative function scaled with learning rates by
kn(xn). More importantly, any function or stochastic process with the tilde superscripted
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will stand for a modified function in conjunction with a stopped process, respectively,
which depends on a stopping time, specifically

x̃n :=

{

xn, n ≤ τ,

xτ, n > τ,
Ṽ(x̃n) :=

{

Vn(xn), n ≤ τ,

Vτ(xτ), n > τ,
k̃(x) :=

{

k(x), x ∈ K,

0, otherwise
(4.1)

with the stopping time τ := {n ≥ 1 : xn 6∈ K} for a given set K. Throughout the conver-
gence analysis, we will consider K as some set of global minima and IA as the indicator
function which values one on the event A and zero otherwise.

4.2 Outline of the proof

For the proof of Theorem 3.1, we first construct a recursive inequality in terms of the
distance between xn and X , which essentially yields a supermartingale property as in
Lemma 4.1,

E

[

dist(xn+1,X )2|xn ∈ Nr(X )
]

. E

[

dist(xn,X )2
]

− anh(xn), (4.2)

where h is a non-negative function as in Assumption 3.1 and an is the learning rate. This
property brings the problem into the framework of stochastic stability [20]. In particular,
a Lyapunov function V and a non-negative function k can be defined from dist(xn,X )2

and h(xn), respectively. Our next step is to use Lemma 4.1 to estimate the probability of
divergence from Nr(X ), i.e., the probability,

P
{

dist(xn,X ) > r|x1

}

. (4.3)

This gives the first result in Theorem 3.1.
For the second result, we observe that any stable path {xn} converges by Lemma 4.4. In

such an event, k(xn) converges and it remains to show that k(xn) ≈ h(xn) will converge to
0 if h(x) > 0 is assumed in the region Nr(X ) \ X . We prove it by contradiction that k(xn)
converges to a positive random variable with positive probability. On the other hand,
telescoping the above inequality yields an inequality of the form

∞ =

(

∞

∑
n=N

an

)

δP

{

k(xn) > δ for all n ≥ N, {xn}
∞
n=2 ⊂ Br(x

∗)|x1

}

. dist(x1,X )2
< ∞. (4.4)

The left-hand side is infinite by Lemma 4.2 and Assumption 2.3, while the right-hand side
is certainly finite.

For Theorem 3.3, we use the telescoping trick above and obtain an inequality in expec-
tation as follows:

E

[

min
1≤n≤N

h(xn)IEN
|x1

]

.
dist(x1,X )2

∑
N
n=1 an

. (4.5)
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Note that EN represents the event in which the iterations remain near X up to the N-th
step. By applying Markov’s inequality, we arrive at the concentration inequality,

P

{

min
1≤n≤N

h(xn) ≤ ǫ or EN does not occur | x1

}

& 1 −
dist(x1,X )2

ǫ ∑
N
n=1 an

.

However, by Theorem 3.1, we know an upper bound for the probability of the event that
the iterations diverge. Combining these results, we find the estimate,

P

{

min
1≤n≤N

h(xn) ≤ ǫ | x1

}

.
dist(x1,X )2

ǫ ∑
N
n=1 an

+ CN+1.

Thanks to the fact that the NNS condition (3.2h) is weaker than the WQC condition
(3.2g), we set h(x) = ζ( f (x)− f ∗) and obtain the inequality by using the integral test for

an = a/nβ. For the case of the HCPR condition (3.3), it suffices to show the same result
under the LRSI condition (3.2), since it is weaker by Lemma 4.6. Observing that PL∗ is
weaker than LRSI in (3.7), Lemma 4.4 gives the recursive inequality of a form

E[Vn+1|Fn] . (1 − an)Vn + a2
n (4.6)

and by using Lemma 4.5, we obtain the result under the HCPRC condition.

4.3 Some useful lemmas and theorems

In this section, we provide some prior lemmas and theorems. Some of them are restated
so that they can be directly used for the proofs of the main results in the next section.

