
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Memory3: Language Modeling with Explicit Memory

Hongkang Yang * 1, Zehao Lin1, Wenjin Wang1, Hao Wu1, Zhiyu Li1, Bo Tang1, Wenqiang
Wei1, Jinbo Wang1,4, Zeyun Tang1, Shichao Song1, Chenyang Xi1, Yu Yu1, Kai Chen1, Feiyu

Xiong1, Linpeng Tang2, and Weinan E1,3,4,5

1Center for LLM, Institute for Advanced Algorithms Research, Shanghai 200233, China.
2Moqi Inc, Beijing 100080, China.
3Center for Machine Learning Research, Peking University, Beijing 100871, China.
4School of Mathematical Sciences, Peking University, Beijing 100871, China.
5AI for Science Institute, Beijing 100083, China.

Abstract. The training and inference of large language models (LLMs) are together a costly process that trans-
ports knowledge from raw data to meaningful computation. Inspired by the memory hierarchy of the human
brain, we reduce this cost by equipping LLMs with explicit memory, a memory format cheaper than model
parameters and text retrieval-augmented generation (RAG). Conceptually, with most of its knowledge exter-
nalized to explicit memories, the LLM can enjoy a smaller parameter size, training cost, and inference cost, all
proportional to the amount of remaining “abstract knowledge”. As a preliminary proof of concept, we train
from scratch a 2.4 B LLM, which achieves better performance than much larger LLMs as well as RAG models,
and maintains higher decoding speed than RAG. The model is named Memory3, since explicit memory is the
third form of memory in LLMs after implicit memory (model parameters) and working memory (context key-
values). We introduce a memory circuitry theory to support the externalization of knowledge, and present
novel techniques including a memory sparsification mechanism that makes storage tractable and a two-stage
pretraining scheme that facilitates memory formation.

Keywords:
Large language model,
Explicit memory,
Large-scale pretraining,
Efficient inference,
AI database.

Article Info.:
Volume: 3
Number: 3
Pages: 300 - 346
Date: September/2024
doi.org/10.4208/jml.240708

Article History:
Received: 08/07/2024
Accepted: 20/08/2024

Communicated by:
Zhi-Qin Xu

1 Introduction

Large language models have enjoyed unprecedented popularity in recent years thanks to
their extraordinary performance [1,2,6,9,51,53,108,125]. The prospect of scaling laws [50,
57, 95] and emergent abilities [101, 117] constantly drives for substantially larger models,
resulting in the rapid increase in the cost of LLM training and inference. People have been
trying to reduce this cost through optimizations in various aspects, including architecture
[3,27,37,71,86,107], data quality [45,55,63,100], operator [29,60], parallelization [59,88,92,
98], optimizer [67,115,123], scaling laws [50,126], generalization theory [52,130], hardware
[30], etc.

We introduce the novel approach of optimizing knowledge storage. The combined cost
of LLM training and inference can be seen as the cost of encoding the knowledge from text

*Corresponding author: hongkang@alumni.princeton.edu

https://www.global-sci.com/jml Global Science Press

J. Mach. Learn., 3(3):300-346 301

data into various memory formats, plus the cost of reading from these memories during
inference

∑
knowledge k

min
format m

costwrite(k, m) + nk · costread(k, m), (1.1)

where costwrite is the cost of encoding a piece of knowledge k into memory format m,
costread is the cost of integrating k from format m into inference, and nk is the expected
usage count of this knowledge during the lifespan of this LLM (e.g. a few months for
each version of ChatGPT [8,83]). The definitions of knowledge and memory in the context
of LLMs are provided in Section 2, and this paper uses knowledge as a countable noun.
Typical memory formats include model parameters and plain text for retrieval-augmented
generative models, their write functions and read functions are listed in Table 1.1, and their
costwrite and costread are provided in Fig. 1.1.

We introduce a new memory format, explicit memory, characterized by moderately
low write cost and read cost. As depicted in Fig. 1.2, our model first converts a knowledge
base (or any text dataset) into explicit memories, implemented as sparse attention key-
values, and then during inference, recalls these memories and integrates them into the self-

Table 1.1: Analogy of the memory hierarchies of humans and LLMs.

Memory format
Example

Memory format
Write Read

of humans of LLMs

Implicit memory Common expressions Model parameters Training Matrix multiplication

Explicit memory Books read This work Memory encoding Self-attention

External information Open-book exam Plain text (RAG) None Encode from scratch

Figure 1.1: The total cost (TFlops) of writing and reading a piece of knowledge by our 2.4 B model with respect
to its expected usage count. The curves represent the cost of different memory formats, and the shaded area
represents the minimum cost given the optimal format. The plot indicates that (0.494, 13400) is the advantage
interval for explicit memory. The calculations are provided in Appendix A. (The blue curve is only a coarse lower
bound on the cost of model parameters.)

J. Mach. Learn., 3(3):300-346 302

Figure 1.2: The Memory3 model converts texts to explicit memories, and then recalls these memories during
inference. The explicit memories can be seen as retrievable model parameters, externalized knowledge, or sparsely-
activated neural circuits.

attention layers. Our design is simple so that most of the existing Transformer-based LLMs
should be able to accommodate explicit memories with a little finetuning, and thus it is
a general-purpose “model amplifier”. Eventually, it should reduce the cost of pretraining
LLMs, since there will be much less knowledge that must be stored in parameters, and
thus less training data and smaller model size.

The new memory format enables us to define a memory hierarchy for LLMs:

plain text (RAG) → explicit memory → model parameter

such that by going up the hierarchy, costwrite increases while costread decreases. To mini-
mize the cost (1.1), one should store each piece of knowledge that is very frequently/rarely
used in the top/bottom of this hierarchy, and everything in between as explicit memory.
As illustrated in Table 1.1, the memory hierarchy of LLMs closely resembles that of hu-
mans. For humans, the explicit/implicit memories are the long-term memories that are
acquired and used consciously/unconsciously [56].

