
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Fast Gradient Computation for Gromov-Wasserstein

Distance

Wei Zhang * 1, Zihao Wang † 2, Jie Fan ‡ 1, Hao Wu § 1, and Yong Zhang ¶ 3

1Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
2Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong
Kong SAR, China
3BNRist, RIIT, Institute of Internet Industry, Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China

Abstract. The Gromov-Wasserstein distance is a notable extension of optimal transport. In contrast to the
classic Wasserstein distance, it solves a quadratic assignment problem that minimizes the pair-wise distance
distortion under the transportation of distributions and thus could apply to distributions in different spaces.
These properties make Gromov-Wasserstein widely applicable to many fields, such as computer graphics
and machine learning. However, the computation of the Gromov-Wasserstein distance and transport plan is
expensive. The well-known Entropic Gromov-Wasserstein approach has a cubic complexity since the matrix
multiplication operations need to be repeated in computing the gradient of Gromov-Wasserstein loss. This
becomes a key bottleneck of the method. Currently, existing methods accelerate the computation focus on
sampling and approximation, which leads to low accuracy or incomplete transport plans. In this work, we
propose a novel method to accelerate accurate gradient computation by dynamic programming techniques,
reducing the complexity from cubic to quadratic. In this way, the original computational bottleneck is broken
and the new entropic solution can be obtained with total quadratic time, which is almost optimal complexity.
Furthermore, it can be extended to some variants easily. Extensive experiments validate the efficiency and
effectiveness of our method.

Keywords:
Optimal transport,
Gromov-Wasserstein distance,
Fast gradient computation algorithm,
Fast algorithm.

Article Info.:
Volume: 3
Number: 3
Pages: 282 - 299
Date: September/2024
doi.org/10.4208/jml.240416

Article History:
Received: 16/04/2024
Accepted: 25/06/2024

Communicated by:
Zhi-Qin John Xu

1 Introduction

The Gromov-Wasserstein (GW) distance [31], as an important member of optimal trans-
port [36, 40], is a powerful tool for distribution comparison. It is related to the Gromov-
Hausdorff (GH) distance [17], a fundamental distance in metric geometry that measures
how far two metric spaces are from being isometric [11]. Specifically, it measures the
minimal distortion of pair-wise geodesic distances under the transport plan between two
probabilistic distributions, even defined on different underlying spaces. Inherited from
GH distance, GW is invariant to translation, rotation, and reflection of metric space. In

*zhang-w20@mails.tsinghua.edu.cn
†Corresponding author. zwanggc@cse.ust.hk
‡fanj21@mails.tsinghua.edu.cn
§hwu@tsinghua.edu.cn
¶zhangyong05@tsinghua.edu.cn

https://www.global-sci.com/jml Global Science Press

J. Mach. Learn., 3(3):282-299 283

this way, GW has particular advantages to applications that require preserving geometry
structures including computer graphics [30,37,48], natural language processing [3], graph
factorization and clustering [14, 55], and machine learning [10, 57]. Moreover, variants of
GW distance have been proposed for wider applications. For example, unbalanced GW
(UGW) extends the comparison from probabilistic distributions to positive measures [44].
Fused GW (FGW) combines the GW and Wasserstein distances by interpolating their ob-
jectives, which is shown to be particularly effective for networks [50,52] and cross-domain
distributions [35].

The computation of the Gromov-Wasserstein distance boils down to solving a non-
convex quadratic assignment problem that is NP-hard [22]. For this, some numerical
methods built on relaxations have been developed, including convex relaxations [20, 46,
47], eigenvalue relaxations [24], etc. Nevertheless, these methods often require a large
number of relaxed variables (for instance, N2 × N2 variables in [20] where N is the num-
ber of discrete points of two spaces), resulting in high computational complexity. And they
frequently provide unsatisfying solutions, especially in the presence of a symmetric met-
ric matrix [37]. Entropic GW is a seminal and now the most popular work to compute GW
distance from another perspective, which minimizes GW objective with an entropy regu-
larization term [37, 48]. In contrast to the non-entropy-based method mentioned above, it
exhibits global convergence without removing constraints and offers a more concise com-
putation. Moreover, it can adapt to solve GW variants, such as FGW [52] and UGW [44].
In each iteration of it, one first computes the GW gradient with matrix multiplications in
O(N3) time, which dominates the total complexity, and then solves the subproblem by
the Sinkhorn algorithm [15] in O(N2) time.

The computational cost of entropic GW remains unsatisfactory in large-scale scenar-
ios. There are various methods to accelerate it (see Table 1.1 for the comparison). Scalable
Gromov-Wasserstein learning method (S-GWL) [56] assumes the hierarchical structure of

Table 1.1: The comparison of different methods for the computation of GW metric and its variants. For SaGrow,
the parameter s serves as a sampling parameter that dictates the quantity of specific sampled matrices. For spar-
GW, the parameter s′ designates the number of elements sampled from the GW gradient matrix. For LR-GW, the
parameters r and d represent the presumed ranks of the distance matrices and the coupling matrices, respectively.

Method Complexity
Exact and full-sized plan

Entropic GW and its approximations

Entropic GW [37] O(N3) ✓

S-GWL [56] O(N2 log N) not exact

SaGroW [19] O(N2s) not full-sized

Spar-GW [25] O(N2 + s‘2) not full-sized

LR-GW [42] O(N(r2 + d2 + rd)) not exact

AE [41] O(N2 log N) not exact

GW on special structures

FlowAlign [23] O(N2) tree only

FGC-GW (This work) O(N2) ✓

J. Mach. Learn., 3(3):282-299 284

the transportation plan and conducts the entropic GW algorithm in a multi-scale scheme.
Anchor energy distance (AE) [41] approximates the quadratic assignment problem by two
nested linear assignment problems. Sampled Gromov-Wasserstein (SaGroW) [19] and
the importance sparsification method (Spar-GW) [25] approximate the original problem
by sub-sampling original distributions. Low-rank Gromov-Wasserstein (LR-GW) [42] as-
sumes the low-rank structures in the distance matrices and transport plan. However, these
approximation or sampling methods always lead to low accurate GW distance and incom-
plete GW transport plans. On the other hand, closed-form solutions for GW can be found
on some specific structures, for example, tree (FlowAlign) [23].

