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Abstract. Prompt engineering (PE) has emerged as a critical technique for guiding large language models
(LLMs) in solving intricate tasks. Its importance is highlighted by its potential to significantly enhance the effi-
ciency and effectiveness of human-machine interaction. As tasks grow increasingly complex, recent advanced
PE methods have extended beyond the limitations of single-round interactions to embrace multi-round in-
teractions, which allows for a deeper and more nuanced engagement with LLMs. In this paper, we propose
an optimal control framework tailored for multi-round interactions with LLMs. This framework provides
a unified mathematical structure that not only systematizes the existing PE methods but also sets the stage
for rigorous analytical improvements. Furthermore, we extend this framework to include PE via ensemble
methods and multi-agent collaboration, thereby enlarging the scope of applicability. By adopting an opti-
mal control perspective, we offer fresh insights into existing PE methods and highlight theoretical challenges
that warrant future research. Besides, our work lays a foundation for the development of more effective and
interpretable PE methods.

Keywords:

Large language models,
Prompt engineering,
Optimal control.

Article Info.:
Volume: 2
Number: 4
Pages: 241 - 258
Date: December/2023
doi.org/10.4208/jml.231023

Article History:

Received: 23/10/2023
Accepted: 06/11/2023

Communicated by:
Zhi-Qin John Xu

1 Introduction

Prompt engineering (PE) first emerged in the field of large language models (LLMs) in
2020, as researchers realized that well-designed prompts could significantly enhance the
capabilities of LLMs without additional model training [1, 4, 25, 29]. The development of
PE can be contextualized within the larger scope of natural language programming [27,28]
– an increasingly prevalent paradigm that allows for the manipulation of computational
systems through natural language, thus offering a more intuitive alternative to traditional
programming languages. Much like the transition from machine language to higher-level
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languages like C marked a significant leap in expressive power and ease of use, prompt
engineering – or natural language programming in a broader sense – represents a further
evolutionary leap, making it easier than ever to instruct machines in performing complex
tasks. When implemented properly, PE can yield dramatic performance improvements,
particularly in the context of advanced LLMs such as GPT-4 and Claude. In these sophis-
ticated models, the gap between well-engineered and poorly conceived prompts can be
stark, reinforcing the critical role of effective PE in leveraging the full potential of LLMs.

Initially, the focus of PE was on single-round prompting, a mechanism suited for rel-
atively straightforward tasks. However, as the need for more complex problem-solving
through natural language programming became evident, the field saw a shift towards
more intricate forms of engagement, such as multi-round and even multi-agent interac-
tions with LLMs [2, 41, 44, 45]. This evolution in PE bears a striking resemblance to the
historical trajectory of optimal control theory [18], which itself originated from the need
for point-to-point trajectory optimization and later expanded its scope to accommodate
dynamic systems with feedback mechanisms.

The growing complexity of multi-round PE interactions presents significant challenges.
Traditional PE approaches [4, 19, 39] often rely on heuristic or empirical methods that,
while effective in specific scenarios, lack a systematic foundation amenable to rigorous
analysis. This highlights the pressing need for a unified mathematical framework that can
serve as a descriptive foundation and facilitate optimization of multi-round PE dynamics.

The primary aim of this paper is to introduce a novel optimal control framework tai-
lored for multi-round interactions with LLMs. Unlike previous works with limited theo-
retical scopes [3,8,24,33], our approach offers a comprehensive mathematical structure for
the systematic design, analysis, and optimization of PE methods, broadening its applica-
bility to include ensemble and multi-agent strategies.

Adopting an optimal control perspective holds the promise of evolving PE along a tra-
jectory similar to that of optimal control theory itself. Initial methodologies in PE mainly
focused on single-round prompts, comparable to point-to-point trajectory optimization
problems [14, 35, 42]. As optimal control theory incorporated feedback mechanisms for
handling complex systems, our framework is designed to accommodate both single-round
and multi-round interactions. This shift aims to offer a coherent understanding of the
dynamics governing these intricate exchanges and to foster innovative applications tran-
scending current limitations.

To realize these objectives, our methodology employs optimal control to conceptualize
multi-round LLM interactions. While acknowledging existing gaps in mathematical rigor
due to poorly understood metrics in discrete language spaces, the framework aims to
serve as a unified lens for qualitatively evaluating existing PE techniques. Thus, it lays
the groundwork for potential improvements in PE by providing an intuitive, structurally
coherent approach to model extended dialogic interactions.