As a remark, one can compare the plain LLMs to patients with impaired explicit mem-
ory, e.g. due to injury to the medial temporal lobe. These patients are largely unable to
learn semantic knowledge (usually stored as explicit memory), but can acquire sensori-

J. Mach. Learn., 3(3):300-346 303

motor skills through repetitive priming (stored as implicit memories) [10, 23, 39]. Thus,
one may hypothesize that due to the lack of explicit memory, the training of plain LLMs
is as inefficient as repetitive priming, and thus has ample room for improvement. In anal-
ogy with humans, for instance, it is easy to recall and talk about a book we just read, but
to recite it as unconsciously as tying shoe laces requires an enormous effort to force this
knowledge into our muscle memory. From this perspective, it is not surprising that LLM
training consumes so much data and energy [73, 120]. We want to rescue LLMs from this
poor condition by equipping it with an explicit memory mechanism as efficient as that of
humans.

A quantitative illustration of the cost (1.1) is given by Fig. 1.1, where we characterize
costwrite and costread by the amount of compute (TFlops). The plot indicates that if a piece
of knowledge has an expected usage count ∈ (0.494, 13400), then it is optimal to be stored
as an explicit memory. Moreover, the introduction of explicit memory helps to externalize
the knowledge stored in model parameters and thus allow us to use a lighter backbone,
which ultimately reduces all the costs in Fig. 1.1.

The second motivation for explicit memory is to alleviate the issue of knowledge traver-
sal. Knowledge traversal happens when the LLM wastefully invokes all its parameters
(and thus all its knowledge) each time it generates a token. As an analogy, it is unrea-
sonable for humans to recall everything they learned whenever they write a word. Let
us define the knowledge efficiency of an LLM as the ratio of the minimum amount of
knowledge sufficient for one decoding step to the amount of knowledge actually used.
An optimistic estimation of knowledge efficiency for a 10 B LLM is 10−5: On one hand,
it is unlikely that generating one token would require more than 104 bits of knowledge
(roughly equivalent to a thousand-token long passage, sufficient for enumerating all nec-
essary knowledge); on the other hand, each parameter is involved in the computation and
each stores at least 0.1 bit of knowledge [4, Result 10] (this density could be much higher
if the LLM is trained on cleaner data), thus using 109 bits in total.

A novel architecture is needed to boost the knowledge efficiency of LLMs from 10−5

to 1, whereas current designs are far from this goal. Consider the mixture-of-experts archi-
tecture (MoE) for instance, which uses multiple MLP layers (experts) in each Transformer
block and process each token with only a few MLPs. The boost of MoE, namely the ratio
of the total amount of parameters to the amount of active parameters, is usually bounded
by 4 ∼ 32 [37,53,99]. Similarly, neither the mixture-of-depth architecture [34,91] nor spar-
sified MLP neurons and attention heads [71] can bring greater gains. RAG appears very
sparse if we compare the amount of retrieved texts with the size of the text database; nev-
ertheless, RAG is usually built upon a plain LLM as backbone, which provides most of the
knowledge used in inference, and thus offers little assistance in addressing the knowledge
traversal problem.

An ideal solution is to retrieve only the needed parameters for each token. This is nat-
urally achieved by explicit memories if we compare memory recall to parameter retrieval.

The third motivation is that, as a human-like design, explicit memory enables LLMs to
develop more human-like capabilities. To name a few:

• Infinitely long context: LLMs have the difficulty of processing long texts since their
working memory (context key-values) costs too much GPU memory and compute.

J. Mach. Learn., 3(3):300-346 304

Meanwhile, despite that humans have very limited working memory capacity [24,
25], they can manage to read and write long texts by converting working memories to
explicit memories (thus saving space) and retrieving only the needed explicit mem-
ories for inference (thus saving compute). Similarly, by saving explicit memories on
drives and doing frequent and constant-size retrieval, LLMs can handle arbitrarily
long contexts with time complexity O(l log l) instead of Θ(l2), where l is the context
length.

• Memory consolidation: Instead of writing a piece of knowledge directly into implicit
memory, i.e. training model parameters, LLM can first convert it to explicit memory
through plain encoding, and then convert this explicit memory to implicit memory
through a low-cost step such as compression and finetuning, thus reducing the over-
all cost.

• Factuality and interpretability: Encoding texts as explicit memories is less suscepti-
ble to information loss compared to dissolving them in model parameters. With more
factual details provided by explicit memories, the LLMs would have less tendency
to hallucinate. Meanwhile, the correspondence of explicit memories to readable texts
makes the inference more transparent to humans, and also allows the LLM to con-
sciously examine its own thought process.

We demonstrate the improved factuality in the experiments section, and leave the rest to
future work.

In this work, we introduce a novel architecture and training scheme for LLM based
on explicit memory. The architecture is called Memory3, as explicit memory is the third
form of memory in LLM after working memory (context key-values) and implicit memory
(model parameters).

• Memory3 utilizes explicit memories during inference, alleviating the burden of mo-
del parameters to memorize specific knowledge.

• The explicit memories are encoded from our knowledge base, and our sparse mem-
ory format maintains a realistic storage size.

• We trained from scratch a Memory3 model with 2.4 B non-embedding parameters,
and its performance surpasses SOTA models with greater sizes. It also enjoys better
performance and faster inference than RAG. These results are illustrated in Fig. 1.3.

• Furthermore, Memory3 boosts factuality and alleviates hallucination, and it enables
fast adaptation to professional tasks.

This paper is structured as follows: Section 2 lays the theoretical foundation for Memory3,
in particular our definitions of knowledge and memory. Section 3 discusses the basic
design of Memory3, including its architecture and training scheme. Sections 4, 5, and 6
describes the training of Memory3. Section 7 evaluates the performance of Memory3 on
general benchmarks and professional tasks. Finally, Section 8 concludes this paper and
discusses future works.

J. Mach. Learn., 3(3):300-346 305

Figure 1.3: Left: Performance on benchmarks, with respect to model size (top-left is better). Right: Retrieval-
augmented performance on professional tasks, versus decoding speed with retrieval (top-right is better). The left
plot is based on Table 7.1. The right plot is based on Tables 7.5 and 7.6. Memory3 uses high frequency retrieval
of explicit memories, while the RAG models use a fixed amount of 5 references. This is a preliminary experiment
and we have not optimized the quality of our pretraining data as well as the efficiency of our inference pipeline,
so the results may not be comparable to those of the SOTA models.

1.1 Related work

1.1.1 Retrieval-augmented training

Several language models have incorporated text retrieval from the pretraining stage.
REALM [46] augments a BERT model with one retrieval step to solve QA tasks. Retro
[14] enhances auto-regressive decoding with multiple rounds of retrieval, once per 64
tokens. The retrieved texts are injected through a two-layer encoder and then several
cross-attention layers in the decoder. Retro++ [111] explores the scalability of Retro by
reproducing Retro up to 9.5 B parameters.