Lemma 4.1 ([20, Theorem 5.1]). Let {xn} be a Markov chain on R
d. Let V(·) be a non-negative

real-valued function on R
d and for a given r > 0, define the set Nr := {x : V(x) ≤ r}. Suppose

that for any x ∈ Nr and each n ≥ 1,

E
[

V(xn+1)|xn

]

− V(x) ≤ −k(x), (4.7)

where k(x) ≥ 0 and is continuous on Nr. Then, for any x ∈ Nr ,

P

{

sup
ν+1≤n<∞

V(xn) > r | xν = x

}

≤
V(x)

r
. (4.8)

Lemma 4.2 ( [19, Lemma E.1]). Let {kn} be a non-negative sequence of random variables. If
P{lim infn kn > δ} > 0 for some δ > 0, then there exists a natural number N ≥ 1 such that

P

{

kn > δ for all n ≥ N | lim inf
n

kn > δ
}

> 0. (4.9)

Lemma 4.3 ( [33, Theorem 1]). Under Assumptions 2.1-2.3, for any x1 ∈ K, the iteration from
SGD (1.2) satisfies the property

P

{

lim
n→∞

xn = x, ∇ f (x) = 0 | {xn}
∞
n=2 ⊂ K, x1

}

= 1.

That is, the iteration almost surely converges to a critical point in the event that it stays in K.
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Lemma 4.4 ( [33, Lemma 2 when ∇ f is locally Lipschitz]). Denote by En := {xi ∈ Nr(X ),
∀i ∈ [n]}, the event that iterations are stable up to the n-th step. Under Assumptions 2.1-2.3, for
δ > 0, SGD (1.2) has the property that for any n ≥ 1,

E
[

( f (xn+1)− f ∗)IEn+1
|Fn

]

≤
(

f (xn)− f ∗ − an(1 − Can)‖∇ f (xn)‖
2 + σr+δCa2

n

)

IEn . (4.10)

Specifically, the constant is given by,

C =
Lr+δ

2
+

sup
x∈Nr(X ) ‖∇ f (x)‖

δ
. (4.11)

σr+δ is the constant associated with Nr+δ(X ) by Assumption 2.2.

Lemma 4.5 ([2, Lemma 4]). Let {en} be a non-negative sequence such that

en+1 ≤

(

1 −
C

nβ

)

en +
C′

nβ′
, (4.12)

where β ∈ (0, 1), β < β′ and C, C′ > 0. Then, there exist constants C′′ > 0 and n0 ∈ N such
that

en ≤
C′′

nβ′−β
for each n ≥ n0. (4.13)

Lemma 4.6 ([7, Lemma 14 in the case of a compact submanifold]). If f satisfies the HCPRC
condition (3.3), for any x0 ∈ M ∩ U, then the compact submanifold X := M ∩ U has the
following property that for some r > 0 and c > 0:

(

∇ f (x), x − xp

)

≥ c‖x − xp‖
2 (4.14)

for any x ∈ Nr(X ).

4.4 Proofs of main results

Proof of Theorem 3.1. First, we derive a recursive inequality for the distance between xn

from SGD (1.2) and x
∗ as follows:

E

[

dist(xn+1,X )2|xn

]

≤ E

[

‖xn+1 − (xn)p‖
2|xn

]

≤ dist(xn,X )2 − 2an

(

∇ f (xn), xn − (xn)p

)

+ a2
n‖∇ f (xn)‖

2 + σra2
n

≤
(

1 + L2
r a2

n

)

dist(xn,X )2 − 2an

(

∇ f (xn), xn − (xn)p

)

+ σra2
n (4.15)

for any xn ∈ Nr(X ). Here, Lr is the local Lipschitz constant from Assumption 2.1 and
σr can be chosen by Assumption 2.2. The first inequality holds by the definition of the
distance to a set from a point. The second inequality is a direct calculation using (1.2)
and Assumption 2.2. The conditional expectation of the cross term with ∇ f (xn) and ξn

vanishes by Assumption 2.2. In the last inequality, we used the Lipschitz condition in
Assumption 2.1.
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To proceed, let us define the following:

bn :=
n−1

∏
j=1

(

1 + L2
r a2

n

)