In this work, we propose a novel acceleration method to conduct the accurate entropic
GW. The key of the method is to utilize the structure of the distance matrices and dy-
namic programming techniques to reduce the complexity of the matrix multiplication
from O(N3) time to O(N2). It directly speeds up the gradient computation that was
once the bottleneck in efficiency, which is somehow inspired by the fast Sinkhorn algo-
rithm [27, 28] and fast algorithms for matrix multiplication [18, 21]. Therefore, we name
the method fast gradient computation for GW metric (FGC-GW). In contrast to the previ-
ous methods, FGC-GW presents a rare combination of three advantages: (1) running with
low time complexity, (2) computing accurate metrics, (3) inducing exact and full-sized
plans. Moreover, it can be extended to some popular GW variants, including FGW and
UGW. We call these extensions FGC-FGW and FGC-UGW, respectively.

This paper is organized as follows. Section 2 briefly reviews the GW distance and
the entropic GW algorithm. In Section 3, we present the fast gradient computation for
GW metric and generalize it to higher dimensions. Extensive experiments in Section 4
highlight the efficiency, accuracy, and effectiveness of FGC-GW and FGC-FGW. Finally,
we conclude the work and discuss future work in Section 5.

2 Gromov-Wasserstein distance

Given two probability density functions uX (x) and vY (y) defined in metric spaces X
and Y respectively, the Gromov-Wasserstein distance [31] is defined as

GW2
(

uX (x), dX , vY (y), dY
)

= inf
γ(x,y)∈S

∫

X 2×Y2
|dX (x, x′)− dY (y, y′)|2γ(x, y)γ(x′, y′)dx dx′ dy dy′,

S =

{

γ(x, y)
∣

∣

∣

∫

Y
γ(x, y)dy = uX (x),

∫

X
γ(x, y)dx = vY (y)

}

.

(2.1)

Here dX and dY are arbitrary metrics on X and Y . Usually, the k-th power of distances is
preferable [36]. For example, in 1D space,

dX (x, x′) = |x− x′|kX , dX (y, y′) = |y− y′|kY ,

where kX , kY ∈ N
+. For numerical computation, we discretize two probability distribu-

tions on two uniform grids with spaces of hX and hY . Then, the discrete distributions uX
and uY can be represented by vectors

J. Mach. Learn., 3(3):282-299 285

uX = (u1, u2, · · · , uM), vX = (v1, v2, · · · , vN).

In this paper, our discussion is general for any kX and kY . For the sake of simplicity, we
assume kX = kY = k. Naturally, there are two symmetric distance matrices

DX =
[

dXij
]

M×M
, dXij = hk

X |i− j|k ,

DY =
[

dYpq

]

N×N
, dYpq = hk

Y |p− q|k.
(2.2)

Therefore, the Gromov-Wasserstein distance is discretized as the following quadratic as-
signment problem:

GW2(uX , DX , vY , DY) = min
Γ∈S(uX ,vY)

EDX ,DY (Γ),

EDX ,DY (Γ) =
M

∑
i,j

N

∑
p,q

(

dXij − dYpq

)2
γipγjq,

S(uX , vY) =

{

Γ = [γip]M×N

∣

∣

∣

M

∑
i=1

γip = vp,
N

∑
p=1

γip = ui, γip ≥ 0, ∀ i, p

}

.

It is non-convex and intractable to solve [48].
Entropic GW is a seminal and now the most popular model to approximate GW dis-

tance, proposed originally in [37]. It tries to minimize the GW objective with an entropic
regularization term

GW2
ε (uX , DX , vY , DY) = min

Γ∈S(uX ,vY)
EDX ,DY (Γ) + εH(Γ), (2.3)

H(Γ) :=
M

∑
i=1

N

∑
p=1

γip(ln γip − 1),

where ε > 0 is the regularization parameter.

2.1 Mirror descent method

We here introduce mirror decent [7, 53], which is the best-known method to solve prob-
lem (2.3). Given a differentiable function h(Γ) on R

M×N that is λ-strongly convex with
a specific norm ‖·‖, a mirror map can be defined as

∇h(Γ) : R
M×N → R

M×N . (2.4)

The inverse map exists due to the differentiability and strong convexity. The l-th iteration
step of the mirror descent method for solving a general constrained optimization problem
minΓ∈Φ⊂RM×N f (Γ) is as follows:

i. Map to the dual space: η(l) = ∇h(Γ(l)).

ii. Perform gradient descent in the dual space with step τ: η(l+1) = η(l) − τ∇ f (Γ(l)).

J. Mach. Learn., 3(3):282-299 286

iii. Map back to the primal space: Γ(l+1/2) = ∇−1h(η(l+1)).

iv. Project Γ(l+1/2) back into the feasible region: Γ(l+1) = minΓ∈Φ Dh(Γ‖Γ
(l+1/2)), where

Dh(Γ‖Γ
′) := h(Γ)− h(Γ′)− 〈∇h(Γ′), Γ− Γ′〉

is the Bregman divergence [9].

When h takes the negative entropy function (1-strongly convex concerning ‖·‖1), i.e. h=H,
the associated mirror map, its inverse, and the Bregman divergence are formulated as

∇H(Γ) = ln(Γ), ∇−1H(η) = eη, DH(Γ‖Γ
′) =

M

∑
i

N

∑
p

(

γip ln

(

γip

γ′ip

)

− γip + γ′ip

)

.