Meanwhile, several models are adapted to retrieval in the finetuning stage. WebGPT
[80] learns to use search engine through imitation learning in a text-based web-browsing
environment. Toolformer [96] performs decoding with multiple tools including search
engine, and the finetuning data is labeled by the LM itself.

The closest model to ours is Retro. Unlike explicit memory, Retro needs to encode the
retrieved texts in real-time during inference. To alleviate the cost of encoding these refer-
ences, it chooses to use a separate, shallow encoder and also retrieve few references. In-
tuitively, this compromise greatly reduces the amount of knowledge that can be extracted
and supplied to inference.

Another line of research utilizes retrieval to aid long-context modeling. Memorizing
Transformer [122] extends the context of language models by an approximate kNN lookup
into a non-differentiable cache of past key-value pairs. LongLlama [110] enhances the
discernability of context key-value pairs by a finetuning process inspired by contrastive
learning. LONGMEM [116] designs a decoupled architecture to avoid the memory stal-
eness issue when training the Memorizing Transformer. These methods are not directly
applicable to large knowledge bases since the resulting key-value caches will occupy enor-

J. Mach. Learn., 3(3):300-346 306

mous space. Our method overcomes this difficulty through a more intense memory spar-
sification method.

1.1.2 Sparse computation

To combat the aforementioned knowledge traversal problem and improve knowledge ef-
ficiency, ongoing works seek novel architectures that process each token with a minimum
and adaptive subset of model parameters. This adaptive sparsity is also known as contex-
tual sparsity [71]. The Mixture-of-Experts use sparse routing to assign Transformer sub-
modules to tokens, scaling model capacity without large increases in training or inference
costs. The most common MoE design [37] hosts multiple MLP layers in each Transformer
block and routes each token to a few MLPs with the highest allocation score predicted
by a linear classifier. Furthermore, variants based on compression such as QMoE [38] are
introduced to alleviate the memory burden of MoE. Despite the sparse routing, the boost
in parameter efficiency is usually bounded by 4 ∼ 32. For instance, the Arctic model [99],
one of the sparsest MoE LLM in recent years, has an active parameter ratio of about 3.5%.
Similarly, the Mixture of Depth architecture processes each token with an adaptive subset
of the model layers. The implementations can be based on early exit [34] or top-k rout-
ing [91], reducing the amount of compute to 12.5 ∼ 50%. More fine-grained approaches
can perform sparsification at the level of individual MLP neurons and attention heads. The
model Deja Vu [71] trains a low-cost network for each MLP/attention layer that predicts
the relevance of each neuron/head at this layer to each token. Then, during inference,
Deja Vu keeps the top 5 ∼ 15% MLP neurons and 20 ∼ 50% attention heads for each
token.

1.1.3 Parameter as memory

Several works have portrayed model parameters as implicit memory, in accordance with
our philosophy. [43] demonstrates that the neurons in the MLP layers of GPTs behave like

key-value pairs. Specifically, with the MLP layer written as σ(XK⊤)V, each row of the
first layer weight Ki functions like a key vector, with the corresponding row in the second
layer weight Vi being the value vector. [43] observes that for most of the MLP neurons,
the Ki is activated by context texts that obey some human interpretable pattern, and the Vi

activates the column of the output matrix that corresponds to the most probable next to-
ken of the pattern (e.g. n-gram). Based on this observation, [104] designs a GPT variant
that consists of only attention layers, with performance matching that of the usual GPTs.
The MLP layers are incorporated into the attention layers in the form of key-value vec-
tor pairs, which are called persistent memories. Similarly, using sensitivity analysis, [26]
discovers that factual knowledge learned by BERT is often localized at one or few MLP
neurons. These neurons are called “knowledge neurons”, and by manipulating them, [26]
manages to update single pieces of knowledge of BERT. Meanwhile, [35] studies an in-
teresting phenomenon known as superposition or polysemanticity, that a neural network
can store many unrelated concepts into a single neuron.

J. Mach. Learn., 3(3):300-346 307

2 Memory circuitry theory

This section introduces our memory circuitry theory, which defines knowledge and mem-
ory in the context of LLM. We will see that this theory helps to determine which knowl-
edge can be stored as explicit memory, and what kind of model architecture is suitable
for reading and writing explicit memories. For readers interested primarily in the results,
it may suffice to review Claim 2.1 and Remark 2.1 before proceeding to the subsequent
sections. The concepts to be discussed are illustrated in Fig. 2.1.

Figure 2.1: Categorization of knowledge and memory formats. The explicit memories, extracted from model
activations, lie half-way between raw data and model parameters, so we use a dotted line to indicate that they
may or may not be regarded as parameters.

2.1 Preliminaries

The objective is to decompose the computations of a LLM into smaller, recurring parts,
and analyze which parts can be separated from the LLM. These small parts will be de-
fined as the “knowledge” of the LLM, and this characterization helps to identify what
knowledge can be externalized as explicit memory, enabling both the memory hierarchy
and a lightweight backbone.

One behaviorist approach is to define the smaller parts as input-output relations be-
tween small subsequences, such that if the input text contains a subsequence belonging
to some pattern, then the output text of the LLM contains a subsequence that belongs to
some corresponding pattern.

J. Mach. Learn., 3(3):300-346 308

• One specific input-output relation is that if the immediate context contains “China”
and “capital”, then output the token “Beijing”.

• One abstract input-output relation is that if the immediate context is some arithmetic
expression (e.g. “123× 456 =”) then output the answer (e.g. “56088”).

• One abstract relation that will be mentioned frequently is the “search, copy and
paste” [82], such that if the context has the form “. . . [a][b]. . . [a]” then output “[b]”,
where [a] and [b] are arbitrary tokens.

A decomposition into these relations seems natural since autoregressive LLMs can be seen
as upgraded versions of n-grams, with the fixed input/output segments generalized to
flexible patterns and with the plain lookup table generalized to multi-step computations.

Nevertheless, a behaviorist approach is insufficient since an input-output relation alone
cannot uniquely pin down a piece of knowledge: A LLM may answer correctly to arith-
metic questions based on either the actual knowledge of arithmetic or memorization (host-
ing a lookup table for all expressions such as “123 × 456 = 56088”). Therefore, we take
a white-box approach that includes in the definition the internal computations of the LLM
that convert these inputs to the related outputs.