Contributions of this paper are summarized as follows:

1. We introduce a novel optimal control formulation that unifies a wide range of ex-
isting methods under a single mathematical framework. This provides a rigorous
foundation for analyzing and improving prompt design.
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2. We highlight theoretical challenges revealed by the framework, specifically regard-
ing the formalization and optimization of multi-round interactions. While complex,
these issues offer exciting directions for future studies to deepen the mathematical
understanding of PE.

3. Our perspective yields valuable insights into the inherent capabilities and limitations
of current techniques. These could catalyze innovations in PE, pushing the bound-
aries of human-computer interaction.

4. We extend the framework to ensemble PE methods and multi-agent PE, serving as
an important stepping stone for studying complex interactions with LLMs.

We note that the primary aim of this paper is not to present new theoretical results or
algorithmic improvements substantiated by experiments; rather, we introduce an optimal
control framework to systematize and interpret existing PE methods, thereby laying the
groundwork for future rigorous analysis in the domain of PE.

The remainder of this paper is structured as follows. Section 2 elaborates on the pivotal
concepts in PE and introduces the optimal control framework designed to systematize PE.
In this section, we also shed light on the significance of multi-round interactions, high-
lighting the challenges and opportunities that multi-round PE presents. In Section 3, we
review several well-established PE methods, integrating them into the proposed optimal
control framework and elucidating the new insights that emerge from this integration.
Section 4 is dedicated to extended PE methodologies, such as ensemble and multi-agent
PE strategies. We illustrate how minor adaptations to the proposed framework can ac-
commodate these more sophisticated, yet potent, PE methods. The paper concludes with
Section 5, where we summarize our contributions.

2 A general framework for prompt engineering

2.1 Concepts and terminologies

In the context of LLMs, a prompt serves as a starting point for an interaction with the LLM.
It could be a question, a statement, or a command that are given in natural language. The
quality of prompts are important because they have a strong effect on the quality of the
LLM’s responses. Well-designed prompts can lead to useful and accurate responses, while
a poorly designed ones may result in irrelevant or wrong responses.

In this paper, our main focus is on multi-round interactions with LLMs. In these situ-
ations, a user interacts with the model multiple times to complete one specific task. For
multi-round interactions, the user gives a series of prompts and later prompts can be in-
fluenced by LLM’s previous responses. This approach allows the user to get more detailed
information and helps the model to handle tasks that are too complex for a single interac-
tion.

Prompt engineering is the process of designing and refining a sequence of prompts to
be used in a multi-round interaction with an LLM, with the goal of eliciting a satisfactory
final response. By “satisfactory”, we mean that the final response should score high on
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some measurable standard. In Section 2.3, we will show how the idea of finding refined
prompts can be described as an optimal control problem.

2.2 Why is multi-round interaction necessary?

It is important to emphasize the significance of engaging in multiple rounds of interac-
tion for obtaining high-quality responses from LLMs [37]. One could argue that a single
well-crafted prompt should be sufficient if the LLM is highly advanced. However, this
is often not achievable. Even with a sophisticated LLM, crafting the ideal prompt can be
challenging, especially when the user is not an expert in the subject matter at hand.

For instance, consider a medical diagnosis scenario where a user is experiencing symp-
toms and seeks advice from an LLM. An initial prompt might capture a basic description
of the symptoms, however, lacking medical expertise, the user may miss pertinent infor-
mation. For example, the user might overlook some crucial connections between their
symptoms and lifestyle habits or other factors. These unstated contextual factors could be
vital for the LLM to provide an accurate or useful response in a single interaction round.

[20, Chapter 4] provides a detailed example of GPT-4 assisting a physician with a neo-
natal diagnosis. Initially, the physician outlines a set of symptoms, eliciting from GPT-4
a list of four possible conditions. In subsequent rounds of dialogue, supplemented with
extra clinical details including ultrasound images and hormone level data, GPT-4 refines
its assessment and identify the most probable diagnosis among the four possibilities. This
collaborative process culminates in the accurate detection of a remarkably rare disorder,
with an incidence of less than one in every 100, 000 newborns. Given the technical na-
ture and length of the original conversation, it has been excluded from this text. Readers
seeking an in-depth understanding are directed to consult [20, Chapter 4].

In a multi-round interaction, both the user and the LLM have the opportunity for
a more extended exchange of information. The user can adapt their prompts based on the
LLM’s previous responses, adding details or context that were initially lacking. Similarly,
the LLM might ask clarifying questions that help guide the user to provide additional,
more relevant information.