In this context, the mirror descent step of entropic GW is ultimately represented as

Γ(l+1) = min
Γ∈S(uX ,vY)

DH

(

Γ‖
(

Γ(l) ⊙ e−τ∇ f (Γ(l))
)

)

, (2.5)

∇ f (Γ(l)) = ∇EDX ,DY (Γ
(l)) + ε ln(Γ(l)),

where⊙ is the Hadamard product. It is shown in [8] that the above minimization problem
is equivalent to the following regularized transport problem:

Γ(l+1) = arg min
Γ∈S(uX ,vY)

〈Π, Γ〉+ ǫH(Γ) (2.6)

with
Π = −ε ln

(

Γ(l) ⊙ e−τ∇ f (Γ(l))
)

= τε∇EDX ,DY (Γ
(l)) + (τε2 − ε) ln(Γ(l))

being cost matrix, which can be solved with the Sinkhorn algorithm [15].
As we stated before, the evaluation of Π is time-consuming. More concretely, evalu-

ating the component ∇EDX ,DY (Γ) requires O(M2N2) time for the reason that its (i, p)-th
entry reads

[

∇EDX ,DY (Γ)
]

ip
= 2

M

∑
j=1

N

∑
q=1

(

dXij − dYpq

)2
γjq. (2.7)

That is far more than the O(MN) time of the Sinkhorn algorithm. Fortunately, it is ob-
served in [37] that ∇EDX ,DY (Γ) can be decomposed into a constant term C1 and a linear
term of T. Specifically,

∇EDX ,DY (Γ) = C1 − 4DX ΓDY ,

C1 = 2
(

(DX ⊙ DX)uX 1⊤N + (DY ⊙ DY)uY1⊤M
)

.

Computing C1 costs O(M2 + N2 + MN) time and would be only performed once. There-
fore, with the decomposition, the overall complexity of the solution of Entropic GW is
reduced to O(MN2 + M2N), dominated by the computation of DX ΓDY . This complexity
is still unacceptable in practice and worth our further exploration.

J. Mach. Learn., 3(3):282-299 287

Remark 2.1. In the existing literature, τ = 1/ε is suggested [37]. Then Eq. (2.6) turns to

Γ(l+1) ← arg min
Γ∈S(uX ,vY)

〈

∇EDX ,DY (Γ
(l)), Γ

〉

+ εH(Γ).

We follow this in the subsequent discussion. Since it takes only O(MN) time to calculate

ln(Γ(l)), whether τ equals 1/ε makes no difference in our statement about complexity.

Remark 2.2 (Entropic Algorithm for FGW). Let C = [cip]M×N be an additional cost matrix
between uX and vY . Fused GW (FGW) minimizes the objective

ĒDX ,DY (Γ) = (1− θ) ·
M

∑
i=1

N

∑
p=1

c2
ipγip + θ ·

M

∑
i,j

N

∑
p,q

(

dXij − dYpq

)2
γipγjq

in the region S(uX , vY), where θ ∈ [0, 1] balances the effect of the linear and quadratic
assignment [52]. The iteration formula (2.6) applies to FGW as well. Analogous to GW, its
gradient has the decomposition

∇ĒDX ,DY (Γ) = C2 − 4θ · DX ΓDY ,

C2 = (1− θ) · C⊙ C + 2θ ·
(

(DX ⊙ DX)uX 1⊤N + (DY ⊙ DY)uY1⊤M
)

.

C2 can also be computed inO(M2 + N2 + MN) time, so DX ΓDY still dominates the overall
complexity.

Remark 2.3 (Entropic Algorithm for UGW). Given ρ > 0, Ŝ = {Γ|γip ≥ 0, ∀ i, p}, the
unbalanced Gromov-Wasserstein divergence is defined as

min
Γ∈Ŝ
EDX ,DY (Γ) + ρKL

(

(Γ1)⊗ (Γ1)|uX ⊗ uX

)

+ ρKL
(

(Γ⊤1)⊗ (Γ⊤1)|vY ⊗ uY

)

.

The key to its entropic algorithms is to solve

min
Γ∈Ŝ

〈

1

2
∇EDX ,DY (Γ

(l)) + g(Γ(l)), Γ

〉

+ 1⊤Γ(l)1
(

ρKL(Γ1|uX) + ρKL
(

Γ⊤1|uY
)

+ εKL(Γ|uX ⊗ uY)
)

at the l-th iteration [44]. Still the computation of ∇EDX ,DY (Γ
(l)) or rather DX Γ(l)DY is to

blame for O(M2N + MN2) complexity, while the other parts take no more than O(M2 +
N2 + MN) time. The method proposed in this paper will also apply here.

3 Fast gradient computation

In this section, we present an efficient method that computes DX ΓDY inO(MN) time. For
the sake of simplicity, we assume M = N. 1

1The method can easily handle the case where M is not equal to N. This assumption is without loss of generality.

J. Mach. Learn., 3(3):282-299 288

First, we note that the distance matrices DX , DY satisfy

DX = hk
X D̃, DY = hk

Y D̃,

where

D̃ = L + L⊤, L =















0 0 · · · 0
1 0 · · · 0

2 1
. . .

...
...

...
. . .

. . .

(N − 1) (N − 2) · · · 1 0















⊙k

. (3.1)

The operator ⊙k refers to raising each element of the matrix to the power of k. Therefore,
DX ΓDY can be expanded as

DX ΓDY = hk
X hk
Y (D̃ΓD̃) = hk

X hk
Y

(

LΓL + LΓL⊤ + L⊤ΓL + L⊤ΓL⊤
)

= hk
X hk
Y

(

L(L⊤Γ⊤)⊤ + L(LΓ⊤)⊤ + L⊤(L⊤Γ⊤)⊤ + L⊤(LΓ⊤)⊤
)

. (3.2)

Next, we show that for any x = (x1, x2, · · · , xN)
⊤ ∈ R

N , y = Lx can be implemented

with O(N) element-wise operations. L⊤x can be computed in a similar way. As a result,
the total time cost of computing equation (3.2) will be no more thanO(N2). To be concrete,

y =

(

0,
1

∑
j=1

(2− j)kxj, · · · ,
N−1

∑
j=1

(N − j)kxj

)⊤

. (3.3)

Defining N × (k + 1) elements

air =
i−1

∑
j=1

(i− j)r−1xj, i ∈ {1, . . . , N}, r ∈ {1, . . . , k + 1},

we obtain that the i-th entry of y

yi = ai,k+1, i ∈ {1, . . . , N}.