Here are two preliminary examples of internal computations.

Example 2.1. Several works have studied the underlying mechanisms when LLMs an-
swer to the prompt “The capital of China is” with “Beijing”, as well as other factual
questions [20, 26, 43, 75]. At least two mechanisms are involved, and the LLM may use
their superposition [75]. One mechanism is to use general-purpose attention heads (called
“mover heads”) to move “capital” and “China” to the last token “is”, and then use the
MLP layers to map the feature of the last token to “Beijing” [75]. Often, only one or a few
MLP neurons are causally relevant, and they are called “knowledge neurons” [26]. This
mechanism is illustrated in Fig. 2.2 (left). Another mechanism involves attention heads h

whose value-to-output matrices Wh
VWh

O function like bigrams, e.g. mapping “capital” to
{“Paris”, “Beijing”, . . . } and “China” to {“panda”, “Beijing”, . . . } , which sum up to pro-
duce “Beijing” [20, 43, 75]. This mechanism is illustrated in Fig. 2.2 (middle).

Example 2.2. The ability of LLMs to perform “search, copy and paste”, namely answering
to the context “. . . [a][b]. . . [a]” with “[b]”, is based on two attention heads, together called
induction heads [82]. The first head copies the feature of the previous token, enabling [b]
to “dress like” its previous token [a]. The second head searches for similar features, en-
abling the second [a] to attend to [b], which now has the appearance of [a]. Thereby, the
last token [a] manages to retrieve the feature of [b] and to output [b]. This mechanism is
illustrated in Fig. 2.2 (right). A similar mechanism is found for in-context learning [114].

We will address the internal mechanism for an input-output relation as a circuit, and
will define a piece of knowledge as an input-output relation plus its circuit. By manipulat-
ing these circuits, one can separate many pieces of knowledge from a LLM while keeping
its function intact.

Recent works on circuit discovery demonstrate that some knowledge and skills pos-
sessed by Transformer LLMs can be identified with patterns in their computation graphs

J. Mach. Learn., 3(3):300-346 309

Figure 2.2: Illustration of three subgraphs. Left: A subgraph that inputs “the capital of China is” and outputs
“Beijing”. The knowledge neuron is marked in red and the mover heads in green. Middle: Another subgraph with
similar function using task-specific heads. Right: The induction-heads subgraph that inputs “[a][b]. . . [a]” and
outputs [b], where [a], [b] are arbitrary tokens. The definition of the nodes and edges is provided Definition 2.1.
The exact locations of these attention heads and MLP neurons may vary.

[21, 26, 42, 43, 82, 102, 113, 114], but there has not been a universally accepted definition of
circuit. Different from works on Boolean circuits [47, 77] and circuits with Transformer
submodules as their nodes [21,128], we characterize a circuit as a “spatial-temporal” phe-
nomenon, whose causal structure is localized at the right places (MLP neurons and atten-
tion heads) and right times (tokens). Thus, we define a computation graph as a directed
acyclic graph, whose nodes are the hidden features of all tokens at all MLP and attention
layers, and whose edges correspond to all activations inside these layers. In particular, the
computation graph hosts one copy of the Transformer architecture at each time step. To
transcend this phenomenological characterization, we define a circuit as an equivalence
class of similar subgraphs across multiple computation graphs.

As a remark, it is conceptually feasible to identify a circuit with the minimal subset
of Transformer parameters that causes this circuit. The benefit is that such definition of
knowledge seems more intrinsic to the LLM. Nevertheless, with the current definition, it
is easier to perform surgery on the circuits and derive constructive proofs. Besides, it is
known that Transformer submodules exhibit superposition or polysemanticity, such that
one MLP neuron or attention head may serve multiple distinct functions [35, 75], making
the identification of parameter subsets a challenge task.

2.2 Knowledge

We begin with the definition of the knowledge of LLMs. For now, it suffices to adopt
heuristic definitions instead of fully rigorous ones. Throughout this section, by LLM we
mean autoregressive Transformer LLM that has at least been pretrained. Let L be the
number of Transformer blocks and H be the number of attention heads at each attention

J. Mach. Learn., 3(3):300-346 310

layer, and the blocks and heads are numbered by l = 0, . . . , L − 1 and h = 0, . . . , H − 1.
There are in total 2L layers (MLP layers and attention layers), and the input features to
these layers are numbered by 0, . . . , 2L − 1.

Definition 2.1. Given an LLM and a text t = (t0, . . . tn), the computation graph G on input
(t0, . . . tn−1) and target (t1, . . . , tn) is a directed graph with weighted edges such that

• Its nodes consist of the hidden vectors x2l
i before all attention layers, the hidden vectors x2l+1

i

before all MLP layers, and the output vectors x2L
i , for all blocks l = 0, . . . , L − 1 and positions

i = 0, . . . , n − 1.

• Its directed edges consist of each attention edge el,h
i,j that goes from x2l

i to x2l+1
j at the h-th head

of the l-th attention layer for all l, h and i ≤ j, as well as each MLP edge el,m
i that goes from

x2l+1
i to x2l+2

i through the m-th neuron of the l-th MLP layer for all l, m, i.

• The weight of each attention edge el,h
i,j , which measures the influence of the attention score al,h

i,j

on the LLM output, is defined by

L−L
∣

∣

al,h
i,j =0

or
∂L

∂al,h
i,j

,

where L is the log-likelihood of the target (t1, . . . , tn), with L|a=0 obtained by setting a = 0

(i.e. causal intervention). Similarly, the weight of each MLP edge el,m
i , which measures the

influence of the neuron activation al,m
i on the LLM output, is defined likewise.

• Given any subgraph S ⊆ G, define the associated input of S as a subsequence tin(S) ⊆
(t0, . . . , tn−1) such that a token ti belongs to tin(S) if and only if ‖∇x0

i
a‖ is large for some

attention edge (or MLP edge) in S with attention score (or activation) a.

• Similarly, define the associated output of the subgraph S as a subsequence tout(S)⊆ (t1, . . . , tn)
such that a token ti belongs to tout(S) if and only if

Li −Li

∣

∣

a=0
or

∂Li

∂a

is large for some attention edge (or MLP edge) in S with attention score (or activation) a. Here
Li is the log-likelihood of ti with respect to the LLM output.