Through this iterative process of exchanging information, the specialized knowledge
of the LLM assists the user in crafting more effective prompts, enabling a more productive
dialogue. In summary, engaging in multi-round interactions enhances the cooperation
between users and LLMs. The back-and-forth conversations facilitate more contextual
and nuanced exchanges that are vital to unlocking the full potential of LLMs.

2.3 General framework

Let us define the text space as Z . Elements in Z are compositions of some tokens selected
from the token vocabulary T , i.e. z = [t1, . . . , tm] ∈ Z , where tk ∈ T . Later in this
paper, we also use [z1z2] to represent the text obtained by concatenating z1 and z2 one
after another.

Under these notations, a given LLM can be mathematically modeled as a transforma-
tion over Z
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LLM :
Z → Z
zp 7→ zr ,

where zp stands for prompt and zr stands for response.

Remark 2.1. While our current formulation treats LLMs as deterministic transformations
for the sake of conceptual clarity, it is noteworthy that all LLMs operate in a stochastic
setting. The inherent variability due to stochastic sampling in text generation can yield
different outputs for the same input prompt. Interestingly, certain PE methods such as
ensemble methods can benefit from this stochastic property. We will explore this with
more details in Section 4. Nevertheless, the primary insights and conclusions drawn in
this paper remain valid in both deterministic and stochastic settings.

Given a task description (or a query) zq, our objective is to obtain an optimal response,
where optimality is measured using an evaluation function f

f :
Z → R

z 7→ f (z; zq)
.

The purpose of PE is to find a sequence of prompts {z
p
t }

τ

t=1 that lead to an optimal
response. Formally, this can be viewed as an optimal control problem

max
τ

max
z

p
t ∈Pt

f
(

zr
τ
; zq

)

+ R(τ)

s.t. zr
t = LLM

(

z
p
t

)

,

(2.1)

where R(τ) is a regularization term. An example of R(t) is the following function, which
enforces a maximum interaction limit of T:

R(t) =

{

0, t ≤ T,

−∞, t > T.

In this formulation, {Pt}τ

t=1 is a sequence of prompt candidate sets that expand over
rounds

Pt ⊂ Pt+1.

This expansion encapsulates the user’s growing understanding through iterative inter-
actions. Initially, the prompt candidate set contains only general queries. However, as
the conversation progresses, as the user get access to {zr

s}
t
s=1, the set Pt+1 enlarges be-

cause of the additional information acquired through the conversations, i.e. Pt+1 = Pt ∪
{new prompts based on zr

t}. Thus, it may include more specific and relevant prompts,
culminating in a sufficiently large set that holds an optimal prompts for task completion.

Some readers may question the necessity of constraining the prompt candidate set Pt

rather than setting it equal to the entire prompt space Z for all t. It is imperative to un-
derstand that the cardinality of Z is overwhelmingly large, making optimization within
this comprehensive space computationally infeasible. In our optimal control framework,



J. Mach. Learn., 2(4):241-258 246

the enlargement of the prompt candidate set Pt is permitted only after the associated in-
formation for new prompts has undergone scrutiny. This ensures that the size of Pt re-
mains within computationally manageable bounds. Importantly, this feature of having
an enlarging candidate set is a novel aspect that departs from traditional optimal control
theory. Although it introduces additional analytical and computational complexities, such
a formulation is naturally motivated by the practical requirements of PE as well as other
real-world scenarios. A thorough discussion on this matter is deferred to Section 3.1.

To summarize, within our framework, PE is essentially the formulation and resolution
of problem (2.1). More specifically, it encompasses the following tasks:

• Determining a suitable evaluation function f .

• Establishing an update rule for the prompt candidate set Pt.

• Solving the resultant optimal control problem, i.e. choosing z
p
t from Pt.

Here, the first two tasks pertain to problem formulation, while the final task focuses on
solving the underlying problem. Fig. 2.1 shows a schematic diagram of our framework.

Figure 2.1: The general framework of multi-round PE. In our optimal control formulation (2.1), the task (or query)
is denoted by zq, the prompt candidate sets are denoted as Pt, which is updated based on preceding response zr

t−1.

The answer is the final response from the LLM. We use bold arrows to demonstrate two procedures: choosing z
p
t

from Pt and the enlarging of Pt. We can interpret Pt as the embodiment of our “action space” when prompting.