A significant observation is that

ai+1,r = xi +
i−1

∑
j=1

(i− j + 1)r−1xj = xi +
i−1

∑
j=1

r

∑
s=1

(

r− 1

s− 1

)

(i− j)s−1xj

= xi +
r

∑
s=1

(

r− 1

s− 1

) i−1

∑
j=1

(i− j)s−1xj = xi +
r

∑
s=1

(

r− 1

s− 1

)

ais

= xi + ai1 +

(

r− 1

1

)

ai2 + · · ·+

(

r− 1

r− 1

)

air. (3.4)

J. Mach. Learn., 3(3):282-299 289

In other word, we can calculate ai+1,r by making linear combination of {ais}
r
s=1 recur-

sively. With {ais}
r
s=1 and all the binomial coefficients being known2, it needs only r − 1

multiplications and r additions to get ai+1,r.
In view of the fact that a1r = 0 for any r, we conclude that it takes

(N − 1)
k+1

∑
r=1

(r− 1) = (N − 1)
k(k + 1)

2

multiplications and

(N − 1)
k+1

∑
r=1

r = (N − 1)
(k + 2)(k + 1)

2

additions to evaluate all air in the order of

a11, · · · , aN,1, · · · , a1,k+1, · · · , aN,k+1.

Therefore, the computation of y = Lx is finished in O(k2N) time. In practice, k refers to
the power of the distance and typically takes 1 or 2. So the total cost is O(N) for short.

3.1 Extension to high dimension

In this part, we illustrate the generalization of FGC-GW to 2D space. And there is no
essential difference to generalizing the algorithm to higher dimensional space.

Consider two probabilistic distributions

uX =











u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...
un1 un2 · · · unn











, vX =











v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
. . .

...
vn1 vn2 · · · vnn











on two uniform 2D grids with both sizes n × n, which contributes to the total number
of grid points N = n2. For simplicity, we set both the horizontal and vertical spacing
of space X to hX and those of space Y to hY . Ordering the grid points of uX and vY in
column-major order, by analogy with (2.2), we get two distance matrices on 2D where

DX = hk
X D̂, DY = hk

Y D̂. (3.5)

Here

D̂ =















D1 D1 + J D1 + 2J · · · D1 + (n− 1)J
D1 + J D1 D1 + J · · · D1 + (n− 2)J

D1 + 2J D1 + J D1 · · · D1 + (n− 3)J
...

...
...

. . .
...

D1 + (n− 1)J D1 + (n− 2)J D1 + (n− 3)J · · · D1















⊙k

n2×n2

(3.6)

2In fact, all the binomial coefficients can be computed in O(k2) time [39].

J. Mach. Learn., 3(3):282-299 290

with

D1 =















0 1 2 · · · n− 1
1 0 1 · · · n− 2
2 1 0 · · · n− 3
...

...
...

. . .
...

n− 1 n− 2 n− 2 · · · 0















n×n

, J =







1 · · · 1
...

. . .
...

1 · · · 1







n×n

.

Since the distance matrices in 2D and 1D take different forms, we here use the notation D̂
for the 2D case to distinguish it from D̃ in Eq. (3.1). The (i, j)-th block in D̂ represents the
k-th power of the pairwise distances between the points in the i-th and j-th columns. At
this point,

DX ΓDY = hk
X hk
Y (D̂ΓD̂) = hk

X hk
Y

(

D̂(D̂Γ⊤)⊤
)

. (3.7)

Notice that any Γ ∈ R
n2×n2

can be partitioned into n2 vectors in R
n2

. Whereafter, we show

that for any x ∈ R
n2

, D̂x can be performed inO(n2) time. In this way, (3.7) can be finished
in totalO(N2) = O(n4) time.

One can expand D̂ as

D̂ =
k

∑
r=0

(

k

r

)

D⊙r
1 ⊗ D⊙k−r

1

with the notion ⊗ representing the Kronecker product. Therefore,

D̂x =
k

∑
r=0

(

k

r

)

(

D⊙r
1 ⊗ D⊙k−r

1

)

x =
k

∑
r=0

(

k

r

)

vec
(

D⊙k−r
1 mat(x)D⊙r

1

)

, (3.8)

where vec(·) denotes the vectorization of a matrix, that is, for Q = [qij]n×n ∈ R
n×n,

vec(Q) = (q11, · · · , q1n, q21, · · · , q2n, · · · , qn1, · · · , qnn)
⊤ ∈ R

n2
.

And mat(·) denotes the matrixization of a vector, i.e. the inverse transformation of vector-

ization. Note the similarity between D⊙k−r
1 mat(x)D⊙r

1 and D̃ΓD̃ in Eq. (3.2). It is obvious

that D⊙k−r
1 mat(x)D⊙r

1 can be computed in O(k2n2) time, by leveraging the approach in

1D case. Totally, the cost of computing D̂x in Eq. (3.8) is O(k4n2), for short, O(n2).

4 Numerical experiments

In this section, we perform several experiments to validate the effectiveness and effi-
ciency of the proposed method. We conduct experiments over the 1D and 2D random
distributions, time series [52], and images [16, 59]. For the experiments on random dis-
tributions, we evaluate both Gromov-Wasserstein and Fused Gromov-Wasserstein (FGW)
metrics. We compare the FGC with the original computation by Entropic (Fused) Gromov-
Wasserstein. For time series [52] and image data [16,59], we consider computing the FGW

J. Mach. Learn., 3(3):282-299 291

metric to quantify their similarity. We emphasize that FGW allows for the inclusion of
feature information in addition to structure information. This characteristic leads to FGW
being viewed as more suitable for the task in comparison to GW [52].

To ensure the fairness of evaluation, we consider sequential implementation in this
paper. The original entropic (F)GW and FGC implementations are realized using the C++
language, leveraging the vector inner-product functionality offered by the Eigen library.
All experiments are executed with a single-thread program over a platform with 128 G
RAM and one Intel(R) Xeon(R) Gold 5117 CPU @2.00 GHz.