, b1 := 1, (4.16a)

Vn(xn) :=
dist(xn,X )2

bn
+ σK

N−1

∑
j=n

a2
j

bj+1
, (4.16b)

kn(xn) :=
an

bn+1
k(xn), k(xn) := 2

(

∇ f (x), x − xp

)

. (4.16c)

Based on the stochastic stability analysis [20, Theorem 5.1], by setting the stopping time
τ := {n ≥ 2 : xn 6∈ Nr(X )} with K = Nr(X ) in the inequality (4.1), we can modify the
inequality (4.15) as follows:

E
[

Ṽn+1(x̃n+1)|Fn

]

≤ Ṽn(x̃n)− k̃n(x̃n) ≤ Ṽn(x̃n), (4.17)

which implies that {Ṽn(x̃n)} is a non-negative supermartingale. Furthermore, by applying
Markov’s inequality to this supermartingale, we find that for any x1 ∈ Nr(X ),

P

{

sup
N≥n≥2

Ṽn(x̃n) >
r2

bN

∣

∣ x1

}

≤
bN

r2

(

V1(x1)
)

.

On the other hand, we observe that

P

{

sup
N≥n≥2

dist(xn,X ) > r | x1

}

≤ P

{

sup
N≥n≥2

dist(x̃n,X ) > r | x1

}

≤ P

{

sup
N≥n≥2

Ṽn(x̃n) >
r2

bN

∣

∣ x1

}

.

The first inequality follows by the definition of the stopping time τ in the above. The
second inequality can be deduced from the definition (4.16). Therefore, the first statement
follows by combining these two inequalities. Moreover, Assumption 2.3 guarantees the
limiting case N = ∞.

For the second statement, we telescope the inequality (4.17) and recall the definition
kn(xn) in (4.16)

∞

∑
n=1

an

bn+1
E
[

k̃(x̃n)|x1

]

≤ V1(x1) < ∞. (4.18)

Note that conditioned on x1 ∈ Nr(X ), the event that {xn}
∞
n=2 ⊂ Nr(X ) occurs with some

positive probability thanks to the first statement. In this event, {xn} converges in Nr(X )
with probability 1 by Lemma 4.3. This guarantees f (xn) converges to some random vari-
able by the continuity of f , which is less than or equal to the global minimum f ∗. In fact,
we show that f (xn) converges to f ∗ almost surely in this event.
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Suppose on the contrary that k(xn) in the definition (4.16) converges to a positive ran-
dom variable with some positive probability. By the continuity of a measure, there exists
a δ > 0 such that

P

{

lim
n→∞

k(xn) > δ | {xn}
∞
n=2 ⊂ Nr(X ), x1

}

> 0.

By Lemma 4.2, there exists a N ∈ N satisfying

P

{

k(xn) >
δ

2
for all n ≥ N | lim

n→∞
k(xn) > δ, {xn}

∞
n=2 ⊂ Nr(X ), x1

}

> 0.

These two inequalities imply that with some positive probability the event k(xn) > δ/2 for
all n ≥ N occurs when {xn}∞

n=2 ⊂ Br(x∗) given x1 ∈ Br(x∗). However, by the definition
of conditional probability, we have

P

{

k(xn) >
δ

2
for all n ≥ N, {xn}

∞
n=2 ⊂ Br(x

∗) | x1

}

= P

{

k(xn) >
δ

2
for all n ≥ N|{xn}

∞
n=2 ⊂ Br(x

∗), x1

}

× P
{

{xn}
∞
n=2 ⊂ Br(x

∗) | x1

}

> 0

by the above inequality and the previous result of stability. Furthermore, by using the
inequality (4.18), Assumption 2.2 and the Markov’s inequality, one has,