Definition 2.2. Given two computation graphs G1, G2 of an LLM and their subgraphs S1, S2,
a mapping f from the nodes of S1 to the nodes of S2 (not necessarily injective) is a homomorphism if

• every node at depth l ∈ {0, . . . , 2L} is mapped to depth l,

• if two nodes are on the same position i, then they are mapped onto the same position,

• if two nodes share an edge on attention head h or MLP neuron m, then their images also share
an edge on head h or neuron m.

If such a homomorphism exists, then we say that S1 is homomorphic to S2.

J. Mach. Learn., 3(3):300-346 311

An illustration of computation graph and homomorphism is provided in Fig 2.3. It
may be more convenient to define the mapping to be between the input tokens of two
sentences, but we adopt the current formulation as it is applicable to more general settings
without an obvious correspondence between the tokens and the hidden features at each
layer.

Definition 2.3. Given an LLM and a distribution of texts, a circuit is an equivalence class K of
subgraphs from computation graphs on random texts such that

• The computation graph on a random text contains some subgraph S ∈ K with positive
probability.

• All subgraphs S ∈ K are homomorphic to each other.

• All edges of all S ∈ K have non-negligible weights.

• The pairs (tin(S), tout(S)) share some interpretable meaning across all S ∈ K.

Definition 2.4. Given an LLM and a distribution of texts, we call each circuit a knowledge. Fur-
thermore, a circuit K is called a

• specific knowledge, if the associated inputs tin(S) for all subgraphs S ∈ K share some inter-
pretable meaning, and the associated outputs tout(S) for all S ∈ K are the same or differ by
at most a small fraction of tokens,

• abstract knowledge, else.

From now on, we use knowledge as a countable noun since the circuits are countable.
Note that the criterion in Definition 2.4 is stronger than the last criterion in Definition 2.3,
e.g. consider the circuit that always copy-and-pastes the previous token. We will see that
the rigidity of specific knowledge makes them easier to externalize.

Here are some well-known examples of knowledge.

Figure 2.3: Left: Illustration of the computation graph over one Transformer block, showing only three tokens,
one attention head and three MLP neurons. The edge weights are not shown. Right: The subgraphs S1, S2,
namely the induced subgraphs of the attention edges (black arrows), belong to the circuit of the induction head.
The red arrows denote a homomorphism from S1 to S2, and the blue arrows denote a homomorphism from S2

to S1.

J. Mach. Learn., 3(3):300-346 312

Example 2.3. Recall the knowledge neuron from Example 2.1 that helps to answer “The
capital of China is Beijing”. Such neurons can be activated by a variety of contexts that
involve the subject-relation pair (“China”, “capital”) [26]. Its circuit can be simply defined

as the equivalence class of subgraphs induced by edges el,m
i , where (l, m) is the fixed loca-

tion of the knowledge neuron and i is the variable position of the last token of the context.
The associated inputs are “China” and “capital”, and the associated outputs are always
“Beijing”. By definition, this circuit is a specific knowledge, since its associated output is
fixed and its associated inputs share a clear pattern (fixed tokens with variable positions).

Similarly, by straightforward construction, one can show that each n-gram can be ex-
pressed as a specific knowledge.

Example 2.4. Recall the induction heads [82] from Example 2.2 that complete “[a][b] . . . [a]”
with “[b]”. Let (l, h), (l + 1, h′) be the locations of these two heads, and denote the vari-
able positions of the two token [a]’s by i, j. Its circuit is the equivalence class of sub-

graphs induced by the two edges el,h
i,i+1, el+1,h′

i+1,j . Although the associated input-output pairs

“[a][b]. . . [a][b]” have a clear pattern, the associated outputs “[b]” alone can be arbitrary,
so the induction head is an abstract knowledge.

More sophisticated abstract knowledge have been identified for in-context learning
[114] and indirect object identification [113].

Definition 2.5. Given a LLM and a knowledge K, a text t = (t0, . . . , tn) is called a realization
of K, if the computation graph on t has a subgraph that belongs to K.

For instance, any text of the form [a][b]. . . [a][b] can be a realization of the abstract
knowledge of induction head.

Our definition of knowledge is extrinsic, depending on a specific LLM, instead of in-
trinsic, depending only on texts. From this perspective, problem (1.1) can be interpreted
as relocating the knowledge from an all-encompassing LLM to more efficient models
equipped with memory hierarchy. For concreteness, one can fix this reference LLM to
be the latest version of ChatGPT or Claude [2, 6], or some infinitely large model from
a properly defined limit that has learned from infinite data.

Assumption 2.1 (Completeness). Fix a reference LLM and a distribution of texts, let G be
the computation graph of a random text. Assume that there exists a set K of knowledge
such that, with probability 1 over the random text, the subgraph of G induced by edges
with non-negligible weights can be expressed as a union of subgraphs {Si ∈ Ki} from
{Ki} ⊆ K.

Essentially, Assumption 2.1 posits that all computations in the LLM can be fully de-
composed into circuits, so that the LLM is nothing more than a collection of specific and
abstract knowledge. This viewpoint underscores that the efficiency of LLMs is ultimately
about the effective organization of these knowledge, an objective partially addressed by
problem (1.1).

J. Mach. Learn., 3(3):300-346 313

2.3 Memory

Now the question is what knowledge can be separated from the model parameters and
moved to the lower levels of the memory hierarchy.

Definition 2.6. A knowledge K of the reference LLM is separable if there exists another LLM M
such that

• M does not possess this knowledge such that for any realization t of K, the model M cannot
generate each token of the associated output tout with high probability, e.g. PM(ti|t0 . . . ti−1)
≤ 1/2 for some ti ∈ tout.

• There exists a text t∗ such that for any realization t of K, the model M using t∗ as prefix can
generate each token of the associated output tout with high probability, e.g. PM(ti|t∗t0 . . . ti−1)
≥ 0.9 for every ti ∈ tout.

If among the realizations of K, the same associated input tin can correspond to multiple associated
outputs tout, then the above probabilities are summed over all branches if position i is a branching
point.

Definition 2.7. A separable knowledge K of the reference LLM is imitable if any realization t′

of K can be used as the prefix t∗ in Definition 2.6, e.g. for any realizations t, t′ of K, we have
PM(ti|t′t0 . . . ti−1) ≥ 0.9 for every ti ∈ tout.