4.1 1D random distributions

We consider two 1D random distributions uX = (u1, · · · , uN) and vY = (v1, · · · , vN) on
uniform grid points

xi = yi =
i− 1

N − 1
, i = 1, 2, . . . , N.

All ui and vi are sampled from a uniform distribution over [0, 1] and then normalized so
that uX and vY are distributions. Our objective is to compare the performance and com-
putational cost of our FGC algorithms and the original entropic algorithms on computing
the corresponding GW metric and FGW metric (θ = 0.5). We take k = 1 for DX , DY in (2.2)
and cip = |i − p| for C = [cip] in Remark 2.2. The number of iterations of mirror descent
(2.6) is set to 10. We test 100 random experiments for each N.

In Table 4.1, we show the averaged running time of the algorithms and the difference
in the transport plans. We can see that FGC has an overwhelming advantage in com-
putational speed. Moreover, it produces almost identical transport plans as the original
entropic algorithms.

To study the efficiency advantage of FGC further, we visualize the relationship between
time cost and the number of grid points in Fig. 4.1. Note that the two axes are log scales.
By data fitting, we find empiricalO(N2.22) and O(N2.20) complexities of FGC on GW and
FGW while those of the original algorithms are O(N3.04)and O(N3.02).

Table 4.1: 1D random distribution. Comparison between algorithms with FGC and the original ones with the
different number of grid points N. For GW and FGW, the regularization parameter ε = 0.002. Column for
‖PFa − P‖F validates the correctness of the results by FGC.

Metric N
Computational time (s)

Speed-up ratio ‖PFa − P‖F
FGC Original

GW

500 4.97× 10−1 4.40× 100 8.85 5.12× 10−15

1000 2.13× 100 3.46× 101 16.2 4.33× 10−15

2000 1.01× 101 2.80× 102 27.7 2.87× 10−15

4000 5.01× 101 2.44× 103 48.7 2.04× 10−15

FGW

500 6.00× 10−1 4.58× 100 7.63 1.08× 10−15

1000 2.54× 100 3.53× 101 13.9 8.27× 10−16

2000 1.20× 101 2.83× 102 23.6 5.78× 10−16

4000 5.73× 101 2.47× 103 43.1 4.11× 10−16

J. Mach. Learn., 3(3):282-299 292

Figure 4.1: 1D random distributions. The computation time for GW (left) and FGW (right) under different N.
The numbers are the fitted slopes, representing the empirical computational complexities.

4.2 2D random distributions

Next, we investigate the performance of FGC on 2D random distributions. The supports
of distributions are N = n× n grid points uniform scattered on [0, 1]× [0, 1].

Table 4.2 and Fig. 4.2 show the results. It can be seen that the fast algorithms keep
the computational advantage and make large-scale tasks possible. We also estimate their
empirical complexities,O(N2.29) for GW andO(N2.30) for FGW while those of the original
versions are O(N3.02) and O(N3.02), respectively.

4.3 Time series

Time series data is widely generated on a daily basis in various application domains, in-
cluding bioinformatics [5, 6], finance [4, 29], engineering [32, 34], and others. Modelling
different types of time series data has emerged as a significant focus in machine learning
research in recent years [1, 13]. As a pre-work, it is highly important to find a good simi-

Table 4.2: 2D random distributions. Comparison between algorithms with FGC and the original ones. For GW
and FGW, the regularization parameter ε = 0.004. Column for ‖PFa − P‖F validates the correctness of the results
by FGC. A dash means the running time exceeds 10 hours.

Metric N = n× n
Computational time (s)

Speed-up ratio ‖PFa − P‖F
FGC Original

GW

30× 30 1.73× 100 2.46× 101 14.2 3.03× 10−14

60× 60 5.53× 101 1.66× 103 30.0 7.94× 10−15

90× 90 3.01× 102 1.85× 104 61.5 6.75× 10−15

120× 120 9.65× 102 − − −

FGW

30× 30 1.84× 100 2.50× 101 13.6 2.56× 10−14

60× 60 5.90× 101 1.71× 103 29.0 1.48× 10−15

90× 90 3.22× 102 1.89× 104 58.7 1.00× 10−15

120× 120 1.08× 103 − − −

J. Mach. Learn., 3(3):282-299 293

Figure 4.2: 2D random distributions. The computation time for GW (left) and FGW (right) under different N.
The numbers are the fitted slopes, representing the empirical computational complexities.

larity measure for time series data [1,45]. Superior to the GW metric, FGW can effectively
incorporate both signal strength (linear term) and time information (quadratic term), en-
abling comparatively accurate alignment of time series waveforms. Consequently, it is
considered more appropriate for defining time series similarity [52].

We here investigate the acceleration effect of FGC on the FGW metric in time series.
Consider a series in [0,1] that consists of two humps with heights of 0.5 and 0.8. We
construct the other series by moving the humps around. Now we would like to align
them using the transport plan of FGW by setting k = 1 for DX and DY in Eq. (2.2) and C
as the signal strength difference. After uniform dividing the time axis, we get N sampling
points for each series and then compute FGW (θ = 0.5) with two algorithms. Likewise,
we repeat the experiment 100 times and record the time and plans.

Table 4.3 reports the average results and Fig. 4.3 presents the O(N2.19) empirical com-
plexity of FGC on the left. As expected, the fast algorithm demonstrates a clear computa-
tional speed advantage. Moreover, we give the plan at N = 200 explicitly on the right of
Fig. 4.3. The good alignments illustrate that FGC can enhance the application of FGW for
measuring time series similarity and thus underpins machine learning downstream tasks
including time series generation and classification [1, 13].

Table 4.3: Time series tasks with FGW metric. Comparison between the fasts algorithms with FGC and the
original ones with the different number of grid points N. Column for ‖PFa − P‖F validates the correctness of the
results by FGC.