2.4 Potentials and challenges in prompt engineering

Within our framework, the multi-round interaction with an LLM constitutes a dynamic
system, and PE is framed as a control problem defined over the dynamic system. From
this optimal control perspective, we will discuss the potentials that PE may achieve and
the challenges that PE presents.
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2.4.1 Potentials

Let us first briefly discuss the characteristics of LLM which help gain insight into PE
methodologies via the optimal control framework. In our view, the key traits of LLMs
that enable effective PE are their immense knowledge capacity and inherent variability.

With knowledge capacity, an adept LLM contains extensive information on a vast ar-
ray of topics and concepts. This allows it to understand and engage with prompts across
diverse domains. The user aims to steer the LLM through multiple rounds of interaction,
activating relevant knowledge in a back-and-forth process. From this viewpoint, an adept
LLM should function comparably to a sampler endeavoring to canvas the entire distribu-
tion of a particular concept or domain of knowledge that the user seeks to explore. In each
interaction round, the LLM can be seen as drawing samples from a probability distribution
defined over Z which is conditioned on the prior prompts and responses. The goal of PE
is for the LLM to facilitate a sequence of samples that approaches the true distribution of
the user’s targeted knowledge. This is an idealized assumption, considering the practical
limitations, but it offers a clear objective for the development of LLMs in the context of PE:
To refine their sampling process to better approximate the desired knowledge distribution
through iterative prompting.

Regarding variability, it has been shown that LLM outputs depend heavily on the
prompt provided. A superior LLM should produce varied, nuanced responses to small
prompt variations. This allows prompt engineers to refine prompts iteratively, coaxing
the LLM to generate high-quality, targeted responses. On the other hand, an adept LLM
should indicate when a prompt lacks key information, rather than providing inconsistent
outputs. This meta-cognitive capacity highlights areas for the user to enhance the prompt
through subsequent iterations.

In summary, the immense knowledge and inherent variability of LLMs enable PE to
unlock their potential through iterative refinement. However, these properties still lacks
rigorous study. More investigation into these properties will undoubtedly lead to more
efficient PE methods.

2.4.2 Challenges

By examining the issues related to the three key tasks of PE listed in Section 2.3, we gain
a clearer understanding of the challenges for PE in both formulating problems and opti-
mizing the prompting process.

For problem formulation of PE, the complexities often arise from the discrete and struc-
tured nature of the language set Z . Both the evaluation function f and the prompt can-
didate sets Pt are defined over Z . Given that Z is a discrete space that possesses its own
intricate linguistic structure, devising rule-based manipulations becomes inherently chal-
lenging. In addition, the changing of the prompt candidate set Pt with time t adds another
layer of complication in analyzing the underlying optimal control problem. Furthermore,
it is often difficult to provide explicit definitions for f and Pt, which presents obstacles to
the progress of PE in various fields.

With respect to optimizing the prompting process, the lack of access to the LLM’s in-
ternal parameters necessitates the use of gradient-free optimization techniques such as



J. Mach. Learn., 2(4):241-258 248

random search or reinforcement learning. The efficiency of these methods is problematic,
especially when factoring in the computational cost of interaction with the LLM. Addition-
ally, the prompt candidate set Pt often comprises an extensive array of potential prompts,
thus inflating the action space for the optimal control problem considerably. This exten-
sive action space further exacerbates the challenge of solving the optimal control problem,
more so when coupled with the constraint of gradient-free optimization.

Despite these complexities, extensive empirical studies indicate that the quality of PE
significantly influences the performance of LLMs [5,6,16,23]. An intriguing question then
arises: What are the limits to the effectiveness of PE? Amid these challenges and complex-
ities lies a fertile ground for future investigation.

3 Prompt engineering methods

In this section, we direct our attention towards some specific PE methods in the literature.
As detailed in Section 2.3, PE encompasses three pivotal elements: the evaluation func-
tion f , the prompt candidate set Pt, and methods for solving the optimal control problem.
Given that the evaluation function f is highly task-specific and subject to substantial varia-
tions, we opt not to concentrate on it within the scope of this section. Instead, our primary
interest lies in the latter two elements: the mechanisms for enlarging Pt and the algorithms
capable of solving the ensuing optimal control problem.

Accordingly, in this section, we feature several notable methods pertinent to these two
aspects. For each aspect, we first describe the task at hand and offer an interpretation of the
highlighted PE methods within the context of our proposed optimal control framework.
Following this, we present some insights that can be garnered by examining these PE
methods through the lens of the proposed framework.

3.1 Enlarging the prompt candidate set

3.1.1 Enlarging via previous responses

A branch of multi-round PE methods [40,43] enlarge their prompt candidate set by adopt-
ing previous responses as part of later prompts. Here, we use progressive-hint prompting
(PHP) [43] as an example to illustrate how these methods work.