Let us note that imitability basically means that LLMs can achieve the same effect as
possessing this knowledge by retrieving example texts that demonstrate this knowledge.
Few-shot prompting can be seen as a special case of providing realizations.

Separability is a more general property than imitability. For instance, one can set the
prefix t∗ to be an abstract description of K instead of its realization, and this is reminiscent
of instruction prompting. Nevertheless, it is not obvious whether the set of separable
knowledge is strictly larger than the set of imitable knowledge.

Claim 2.1. Every specific knowledge K is imitable and thus is separable.

Proof (informal). Without loss of generality, we can assume that for any realization t of K,
all tokens of the associated input tin precede all tokens of the associated output tout.
Otherwise, we can split tin into two halves t1, t2 that precedes/does not precede tout, and
split the corresponding subgraph S ∈ K into two halves S1, S2 that have high weights with
respect to t1, t2. Using monotonicity arguments once Definition 2.3 is fully formalized, one
can try to show that this splitting is invariant across S ∈ K and therefore the sets of S1, S2

are two specific knowledge.
Consider sequences of the form [a][b]. . . [a’][b’], where [a], [a’] (or [b], [b’]) could be the

associated inputs (or outputs) of any subgraphs S, S′ ∈ K. By Definition 2.4, [a] and [a’]
always share some interpretable meaning, while [b] and [b’] are approximately the same
sequence. One can construct an abstract knowledge that completes [a][b]. . . [a’] with [b’]:
The first part of this circuit detects the common feature of the [a]’s (possibly overlapping
with the subgraphs of K), the second part is an induction head (analogous to Example 2.4,
it provides [b] with the common feature of the [a]’s and lets [a’] to attend to [b]), and the

J. Mach. Learn., 3(3):300-346 314

third part generates [b’] based on [b] with possible slight modifications. This circuit is
an abstract knowledge since it can be applied to other specific knowledges as long as their
associated inputs share the same meaning with the [a]’s, no matter how their associated
outputs could vary.

Meanwhile, construct the model M by letting the reference model forget K (e.g. by
finetuning on a modified data distribution such that the associated input of K is never
followed by the associated output, while the rest of the distribution remains the same).
Combining this circuit with M completes the proof.

Claim 2.1 indicates that a lot of knowledges can be externalized from the model param-
eters. The converse of Claim 2.1 may not hold, since it is imaginable that some abstract
knowledges can also be substituted with their realizations.

Remark 2.1. There are three details in the proof of Claim 2.1 that will be useful later:

1. The circuit we construct has only one attention head that attends to the reference text
t′ from the present text t, while all other computations are confined within either t
or t′.

2. Moreover, in this attention head, the circuit only needs the edges from [b] to [a’].
Thus, in general this head only needs to attend to very few tokens in the reference.

3. It suffices for the reference t′ to attend only to itself.

These properties will guide our architecture design.

To finish the set-up of problem (1.1), we define the memory formats. The definition
should subsume the aforementioned formats of model parameters, explicit memories and
plain texts for RAG, and also allow for new memory formats of future LLMs.

Definition 2.8. Let K be the complete set of knowledges from Assumption 2.1 and consider the
subset of separable knowledges. Let T be a set that contains one or several realizations t for each
separable knowledge. Let f1, . . . , fm be any functions over T. Abstractly speaking, a memory-
augmented LLM M is some mapping from prefixes to token distributions with additional inputs

M :
(

(t0, . . . , ti−1), {K1, . . . ,KN}, X1, . . . , Xm

)

7→ P(·|t0 . . . ti−1), (2.1)

where the set {K1, . . . ,KN} consists of non-separable knowledges of M that are invoked at this
step, and the sets Xj consist of encoded texts

Xj =
{

fj(tj,k)
}

(2.2)

for some tj,k ∈ T.
Each j = 1, . . . , m represents a memory format and fj is called the write function of this

format. If some realization of a separable knowledge K participates in the mapping M, then we say
that K is written in format j and read by M.

Analogous to Assumption 2.1, we are decomposing each step of LLM inference into the
invoked circuits, but the decomposition here also involves reference texts that are written
in various memory formats.

J. Mach. Learn., 3(3):300-346 315

Table 1.1 demonstrates that the write functions could be diverse, and the list is probably
far from conclusive. Nevertheless, some heuristics still apply. The write function fj and
the read process in M for each format j should be non-trivial such that, for any separable
knowledge K not contained in M and any realization t of K, if K enters in M through
format j, then M should be able to generate each token of the associated output of K in t
with higher probability as in Definition 2.6. Thus, informally speaking, the total cost of
writing and reading K must be bounded from 0, since some minimum computation is
necessary for reducing the uncertainty in generating the correct tokens. It follows that the
write cost and read cost are complementary, i.e. cheaper writing must be accompanied by
more expensive reading.

We define this inverse relationship between the write cost and read cost as the mem-
ory hierarchy. This relationship is in accordance with our experience regarding the three
examples of human memories in Table 1.1, e.g. we can utter the common expressions
almost immediately while it may take a few seconds to recall a book we read, but the
former skill is acquired through years of language speaking. For the LLM memories in
Table 1.1, the inverse relationship is illustrated Fig. 1.1 and established by the calculations
in Appendix A.

The imbalanced use of knowledges leads to a heterogeneous distribution of knowl-
edges across the memory hierarchy. To minimize the total cost (1.1), the separable knowl-
edges that are used more often should be assigned to memory formats with high write
cost and low read cost, whereas the rarely used knowledges should be assigned to for-
mats with low write cost and high read cost. Also, adding a new memory format m + 1 is
always beneficial as it expands the search space and decreases the minimum cost when-
ever the usage count of some knowledge K lies in the interval

[n−
m+1, n+

m+1] =
{

n ∈ [0, ∞)
∣

∣ argminj costwrite(K, j) + n · costread(K, j) = m + 1
}

.

Examples of these intervals are displayed in Fig. 1.1. For concreteness, Fig. 2.4 depicts
a reasonable distribution of the specific knowledges for humans, and we expect a similar
distribution to hold for LLMs equipped with explicit memory.