N
Computational time (s)

Speed-up ratio ‖PFa − P‖F
FGC-FGW original

400 3.78× 10−1 2.43× 100 6.43 2.02× 10−15

800 1.59× 100 1.91× 101 12.0 1.45× 10−15

1600 7.02× 100 1.54× 102 21.9 1.08× 10−15

3200 3.59× 101 1.24× 103 34.5 7.17× 10−16

J. Mach. Learn., 3(3):282-299 294

Figure 4.3: Time series alignment with FGW metric. Left: The time comparison on computing FGW metric
for different numbers of sample points with entropic GW with or without FGC. Right: The visualized alignment
between source (Blue) and target (Orange) time series at N = 1600. The lines across two time series represent
the transport plan.

4.4 Image

Measuring the similarity between images is another meaningful application of FGW [52].
Intuitively, good alignment between images implies a quite accurate depiction of similar-
ity [52]. Likewise, FGW does a better job than GW in this task, because it can take ad-
vantage of not only pixel coordinates (quadratic term) but also pixel values (linear term).
Nevertheless, suffering from high computational complexity, FGW is prevented from ap-
plying to high-resolution images. By reducing the computational time significantly, FGC
makes it possible.

4.4.1 Three invariances on handwritten digits image data

The advanced capability of FGW in capturing image similarity can be demonstrated by
its invariant alignment under types of transformations, such as translation, rotation, and
reflection. We will show that FGC acceleration preserves the exact same invariance. We
first selected one 28× 28 image representing digits 3 from MNIST dataset [16], then we
made the new ones by translation, mirroring, and rotation of the original image. The
objective is to align the original image with the others. We use the Manhattan distance
on the pixel coordinate gird for DX and DY , i.e. take k = 1, hX = hY = 1 in Eq. (3.5).
C is constructed by calculating the difference in the pixel gray levels between source pixels
and target pixels. Referring to [52], we take θ = 0.1.

The average results of 100 runs are shown in Table 4.4. It is observed that our fast
algorithm defeats the original one again, which costs about 3s and achieves about 10 times
the speedup. Fig. 4.4 shows the actual transport plans. For a clear view, plans are marked
with two colors. Graphically, the FGW metric makes each pixel of the digit aligned well.

4.4.2 Complex deformation on horse image data

In this part, to further emphasize the practical value of FGC on images, we conduct large-
scale experiments on two 450 × 300 images of a running horse captured from a video
[59]. The shapes of the horse in the images reveal complex deformation during running.

J. Mach. Learn., 3(3):282-299 295

Table 4.4: Handwritten digits task with FGW metric. Comparison between FGC-FGW and the original algorithm
on aligning three pairs of images under different types of transformations.

Invariance
Computational time (s)

Speed-up ratio ‖PFa − P‖F
FGC-FGW Original

Translation 2.86× 100 2.86× 101 10.0 6.96× 10−14

Rotation 2.34× 100 2.26× 101 9.66 1.51× 10−14

Reflection 2.34× 100 2.27× 101 9.70 1.39× 10−14

Figure 4.4: Handwritten digits task with FGW metric. The original image is matched to the new ones made by
translation (left), rotation (mid), and reflection (right). The black lines and red lines represent transport plans.

Before alignment, they are subsampled to N = n× n first and then converted to grayscale
images. We set DX , DY and C the same as the handwritten digits task, except for taking
hX = hY = 100/n to make DX and DY comparable with C in magnitude. We computed
FGW with various θ = 0.4, 0.6, 0.8 to show that FGC captures the original invariance with
complexity advantage.

Table 4.5 reports the average results of 100 runs and Fig. 4.5 presents the O(N2.32)
empirical complexity of FGC at θ = 0.8 on the left. FGC enables the processing of all
images in less than 10 minutes regardless of N while the original algorithm would struggle
to deal with those of size 100× 100. When N = 80, FGC brings a 40x acceleration roughly.
And this would be promoted to more than 60x at N = 100. Fig. 4.5 also shows the plans
obtained at θ = 0.8, N = 100. We can see that the horse’s head, tail, and legs are aligned
well.

Figure 4.5: Horse images task with FGW metric. Left: the time comparison between FGC-FGW and the original
algorithm with θ = 0.8. The numbers attached are fitted slops, representing empirical complexities. Right: the
transport plans with θ = 0.8 on 100× 100 images.

J. Mach. Learn., 3(3):282-299 296

Table 4.5: Horse images task with FGW metric. Comparison between FGC-FGW and the original algorithm with
different N and θ. A dash means the running time exceeds 10 hours.

θ N = n× n
Computational time (s)

Speed-up ratio ‖PFa − P‖F
FGC-FGW Original

0.4

40× 40 7.08× 100 1.39× 102 19.6 4.25× 10−16

60× 60 5.92× 101 1.68× 103 28.4 3.54× 10−16

80× 80 1.99× 102 9.59× 103 48.2 2.87× 10−16

100× 100 5.02× 102 − − −

0.6

40× 40 7.20× 100 1.39× 102 19.3 7.30× 10−16

60× 60 5.91× 101 1.66× 103 28.1 5.89× 10−16

80× 80 1.99× 102 9.79× 103 49.2 4.65× 10−16

100× 100 5.07× 102 − − −

0.8

40× 40 7.18× 100 1.38× 102 19.2 1.01× 10−15

60× 60 5.92× 101 1.67× 103 28.2 8.09× 10−16

80× 80 1.98× 102 1.03× 104 52.0 6.88× 10−16

100× 100 5.04× 102 − − −

5 Conclusion and future work

In this paper, we demonstrate a special recursive relation over uniform grids and develop
the Fast GW Gradient Computation. Thus, the computation of GW can be conducted in
O(N2) time, which is almost optimal. Compared to the approximation or sampling-based
methods, the fast algorithms produce full-sized and exact solutions as original entropic
ones. Moreover, compared to other closed-form GW solutions over other special struc-
tures such as trees, our method can be used to accelerate the computation of a wide scope
of GW variants as long as the GW gradient is required, including unbalanced GW [44],
co-optimal transport [51], and fixed support GW barycenter [37]. Empirical evaluations
show that our FGC has a clear advantage in terms of time complexity and accelerates the
cases from tens to hundreds of times. It is also validated that full-sized transport plans
produced by our algorithm are exact under various settings.