∞ =

(

∞

∑
n=N

an

bn+1

)

δ

2
P

{

k(xn) >
δ

2
for all n ≥ N, {xn}

∞
n=2 ⊂ Br(x

∗) | x1

}

≤ V1(x1) < ∞,

which is a contradiction. Thus, in the event that {xn}∞
n=2 ⊂ Nr(X ), limn→∞ k(xn) =

k(x) = 0 with probability 1. Finally, if x ∈ Nr(X )−X , then the assumption that h(x) > 0
for all x ∈ N(X )−X in the statement implies that

0 =
k(x)

2
=
(

∇ f (x), x − xp

)

≥ h(x) > 0,

which is a contradiction. Therefore, the limit x must lie in X and f (x) = f ∗.

Proof of Corollary 3.2. By the integral test, we have

∞

∑
n=1

1

n2β
≤ 1 +

∫ ∞

1

dx

xβ
=

2β

2β − 1
.

With this, we use the inequality (3.11) and trace back to the condition of stability

r2
> e

2βLr
2β−1 a2

(

dist(x1,X )2 +
2βσr

2β − 1
a2

)
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≥ eLr ∑
∞
n=1 a2

n

(

dist(x1,X )2 + σr

∞

∑
n=1

a2
n

)

≥ b∞

(

dist(x1,X )2 + σr

∞

∑
n=1

a2
n

bn+1

)

=⇒ 1 − C∞ > 0,

where C∞ is defined in Theorem 3.1. In the third inequality, we used the well-known
inequality that ∏n(1 + cn) ≤ e∑n cn for any real-valued sequence {cn} with cn > −1.

In the case of a constant learning rate, we use the well-known formula

1 + x + · · ·+ xn =
1 − xn

1 − x
(4.19)

and a direct calculation shows the result (3.12).

Proof of Theorem 3.3. From the inequality (4.15) and its counterpart (4.17) with the stopped
process, a telescoping trick can be used

N

∑
n=1

E
[

kn(xn)IEN
|x1

]

≤
N

∑
n=1

E
[

k̃n(x̃n)|x1

]

≤ V1(x1). (4.20)

By noting that kn(xn) ≥ 2an/bn+1h(xn) in (4.16), we have from above inequality

E

[

min
1≤n≤N

h(xn)IEN
| x1

]

≤
V1(x1)

2 ∑
N
n=1 an/bn+1

, (4.21)

where V1(x1) is defined in (4.16). This proves the first result.
For the rest of the statements in the theorem, we use the stability result in Theorem 3.1

as well as Markov’s inequality. For simplicity, we keep using the above notations. By
applying Markov’s inequality to the inequality (4.20), we have

P

{

min
1≤n≤N

h(xn) > ǫ and EN occurs | x1

}

≤
V1(x1)

2ǫ ∑
N
n=1 an/bn+1

,

or equivalently,

P

{

min
1≤n≤N

h(xn) ≤ ǫ or EN does not occur | x1

}

≥ 1 −
V1(x1)

2ǫ ∑
N
n=1 an/bn+1

.

However, according to the result in Theorem 3.1, we see that

P
{

EN does not occur | x1

}

≤ CN+1,

which leads to

P

{

min
1≤n≤N

h(xn) ≤ ǫ | x1

}

≥ 1 −
V1(x1)

2ǫ ∑
N
n=1 an/bn+1

− CN+1.
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Thus, if f is WQC and an = a/nβ, then we have

P

{

min
1≤n≤N

f (xn)− f ∗ > ǫ | x1

}

≤
V1(x1)

2ζǫ ∑
N
n=1 an/bn+1

+ CN+1 = O

(

1

ǫN1−β

)

+ CN+1 (4.22)

by the integral test.
Secondly, we suppose that f is HCPRC (3.3). By Lemma 4.6, f is LRSI, that is, there

exists a compact set of global minima X , r > 0 and c > 0 such that x0 ∈ X and
(

∇ f (x), x − xp

)