3 Design

This section describes the architecture and training scheme of Memory3.
Regarding architecture, the goal is to design an explicit memory mechanism for Trans-

former LLMs with moderately low write cost and read cost. In addition, we want to limit
the modification to the Transformer architecture to be as little as possible, adding no new
trainable parameters, so that most of the existing Transformer LLMs can be converted to
Memory3 models with little finetuning. Thus, we arrive at a simple design:

• Write cost: Before inference, the LLM writes each reference to an explicit memory,
saved on drives. The memory is selected from the key-value vectors of the self-
attention layers, so the write process involves no training. Each reference is processed
independently, avoiding the cost of long-context attention.

J. Mach. Learn., 3(3):300-346 316

Figure 2.4: Different memory formats with different balances of write cost and read cost. The specific knowledges
with high to low usage counts are exemplified by common expressions, expertise and trivia, and are assigned to
implicit memory, explicit memory and external information.

• Read cost: During inference, explicit memories are retrieved from drives and read
by self-attention alongside the usual context key-values. Each memory consists of
very few key-values from a small amount of attention heads, thus greatly reducing
the extra compute, GPU storage, drive storage and loading time. It allows the LLM
to retrieve many references frequently with limited influence on decoding speed.

Regarding training, the goal is to reduce the cost of pretraining with a more efficient
distribution of knowledge. Based on the discussion in Section 2.3, we want to encourage
the LLM to learn only abstract knowledges, with the specific knowledges mostly exter-
nalized to the explicit memory bank. Ideally, the pretraining cost should be reduced to be
proportional to the small amount of knowledge stored in the model parameters, thereby
taking a step closer to the learning efficiency of humans.

3.1 Inference process

From now on, we refer to the realizations of separable knowledges (Definitions 2.5 and
2.6) as references. Our knowledge base (or reference dataset) consists of 1.1 × 108 text
chunks with length bounded by 128 tokens. Its composition is described in Section 4.4.

Each reference can be converted to an explicit memory, which is a tensor with shape

(memory layers, 2, key-value heads, sparse tokens, head dimension) = (22, 2, 8, 8, 80).

The 2 stands for the key and value, while the other numbers are introduced later.
Before inference, the Memory3 model converts all references to explicit memories and

save them on drives or non-volatile storage devices. Then, at inference time, whenever
(the id of) a reference is retrieved, its explicit memory is loaded from drives and sent to
GPU to be integrated into the computation of Memory3. By Remark 2.1, a reference during

J. Mach. Learn., 3(3):300-346 317

Figure 3.1: The decoding process of Memory3 with memory recall. Each chunk is a fixed-length interval of tokens,
which may belong to either the prompt or generated text.

encoding does not need to attend to any other texts (e.g. other references or query texts),
so it is fine to encode each reference independently prior to inference. Such isolation also
helps to reduce the compute of attention.

One can also employ a “cold start” approach to bypass preparation time: each reference
is converted to explicit memory upon its initial retrieval, rather than prior to inference.
Subsequent retrievals will then access this stored memory. The aforementioned inference
with precomputed explicit memories will be called “warm start”.

During inference, as illustrated in Fig. 3.1, whenever the LLM generates 64 tokens,
it discards the current memories, uses these 64 tokens as query text to retrieve 5 new
memories, and continues decoding with these memories. Similarly, when processing the
prompt, the LLM retrieves 5 memories for each chunk of 64 tokens. Each chunk attends
to its own memories, and the memories could be different across chunks. We leave it to
future work to optimize these hyperparameters.

The retrieval is performed with plain vector search with cosine similarity. The ref-
erences as well as the query chunks are embedded by BGE-M3, a multilingual BERT
model [15]. The query and key vectors for retrieval are both obtained from the output
feature of the 〈cls〉 token. The vector index is built with FAISS [32].

To further save time, we maintain a fixed-size cache in RAM to store the most recently
used explicit memories. It is been observed that adjacent chunks often retrieve some of the
same references. So the cache reduces the cost of loading explicit memories from drives.

Remark 3.1. It would be ideal to perform retrieval using the hidden features from the LLM
itself, since conceptually the LLM should know its needs better than any external module,
and such internalized retrieval appears more anthropomorphic. Moreover, retrieving with
the hidden features from different layers, different heads and different keywords can help
to obtain more diverse results. One simple implementation is to use the sparsified atten-
tion queries of the query text to directly search for the explicit memories. Since the explicit
memories are the attention key-values, such retrieval can work without the need to fine-
tune the LLM. Specifically, this multi-vector retrieval can follow the routine of [58] with the
additional constraint that a query from attention head h can only search for keys from h,

J. Mach. Learn., 3(3):300-346 318

while the sparse attention queries can be obtain using the same selection mechanism for
explicit memories described later.

Remark 3.2. One shortcoming of RAG is that the references are usually text chunks instead
of whole documents, and thus during inference the references are encoded without their
contexts, making them less comprehensible. This shortcoming can be easily overcome for
explicit memories. One solution is to encode each document as one sequence, then chunk
the attention key-values into 128-token chunks and sparsify them into explicit memories.
This procedure allows the key-values to attend to all their contexts.

3.2 Writing and reading memory

Each explicit memory is a subset of the attention key-values from a subset of attention
heads when encoding a reference. Thus, during inference, the LLM can directly read the
retrieved explicit memories through its self-attention layers by concatenating them with
the usual context key-values (Fig. 3.1). Specially, for each attention head h at layer l, if it is

chosen as a memory head, then its output Yl,h changes from the usual

Yl,h
i = softmax

(

Xl
iW

l,h
Q

(

Xl
[:i]W

l,h
K

)⊤

√
dh

)

Xl
[:i]W

l,h
V Wl,h

O ,

where X[:i] denotes all tokens before or at position i and dh denotes the head dimension, to

Yl,h
i = softmax

(

Xl
iW

l,h
Q · concat

(

Kl,h
0 , . . . , Kl,h

4 , Xl
[:i]W

l,h
K

)⊤

√
dh

)

× concat
(

Vl,h
0 , . . . , Vl,h

4 , Xl
[:i]W

l,h
V

)

W l,h
O , (3.1)

where each (Kj, Vj) denotes the keys and values of an explicit memory.