A more interesting question is whether FGC extends to other discrete cases and reg-
ularization methods. In fact, FGC’s effectiveness is attributed to the examination of the
structure of the distance matrix. Under non-uniform grids, the lower and upper triangu-
lar parts of the distance matrix maintain special structures similar to the lower (upper)
collinear triangular matrix (L-CoLT/U-CoLT matrix) proposed in [28]. This property en-
ables an analogous recursive relation, resulting in the same O(N2) time complexity. For
general point clouds, the matrices also exhibit certain structures. Fully exploiting them is
meaningful but needs further investigation. For graphs, if high-quality node embeddings
are available, it is promising to be transformed into a point cloud problem. On the other
hand, for other regularization methods, such as Xu’s approach [56, 58], the FGC method
remains applicable because computational bottlenecks still exist in the calculation of the
GW gradient.

J. Mach. Learn., 3(3):282-299 297

Finally, we demonstrate that FGC effectively enhances the application of the FGW met-
ric in quantifying data similarity, which serves as an indispensable component in various
machine learning tasks or stages, such as data preprocessing [2, 49], unsupervised learn-
ing [33, 54], recommendation systems [26, 38], and anomaly detection [12, 43]. The align-
ment achieved by the transport plan highlights the quality of the computed similarity.
Future work is expected to apply FGC directly to specific machine learning downstream
tasks, where some challenges, such as high dimensional data, may need to be overcome.

6 Acknowledgements

The authors would also thank the anonymous reviewers for their great efforts and valu-
able comments in improving the quality of the manuscript.

This work was supported by the National Natural Science Foundation of China (Grant
No. 12271289).

References

[1] A. Abanda, U. Mori, and J. A. Lozano, A review on distance based time series classification, Data Min.
Knowl. Discov., 33(2):378–412, 2019.

[2] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and Applications, CRC Press, 2014.
[3] D. Alvarez-Melis and T. Jaakkola, Gromov-Wasserstein alignment of word embedding spaces, in: Pro-

ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Association for Com-
putational Linguistics, 1881–1890, 2018.

[4] J. Arroyo, R. Espı́nola, and C. Maté, Different approaches to forecast interval time series: A comparison
in finance, Comput. Econ., 37(2):169–191, 2011.

[5] Z. Bar-Joseph, Analyzing time series gene expression data, Bioinformatics, 20(16):2493–2503, 2004.
[6] Z. Bar-Joseph, A. Gitter, and I. Simon, Studying and modelling dynamic biological processes using time-

series gene expression data, Nat. Rev. Genet., 13(8):552–564, 2012.
[7] A. Beck and M. Teboulle, Mirror descent and nonlinear projected subgradient methods for convex opti-

mization, Oper. Res. Lett., 31(3):167–175, 2003.
[8] J. D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative Bregman projections for regular-

ized transportation problems, J. Sci. Comput., 37(2):A1111–A1138, 2015.
[9] L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to

the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7(3):200–217, 1967.
[10] C. Bunne, D. Alvarez-Melis, A. Krause, and S. Jegelka, Learning generative models across incomparable

spaces, in: Proceedings of the 36th International Conference on Machine Learning, PMLR, 97:851–861, 2019.
[11] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry. Graduate Studies in Mathematics, in:

Graduate Studies in Mathematics, AMS, Vol. 33, 2001.
[12] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM Comput. Surv. (CSUR),

41(3):15, 2009.
[13] K. Cheng, S. Aeron, M. C. Hughes, and E. L. Miller, Dynamical Wasserstein barycenters for time-series

modeling, Adv. Neural Inf. Process. Syst., 34:27991–28003, 2021.
[14] S. Chowdhury and T. Needham, Generalized spectral clustering via Gromov-Wasserstein learning, in:

Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, PMLR, 130:712–720,
2021.

[15] M. Cuturi, Sinkhorn Distances: Lightspeed Computation of Optimal Transport, Adv. Neural Inf. Process.
Syst., Curran Associates, Inc., Vol. 26, 2013.

J. Mach. Learn., 3(3):282-299 298

[16] L. Deng, The MNIST database of handwritten digit images for machine learning research [best of the
web], IEEE Signal Process. Mag., 29(6):141–142, 2012.

[17] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, 2007.
[18] P. Indyk and S. Silwal, Faster linear algebra for distance matrices, in: Adv. Neural Inf. Process. Syst.,

Curran Associates, Inc., 35:35576–35589, 2022.
[19] T. Kerdoncuff, R. Emonet, and M. Sebban, Sampled Gromov Wasserstein, Mach. Learn., 110(8):2151–2186,

2021.
[20] I. Kezurer, S. Z. Kovalsky, R. Basri, and Y. Lipman, Tight relaxation of quadratic matching, Comput.

Graph. Forum, 34(5):115–128, 2015.
[21] P. Koev, Matrices with displacement structure – a survey, 1999. https://math.mit.edu/∼plamen/

files/mds.pdf

[22] T. C. Koopmans and M. Beckmann, Assignment problems and the location of economic activities, Econo-
metrica, 25(1):53–76, 1957.

[23] T. Le, N. Ho, and M. Yamada, Flow-based alignment approaches for probability measures in different
spaces, in: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, PMLR,
130:3934–3942, 2021.

[24] M. Leordeanu and M. Hebert, A spectral technique for correspondence problems using pairwise con-
straints, in: Tenth IEEE International Conference on Computer Vision (ICCV’05), IEEE, 2:1482–1489, 2005.

[25] M. Li, J. Yu, H. Xu, and C. Meng, Efficient approximation of Gromov-Wasserstein distance using impor-
tance sparsification, J. Comput. Graph. Statist., 32(4):1512–1523, 2023.

[26] X. Li, Z. Qiu, X. Zhao, Z. Wang, Y. Zhang, C. Xing, and X. Wu, Gromov-Wasserstein guided representa-
tion learning for cross-domain recommendation, in: Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, ACM, 1199–1208, 2022.

[27] Q. Liao, J. Chen, Z. Wang, B. Bai, S. Jin, and H. Wu, Fast Sinkhorn I: An O(N) algorithm for the
Wasserstein-1 metric, Commun. Math. Sci., 20(7):2053–2067, 2022.