≥ c‖x − xp‖
2 (4.23)

for any x ∈ Nr(X ). This implies that

‖∇ f (x)‖ ≥ c‖x − xp‖

by the Cauchy-Schwarz inequality. By Lipschitz continuity in Assumption 2.1, we have

f (x) ≤ f ∗ +
Lr

2
‖x − xp‖

2,

since ∇ f (xp) = 0. With these results, we achieve that for any x ∈ Nr(X ),

f (x)− f ∗ ≤
Lr

2
‖x − xp‖

2 ≤
Lr

2c2
‖∇ f (x)‖2,

which is the PL∗ condition (3.2b). Then, for learning rate an ∈ (0, min{1/2C, Lr/c2}) (C
defined in (4.11) and c in (4.23)), by Lemma 4.4, we have

E
[

( f (xn+1)− f ∗)IEn+1
|Fn

]

≤

(

1 −
c2an

Lr

)

(

f (xn)− f ∗
)

IEn +
σr+δC

I
a2

n, (4.24)

E
[

Vn+1|x1

]

≤

(

1 −
c2an

Lr

)

E
[

Vn|x1

]

+
σr+δC

I
a2

n (4.25)

by letting Vn := ( f (xn)− f ∗)IEn and taking expectation up to x1.

In particular, by Lemma 4.5, if an = a/nβ with β ∈ (0, 1) and a ∈ (0, min{1/2C, Lr/c2}),
there exist C′′ > 0 and N0 ∈ N such that

E
[

VN |x1

]

≤
C′′

Nβ
for any N ≥ N0

and by using Markov’s inequality,

P
{

f (xN)− f ∗ > ǫ and EN occurs | x1

}

≤
C′′

ǫNβ
.

As we did above, we achieve that for any N ≥ N0,

P
{

f (xN)− f ∗ ≤ ǫ | x1

}

≥ 1 −
C′′

ǫNβ
− CN+1.

Finally, suppose that f satisfies the LRSI condition (3.2a). Then, based on the proof from
the inequality (4.23) to the above concentration inequality, we can obtain the same concen-
tration result for the case of the LRSI condition (3.2a).
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5 Numerical results

Here we provide an example of a loss function, for which we verify the NNS condition
(3.1) numerically. We use the pre-trained model, ResNet-56 cifar101, whose parameter
dimension is about 0.85M, and obtain the density of states (DoS, or the spectral density)
of the Hessian of the loss function at the local minimum x∗ of the pre-trained model using
the PyHessian [40]. We observe that most of the eigenvalues of the Hessian are close to 0
as shown in Fig. 5.1, indicating that in many directions, the landscape in the vicinity of x∗

is flat. Following the procedure in [40], we pick a random direction v and verify that such
a flat region near x∗ exists as in Fig. 5.1. Within the flat region, we consider a sufficiently
small segment X centered at x∗, which can be viewed as a set of non-isolated local minima
approximately.

We check whether the set X fulfills the NNS condition (3.1) by sampling points z on X
and monitoring the sign of the quantity (∇ f (x), x − z) as in (3.1) for x = z + tw with 50
sampled random directions w. The quantity (∇ f (x), x − z) is computed using a central
difference method for loss function values. In the numerical experiments, with results
shown in Fig. 5.2, we sample points uniformly from X , which are of the form x∗ + av for
a = −5,−4, · · · , 5 in the direction v used in Fig. 5.1. Each panel in Fig. 5.2 corresponds to
points uniformly sampled from X . We clearly see that most of those quantities (∇ f (x), x−
z) are positive in the landscapes perturbed along 50 randomly sampled directions.

With the same procedure described above, we made similar observations in indepen-
dent simulations for the given direction v with different sampled directions w defined at
the points uniformly sampled from X . In addition, we obtain similar results by following
the same procedure with different random directions v.