PHP concentrates on arithmetic tasks. The evaluation function f is an identification
function, signaling the correctness of the provided answer (e.g. having value 1 when the
answer is correct and 0 otherwise).

In PHP, the previous outputs of the LLM are used to construct subsequent inputs.
Mathematically, this is given by

z
p
t =

[

Question “Hint: the answer is close to zr
1, . . . , zr

t−1”
]

.

The stopping criterion τ is formulated as follows: Terminate if zr
τ

reiterates a portion of
the prompt. This stopping rule relies on the heuristic notion that the correct answer, when
present in the prompt, likely leads to an output that adheres to that answer. We give
an example of PHP interactions in Fig. 3.1.
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Figure 3.1: An example of PHP interactions. The subsequent prompt z
p
t+1 is constructed based on the pre-

vious round’s prompt z
p
t and the response zr

t , by appending zr
t to the end of the hint array z

p
t . Only when

zr
1 =“. . . 730391.” is present can P2 include prompts such as “. . . the answer is close to 730391.” More generally,

Pt = Pt−1 ∪ {z
p
t motivated by zr

1, . . . , zr
t−1}.

PHP-like PE methods review the responses from the LLM and utilize them to formu-
late subsequent prompts. These subsequent prompts may serve to clarify or provide addi-
tional guidance to the LLM, creating a feedback loop interaction paradigm that enhances
adaptability across different LLMs and tasks.

3.1.2 Enlarging via direct prompts

Some multi-round PE methods utilize specially crafted prompts to expand their prompt
candidate sets. These tactics may include directing the LLM to decompose the initial
task [21, 44], or eliciting background information from the LLM [45], among other ap-
proaches. Although such interactions do not directly influence the final output, they ef-
fectively augment the prompt candidate sets, thereby aiding the generation of more im-
pactful subsequent prompts. To demonstrate this approach, we refer to the least-to-most
(LtM) method [44] as an illustrative example.

LtM is primarily oriented towards reasoning tasks. It assume that the task zq takes the
form of [Description Question]. Similar to PHP, LtM employs the identification function
as its evaluation function f . The LtM strategy employs the LLM to break down a com-
plex task into simpler sub-tasks by using specially crafted initial prompts. Formally, LtM
defines

z
p
t =

[

Description “In order to solve zr
t−1, we have to solve:”

]

, t = 1, . . . , T

with zr
0 setting as the original question: Question. Additionally,

z
p
t =

{

[

Description zr
T

]

, t = T + 1,
[

z
p
t−1 zr

t−1 zr
2T+1−t

]

, t = T + 2, . . . , 2T + 1.

In the first T rounds, LtM uses the prompt “In order to solve . . . , we have to solve . . . ”
to iteratively dissect the original task zq into sub-tasks {zr

t}
T
t=0. Then, from rounds T + 1
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Figure 3.2: An example of LtM interactions with T = 1. LtM employs the template “In order to solve . . . , we have
to solve . . . ” to break the original task into sub-tasks {zr

t}
T
t=1. These sub-tasks contribute to the construction

of PT+1 = P1 ∪ {zp related to zr
1, . . . , zr

T}, which makes it a better prompt candidate set comparing with P1.
For t ≥ T + 1, Pt+1 consists of the intermediate results obtained during the dialog interactions starting from
t = T + 1.

to 2T + 1, it addresses these sub-tasks in a dialogue format and in reverse order. We give
an example of LtM interactions in Fig. 3.2.

Creating a rule-based decomposition of the original task is challenging, which means
it is difficult to formulate an initial prompt candidate set P1 that encompass sub-tasks
{zr

t}
T
t=0. Nevertheless, through the first T interactions and a fixed prompt template, LtM

effectively expands its prompt candidate set PT+1 to include all these sub-tasks, which
makes PT+1 a much better prompt candidate set comparing with P1.

Both PHP and LtM use previous responses to generate future prompts, but they dif-
fer significantly in their strategies for expanding the prompt candidate set. The prompt
“In order to solve . . . , we have to solve . . . .” used by LtM may not directly contribute
to completing the final task but facilitates a deeper understanding of the task, which in
turn enhances the quality of subsequent prompts. While this strategy enriches the under-
standing of the task, it also introduces new complexity and potential misdirection if the
decomposition does not align well with the final task’s requirements. Thus, the strategy
offers both advantages and challenges.