[28] Q. Liao, Z. Wang, J. Chen, B. Bai, S. Jin, and H. Wu, Fast Sinkhorn II: Collinear triangular matrix and
linear time accurate computation of optimal transport, J. Sci. Comput., 98(1):1, 2024.

[29] S. Majumdar and A. K. Laha, Clustering and classification of time series using topological data analysis
with applications to finance, Expert Syst. Appl., 162:113868, 2020.

[30] F. Memoli, Spectral Gromov-Wasserstein distances for shape matching, in: 2009 IEEE 12th International
Conference on Computer Vision Workshops, IEEE, 256–263, 2009.

[31] F. Mémoli, Gromov-Wasserstein distances and the metric approach to object matching, Found. Comput.
Math., 11(4):417–487, 2011.

[32] M. Mudelsee, Trend analysis of climate time series: A review of methods, Earth-Sci. Rev., 190:310–322,
2019.

[33] K.P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
[34] D. Pastén, Z. Czechowski, and B. Toledo, Time series analysis in earthquake complex networks, Chaos,

28(8):083128, 2018.
[35] H. P. Maretic, M. El Gheche, G. Chierchia, and P. Frossard, GOT: An optimal transport framework for

graph comparison, Adv. Neural Inf. Process. Syst., Curran Associates, Inc., Vol. 32, 2019.
[36] G. Peyre and M. Cuturi, Computational optimal transport, Found. Trends Mach. Learn., 11(5-6):355–607,

2019.
[37] G. Peyré, M. Cuturi, and J. Solomon, Gromov-Wasserstein averaging of kernel and distance matrices, in:

Proceedings of The 33rd International Conference on Machine Learning, PMLR, 48:2664–2672, 2016.
[38] F. Ricci, Recommender systems in tourism, in: Handbook of e-Tourism, Springer, 457–474, 2022.
[39] T. Rolfe, Binomial coefficient recursion: The good, and the bad and ugly, ACM SIGCSE Bulletin, 33(2):35–

36, 2001.
[40] F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling,

in: Progress in Nonlinear Differential Equations and Their Applications, Springer, Vol. 87, 2015.
[41] R. Sato, M.Cuturi, M. Yamada, and H. Kashima, Fast and robust comparison of probability measures in

heterogeneous spaces, arXiv:2002.01615, 2020.
[42] M. Scetbon, G. Peyré, and M. Cuturi, Linear-time Gromov Wasserstein distances using low rank cou-

J. Mach. Learn., 3(3):282-299 299

plings and costs, in: Proceedings of the 39th international conference on machine learning, PMLR, 162:19347–
19365, 2022.

[43] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, f-AnoGAN: Fast unsupervised
anomaly detection with generative adversarial networks, Med. Image Anal., 54:30–44, 2019.

[44] T. Sejourne, F. X. Vialard, and G. Peyré, The unbalanced Gromov Wasserstein distance: Conic formula-
tion and relaxation, Adv. Neural Inf. Process. Syst., Curran Associates, Inc., 34:8766–8779, 2021.

[45] J. Serra, and J. L. Arcos, An empirical evaluation of similarity measures for time series classification,
Knowl.-Based Syst., 67:305–314, 2014.

[46] J. Solomon, L. Guibas, and A. Butscher, Dirichlet energy for analysis and synthesis of soft maps, Comput.
Graph. Forum, 32(5):197–206, 2013.

[47] J. Solomon, A. Nguyen, A. Butscher, M. Ben-Chen, and L. Guibas, Soft maps between surfaces, Comput.
Graph. Forum, 31(5):1617–1626, 2012.

[48] J. Solomon, G. Peyré, V. G. Kim, and S. Sra, Entropic metric alignment for correspondence problems,
ACM Trans. Graph., 35(4):1–13, 2016.

[49] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, Pearson Education India, 2018.
[50] V. Titouan, N. Courty, R. Tavenard, C. Laetitia, and Rémi Flamary, Optimal transport for structured data

with application on graphs, in: Proceedings of the 36th International Conference on Machine Learning, PMLR,
6275–6284, 2019.

[51] V. Titouan, I. Redko, R. Flamary, and N. Courty, Co-optimal transport, Adv. Neural Inf. Process. Syst.,
Curran Associates, Inc., 33:17559–17570, 2020.

[52] T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N. Courty, Fused Gromov-Wasserstein distance for
structured objects, Algorithms, 13(9):212, 2020.

[53] N. K. Vishnoi, Algorithms for Convex Optimization, Cambridge University Press, 2021.
[54] D. Xu, and Y. Tian, A comprehensive survey of clustering algorithms, Ann. Data Sci., 2:165–193, 2015.
[55] H. Xu, Gromov-Wasserstein factorization models for graph clustering, in: Proceedings of the AAAI Con-

ference on Artificial Intelligence, 34(4):6478–6485, 2020.
[56] H. Xu, D. Luo, and L. Carin, Scalable Gromov-Wasserstein learning for graph partitioning and matching,

in: Adv. Neural Inf. Process. Syst., Curran Associates, Inc., 3052–3062, 2019.
[57] H. Xu, D. Luo, R. Henao, S. Shah, and L. Carin, Learning autoencoders with relational regularization,

in: Proceedings of the 37th International Conference on Machine Learning, PMLR, 119:10576–10586, 2020.
[58] H. Xu, D. Luo, H. Zha, and L. C. Duke, Gromov-Wasserstein learning for graph matching and node

embedding, in: International Conference on Machine Learning, PMLR, 97:6932–6941, 2019.
[59] Running horse, https://www.bilibili.com/video/BV1u54y1v7JR.4, 4.4.2, 2020.

	Introduction
	Gromov-Wasserstein distance
	Mirror descent method

	Fast gradient computation
	Extension to high dimension

	Numerical experiments
	1D random distributions
	2D random distributions
	Time series
	Image
	Three invariances on handwritten digits image data
	Complex deformation on horse image data

	Conclusion and future work
	Acknowledgements