Figure 5.1: Numerical verification of the NNS condition (3.1). The left panel shows the density of states (DoS) of
the Hessian of a loss function f (x) defined by the pre-trained model, ResNet56 cifar10, at the local minimum x∗.
Most of the eigenvalues are concentrated at 0 where the DoS is an order of 1, while at other positive eigenvalues,
the DoS is below an order of 10−4. In the right panel, a flat landscape of the loss function is observed in
a direction v. The graph is obtained from the expression f (x∗ + av) with ‖v‖ = 1 and a ∈ [−20, 20], where x∗

denotes the local minimum of the pre-trained model.

1The model is available at https://pypi.org/project/pytorchcv/
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Figure 5.2: Numerical verification of the NNS condition (3.1). At each of the 11 points uniformly sampled from
the flat region (a ∈ [−5, 5]) in Fig. 5.1, 50 random directions w are sampled, and the quantities (∇ f (x), x − z),
where x = z + tw for t ∈ (0, 20), are plotted.

With the same procedure described above, we made similar observations in indepen-
dent simulations for the given direction v with different sampled directions w defined at
the points uniformly sampled from X . In addition, we obtain similar results by follow-
ing the same procedure with different random directions v. These numerical observations
confirm that the loss function associated with the pre-trained model, ResNet56 cifar 10
satisfies the NNS condition (3.1).
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6 Summary and discussions

This paper has focused on local convergence in the context of non-convex optimization,
with the stochastic gradient descent (SGD), especially for loss functions with non-isolated
minima. We have proved the convergence and concentration inequalities in terms of hy-
perparameters. The technical results rely on the stochastic stability analysis, the optional
stopping theorem for discrete stochastic processes, and the geometric characterizations of
non-isolated minima. An extension of our analysis to other variants of the stochastic gra-
dient method is likely, and it is expected to provide sufficient conditions on the learning
rates and the local Lipschitz constant to guarantee the convergence with high probability.

Appendix A

Proof of Proposition 3.1. To start, we show that ΠX (y) contains xp. Note that for any z ∈ X ,
‖x − xp‖ ≤ ‖x − z‖ by the definition of the projection. From this, the collinear relation
between x, y and xp implies that

‖y − xp‖+ ‖x − y‖ = ‖x − xp‖ ≤ ‖x − z‖.

Furthermore, by the triangle inequality,

‖y − xp‖ ≤ ‖x − z‖ − ‖x − y‖ ≤ ‖y − z‖.

That is, ΠX (y) at least contains xp.
Now, we prove that this set is indeed a singleton. Suppose on the contrary that there is

yp ∈ ΠX (y) and yp 6= xp. We show that yp does not lie on the line through xp and x. First

of all, yp cannot lie on (xp, x). Otherwise, xp is not projection of x. The other possibility is

that yp = xp + t(x − xp) for some t > 1. However, we can see that

‖y − xp‖ < ‖x − xp‖ ≤ ‖x − yp‖ < ‖x − yp‖+ ‖x − y‖ = ‖y − yp‖.

In the second inequality, we recall the fact that xp is a projection of x onto X . This inequal-
ity is not true as opposed to the hypothesis that both sides must be equal as dist(y,X ).

As a result, we can assume that yp is not on the line passing through x, y and xp. How-

ever, this results in the strict triangle inequality,

‖x − yp‖ < ‖x − y‖+ ‖y − yp‖.

This inequality, together with ‖y − yp‖ = ‖y − xp‖ = dist(y,X ), leads to a contradiction

to xp ∈ ΠX (x), i.e.,
‖x − yp‖ < ‖x − xp‖.

This completes the proof.

Lemma A.1 ([15, Observation 1]). Let a < b and f be a real-valued continuously differentiable
function on [a, b]. Then, f is unimodal, that is, f ′(c) 6= 0 for all c ∈ [a, b] such that c 6∈
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argminx∈[a,b] f (x) if and only if f satisfies the QC for some ζ ∈ (0, 1] and some minimum x∗ ∈

[a, b],
f ′(x)(x − x∗) ≥ ζ

(

f (x)− f ∗
)

.
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