3.1.3 Insights and future directions

Building upon the PE methods such as PHP and LtM, which employ an evolving Pt

for prompt candidate sets, the implications for optimal control theory are substantial.
One compelling direction for future research lies in the theoretical formulation of non-
stationary action spaces, which deviates notably from the assumptions of traditional opti-
mal control frameworks. The conventional models often presuppose a static set of controls
or actions, whereas the concept of an evolving Pt introduces new layers of complexity and
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richness into the system dynamics. This demands a reevaluation of existing mathematical
tools, from optimality conditions such as the Hamilton-Jacobi-Bellman equation to tradi-
tional concepts like stability and convergence.

On the algorithmic front, a dynamically evolving Pt presents intriguing challenges as
well as opportunities. For instance, real-time adaptation becomes crucial, as an AI agent
dynamically uncovers new actions or strategies, efficient algorithms are needed to incor-
porate these changes online. Additionally, a dynamic Pt could exacerbate computational
complexities, warranting new numerical methods that can adaptively optimize the sys-
tem’s behavior. This setting offers an interesting twist to existing methodologies like rein-
forcement learning, which typically operate in fixed action spaces, although some existing
studies have already explored evolving action spaces [10,11]. By allowing the action space
to evolve, one could model more complex, adaptive behaviors.

Therefore, the practice of dynamically updating Pt as seen in PE methods in general
not only adds empirical value to the task at hand but also poses sophisticated theoretical
and algorithmic challenges. These challenges, in turn, offer fertile ground for extending
the prevailing paradigms in optimal control theory to capture more intricate, evolving
systems.

3.2 Optimizing prompts

3.2.1 Random search

Random search methods generate prompts at random and evaluate them using specific
tasks to identify an optimal prompt [2, 41, 45]. There is a wide variety of random search
methods available. Here, we have chosen automatic prompt engineering (APE) [45] as
an illustrative example.

APE aims to find an optimal prompt within all candidate prompts the LLM can pro-
vide. In other words,

P1 = {all possible prompts LLM can generate based on zq}.

APE independently generated N proposed prompts, forming a sub-candidate set P̂ ⊂ P1

as follows:

P̂ =
{

zp,(k) iid
∼ DLLM, k = 1, . . . , N

}

,

where DLLM represents the prior distribution, which characterizes the distribution of pro-

posed prompts generated by an independent LLM. APE evaluates these prompts zp,(k)

through their scores f (k) = f (zp,(k); zq) and discards the M least effective prompts. Subse-

quently, M new prompts are sampled to replenish P̂ . The process is iterated until a termi-
nation criterion is met.

APE illustrates that a well-informed prior for Pt, such as an LLM, can make random
search a viable strategy for prompt optimization. However, the efficacy of this approach
diminishes if the prior is less reliable, necessitating a large sample size and increased com-
putational costs.
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Additional examples include tree of thought (ToT) [41], which specializes in multi-
round PE. ToT utilizes a tree-search-like optimization strategy, systematically exploring
sequences of prompts through iterative evaluation.

Random search methods are a promising tool for PE, and these methods could be im-
proved to become even more efficient, effective, and versatile. For example, it is possible
to develop new sampling algorithms that can quickly identify high-performing prompts,
or to create hybrid methods that combine random search with other optimization tech-
niques. Additionally, random search methods could be tailored to specific PE tasks, and
better priors and evaluation metrics could be developed.

3.2.2 Reinforcement learning methods

In proposed optimal control framework for PE, it is crucial to recognize the inherent chal-
lenges in optimizing prompts for LLMs. A foremost challenge lies in the discrete nature
of the underlying language space Z , which does not lend itself to conventional optimiza-
tion techniques that assume continuous spaces. Additionally, the dynamics governing the
LLMs are often opaque; we lack access to the internal parameters and can treat these mod-
els only as black boxes. In such a complex setting, reinforcement learning has emerged as
an especially effective approach to tackle these challenges.

Particularly, model-free RL algorithms align well with the black-box nature of LLMs.
These algorithms, operating without knowledge of the underlying model, offer a viable
strategy for optimizing control problems like those in PE. Methods like RLPrompt [7] and
PromptPG [26] are paradigmatic examples that adapt established RL techniques to opti-
mize the quality of generated prompts. While these approaches show substantial promise,
they necessitate numerous trial-and-error iterations, thereby elevating the computational
overhead. This sets up an intriguing trade-off between the performance gains achieved
and the computational resources expended, warranting a more thorough investigation.

Looking ahead, there is a multitude of directions for future research. One area de-
serving particular attention is the development of more sample-efficient RL algorithms
that can achieve reliable performance without incurring prohibitive computational costs.
Another avenue could involve devising hybrid methods that integrate domain knowledge
into the RL framework, thereby potentially enhancing both the effectiveness and efficiency
of the prompt optimization process.

3.2.3 Comparing random search and reinforcement learning methods

The key distinction between random search methods and RL methods lies in the strategy
for exploration and evaluation. RL methods, particularly model-free variants, operate on
a principle of “evaluate and look ahead”, allowing them to update their strategies based
on the feedback received from prior interactions. This facilitates a more nuanced naviga-
tion of the prompt space, enabling RL to potentially find better prompts more efficiently.
On the other hand, random search methods, such as APE and ToT, predominantly oper-
ate on a generate and evaluate paradigm without a look-ahead mechanism. They sample
from a distribution, assess the samples, and make replacements, but do not typically lever-
age past evaluations to inform future explorations. While RL methods can incur higher
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computational costs due to their iterative nature and may require a well-defined reward
function, random search methods are often simpler to implement and can be effective
when a reliable prior is available. However, they may require a larger sample space and
could be less efficient in navigating complex landscapes due to the lack of a lookahead
mechanism. Thus, each approach comes with its inherent advantages and challenges,
shaping their suitability for different PE scenarios.

3.3 Discussions

Existing PE methods have made valuable progress on certain challenges mentioned in
Section 2.4, displaying ingenuity in solving key facets like optimization and prompt can-
didate set expansion. However, their focused approaches also reveal opportunities for
further advancement. For instance, APE and ToT concentrate on a rather specific opti-
mization approach lacking generalized strategies, while LtM and PHP expand prompt
candidate sets for specific tasks without wider applicability.

Within our framework (2.1), optimization and prompt candidate set expansion could
potentially be unified, enabling joint optimization instead of the isolated treatment seen in
current methods. Additionally, task-specific strategies developed for existing techniques
could be translated into more generalizable principles via the formal optimal control per-
spective offered by our framework.

By enabling a holistic, mathematically grounded understanding, our framework pro-
vides tools to elevate PE solutions to the next level of sophistication. We see great potential
in moving from independent methods toward comprehensive techniques with broader
applicability. We hope by adopting this systematic view, we can unlock the full capabili-
ties of human-LLM interaction.

4 Further extensions

The optimal control framework given by (2.1) serves as a foundational structure for the
mathematical description of numerous prevalent PE methods. Nevertheless, it is impera-
tive to acknowledge that (2.1) is not universally adequate for capturing all aspects of the
existing PE techniques and applications. In this section, we intend to delve into specific
instances of certain advanced PE methodologies and articulate how they can be recast as
optimal control problems.

4.1 Prompt engineering via ensemble methods

In statistics and machine learning, ensemble methods have long been instrumental for
augmenting predictive accuracy and robustness. These techniques leverage multiple in-
stances of similar procedures to yield superior performance compared to single trials
[30, 31, 34]. Building on this established groundwork, ensemble techniques have been
naturally adapted to the realm of PE, where they have yielded noteworthy outcomes
[13, 15, 22, 36, 38].
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By examining the optimal control framework (2.1), it becomes evident that specialized
PE methods like Self-Consistency CoT [38] and Mutual Information [36] do not align seam-
lessly with the existing formalism. To address this, this subsection presents an adapted
framework based on (2.1) to better accommodate these ensemble PE methods.

Consider a general human-LLM multi-query scenario for one task zq. Each query is

denoted by a prompt z
p
i and the corresponding response zr

i , where i ∈ I is the query’s
index with I being the index set. The final response zr to the task is formulated using
an ensemble function En(·) applied to all these responses

zr = En
(

{zr
i}i∈I

)

,

where En(·) represents the ensemble strategy in use. Using ωi to denote the randomness
within the LLM, the optimal control problem for PE via ensemble methods can be formu-
lated as

max
z

p
i ∈P

Eωi
f
(

En({zr
i}); zq

)

s.t. zr
i = LLM

(

z
p
i , ωi

)

, i ∈ I.

(4.1)

The mathematical formulation presented is sufficiently versatile to subsume a diverse ar-
ray of ensemble PE methods.

In one class of approaches, a same prompt is utilized across multiple queries, lever-
aging the inherent stochasticity of the LLM to introduce variation. The specific ensemble
function, denoted as En(·), further dictates the characteristics of the ensemble PE method.
For instance, when employing En(·) as a majority-voting scheme, the method of Self-
Consistency CoT [38] is naturally encapsulated. Conversely, Complexity-CoT [13] arises
when En(·) is implemented as a complexity threshold.

An alternative avenue for ensemble construction involves the introduction of nuanced
variations in the prompts across different trials. For instance, Mutual Information [36]

uses disparate prompt templates to generate different {z
p
i }. MathPrompter [15], on the

other hand, deploys two different classes of prompts (algebraic and Python prompts) to
prompt the LLM. Further extending this notion, Step-Aware Verifier [22] recommends
querying a single LLM with M1 distinct (types of) prompts, each replicated M2 times,
thereby offering a generalized methodology that could be viewed as an extension of Math-
Prompter’s approach. Empirical validation corroborates the effectiveness of these ensem-
ble PE methodologies.

The inherent stochasticity of LLMs is sometime perceived as a drawback, particularly
in applications where deterministic outputs are traditionally sought. However, ensemble
PE methods compellingly illustrate that this stochastic nature can be exploited to advan-
tageous ends. By introducing ensemble methods into the optimal control framework for
PE, we can harness this stochasticity to improve performance, rather than treating it as
an impediment.

One direction for future work is to extend the framework to include the function En(·)
as an explicit control variable. By doing so, the framework could offer a systematic way to
optimize ensemble strategies for specific LLMs and tasks. Whether the optimal strategy
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employs majority voting, complexity thresholds, or more nuanced mechanisms could be
determined within this formalism, providing a unified metric for evaluation. Additionally,
the optimal control framework supports adaptive selection of the ensemble strategy based
on observed performance along with each additional query, allowing real-time fine-tuning
of ensemble methods.

4.2 Prompt engineering via multi-agent collaboration

In the context of LLMs, multi-agent systems refer to a collection of interactive agents that
work collaboratively to achieve a collective objective. An agent in this context is defined
as an LLM operating under a given initial instruction. Different initial instructions yield
distinct agents, which can display considerable heterogeneity in their behavior and capa-
bilities. Each agent is responsible for generating prompts to facilitate interactions with
each other.

We extend our terminology to accommodate the intricacies of multi-agent PE. Denote
i ∈ I as the index for LLM-based agents. Then the prompt candidate sets are designated as

P(i,t), the prompt for the i-th agent at time-step t is denoted as z
p

(i,t)
, and the corresponding

response is zr
(i,t). Here we extend the optimization target f to fi as well to evaluate the PE

quality for each corresponding agent.
The extended framework for the multi-agent PE is given as follows:

max
{τi}

max
{z

p
(i,t)

∈P(i,t)}
∑
i∈I

fi

(

zr
(i,τi)

; z
q
i

)

s.t. zr
(i,t) = LLM

(

z
p

(i,t)

)

, i ∈ I.

(4.2)

The framework articulated by (4.2) can be used to describe a variety of multi-agent PE
techniques, among which a predominant focus is the automated problem solvers, exem-
plified by task-specific applications like automated program development [32], or general
problem solving with improved factuality and reasoning [9]. In these systems, each agent
can be meticulously designed with a well-defined role, articulated through their initial
prompts. This enables a collaborative environment in which agents, each specializing in
a particular aspect of the problem at hand, work collaboratively to achieve an efficient
and effective task completion. In the realm of social simulations, multi-agent PE serves
to model complex interactions like trading negotiations or role-playing scenarios [12, 17].
Here, utility functions fi are often tailored to assess the meaningfulness of the simulated
dynamics, rather than achieving a specific task.

Embedding multi-agent PE within the framework of optimal control offers several ad-
vantages and insights. For instance, by conceptualizing each agent as an individual con-
trol unit guided by its utility function, one may gain a structured view for analyzing the
coordinated actions and objectives of a multi-agent system. This allows for a mathematical
description of how different agents, each with their unique initial prompt defining its role,
contribute to the global objective, thereby unifying disparate approaches under a single
mathematical umbrella.
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5 Conclusions

In this paper, we have introduced an optimal control framework to describe multi-round
prompt engineering. The framework is shown to be rather flexible, accommodating an ex-
pansive array of problem settings and objectives that frequently appear in the literature.
The proposed framework has the potential to facilitate the development of more efficient
PE algorithms, enabling more effective control over the LLMs and further broadening the
scope of achievable tasks. Furthermore, the framework can be extended to incorporate en-
semble methods and multi-agent scenarios. As discussed in various sections of this paper,
the proposed frameworks grant a unified perspective on PE methods, has enabled us to
propose various possible improvements to existing PE methods and has illuminated new
directions for future research.
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