Regarding the beginning-of-sentence token BOS, it is set to be the usual 〈s〉 symbol
when it is placed at the beginning of the context. However, we set the BOS at the begin-
ning of each reference to “〈s〉Reference:” to help the LLM distinguish between encoding
the context and encoding references. As illustrated in Fig. 3.1, this modified BOS is the
actual beginning for both training and inference, while the context BOS token serves as
a separator between the references and context. Unlike the explicit memories which only
appear at a subset of attention heads, this modified BOS is placed at every head at every
layer even if there are no references. The motivation is that since the context BOS can at-
tend to the references, its feature is no longer constant, so the LLM needs the modified BOS

to serve as the new constant for all attention heads.
Furthermore, we adopt parallel position encoding for all explicit memories, namely the

positions of all their keys lie in the same interval of length 128, as depicted in Fig. 3.1. We
use the rotary position encoding (RoPE) [103]. The token sparsification is applied after
RoPE processes the attention keys, so the selected tokens retain their relative positions in
the references. Besides flexibility, one motivation for parallel position is to avoid the “lost

J. Mach. Learn., 3(3):300-346 319

in the middle” phenomenon [68], such that if the references are positioned serially, then
the ones in the middle are likely to be ignored. Similarly, token sparsification also helps
to alleviate this issue by making the attention more focused on the important tokens. We
note that designs analogous to the parallel position have been used to improve in-context
learning [93] and long-context modeling [13].

3.3 Memory sparsification and storage

One of the greatest challenges for explicit memories is that the attention key-values occupy
too much space. They not only demand more disk space, which could be costly, but also
occupy GPU memory during inference, which could harm the batch size and thus the
throughput of LLM generation. An intense compression is needed to save space. The
full attention key tensor (or value tensor) for each reference has shape (layers, key-value
heads, tokens, head dimension), so we compress all four dimensions.

Regarding layers, we only set the first half of the attention layers to be memory layers,
i.e. layers that produce and attend to explicit memories (3.1), while the second half remain
as the usual attention layers. Note that Remark 2.1 suggests that it is usually the attention
heads in the middle of the LLM that attend to the references. So it seems that appoint-
ing the middle attention layers (e.g. the ones within the 25% to 75% depth range) to be
memory layers is a more sensible choice. This heuristic is supported by the observations
in [36,121] that the attention to the distant context usually takes place in the middle layers.

Regarding heads, we set all key-value heads at each memory layer to be memory heads.
We reduce their amount by grouped query attention (GQA) [3], letting each key-value
head be shared by multiple query heads, and obtain 20% sparsity (8 versus 40 heads). It
is worth mentioning that, besides GQA and memory layers, another approach is to select
a small subset of heads that are most helpful for reading memories, and this selection does
not have to be uniform across layer. We describe several methods for selecting memory
heads in Remark 3.3.

Regarding tokens, we select 8 tokens out of 128 for each key-value head. We choose
a high level of sparsity, since Remark 2.1 indicates that the attention from the context to
the references are expected to be concentrated on very few tokens. Note that the selected
tokens are in general different among heads, so in principle their union could cover a lot
of tokens. For each head h at layer l, the selection uses top-8 over the attention weight

wl,h
j =

127

∑
i=0

ãl,h
i,j , ãl,h

i,j = softmaxj

(

Xl
iW

l,h
Q

(

Xl
jW

l,h
K

)⊤

√
dh

)

,

which measures the importance of a token by the attention received from all tokens. The
BOS tokens and paddings do not participate in the computation of the weights. These
attention weights ã are different from the usual ones, such that there is no causal mask
or position encoding involved. The consideration is that since the explicit memories are
prepared before any inference, the selection can only depend on the reference itself instead
of any context texts. The removal of causal mask and position encoding ensures that
tokens at any position has an equal chance to receive attention from others. To speed

J. Mach. Learn., 3(3):300-346 320

up computation, we adopt the following approximate weights in our implementation,
although in retrospect this speedup is not necessary:

wl,h
j =

127

∑
i=0

exp

(

Xl
iW

l,h
Q

(

Xl
jW

l,h
K

)⊤

√
dh

)

.

Similar designs that sparsify tokens based on attention weights have been adopted in
long-context modeling to save space [70, 131].

Regarding head dimension, we optionally use a vector quantizer to compress each
of the key and value vectors using residual quantizations [16] built with FAISS [32]. The
compression rate is 80/7 ≈ 11.4. During inference, the retrieved memories are first loaded
from drives, and then decompressed by the vector quantizer before being sent to GPU.
The evaluations in Section 7.1 indicate that this compression has negligible influence on
the performance of Memory3. More details can be found in Appendix B.

Hence, the total sparsity is 160 or 1830 (without or with vector compression). Origi-
nally, the explicit memory bank would have an enormous size of 7.17 PB or equivalently
7340 TB (given the model shape described in Section 3.4 and saved in bfloat16). Our com-
pression brings it down to 45.9 TB or 4.02 TB (without or with vector compression), both
acceptable for the drive storage of a GPU cluster.

To deploy the Memory3 model on end-side devices such as smart phones and laptops,
one can place the explicit memory bank and the vector index on a cloud server, while the
devices only need to store the model parameters and the decoder of the vector quantizer.
During inference, to perform retrieval, the model on the end-side device sends the query
vector to the cloud server, which then searches the index and returns the compressed
memories. The speed test of this deployment is recorded in Section 7.5.

Remark 3.3. If one wants to finetune a pretrained LLM into a Memory3 model, there are
several ways to select a small but effective subset of attention heads (among all heads at
all layers) for memory heads (3.1). Methods such as [36, 121] are proposed to identify the
heads that contribute the most to long-context modeling by retrieving useful information
from distant tokens, and usually these special heads account for only less than 10% of the
total heads. Here we also propose a simple method for selecting memory heads: Given
the validation subsets of a representative collection of evaluation tasks, one can measure
the average performance sh for a modified version of the LLM for each attention head h.
The modification masks the distant tokens for head h so it can only see the preceding 100
tokens and the BOS token. Then, it is reasonable to expect that sh would be markedly low
for a small subset of heads h, indicating that they are specialized for long-range attention.

Remark 3.4. Actually, Remark 2.1 suggests that each reference only needs to be attended
to by just one attention head, although in general this special head may be different among
the references. Thus, it seems a promising approach to apply adaptive sparsity not only to
token selection, but also to the memory heads, namely each reference is routed to one or
two heads (analogously to MoE), and its explicit memory is produced and read by these
heads. Such design if feasible can further boost the sparsity of explicit memory and save
much more space.

J. Mach. Learn., 3(3):300-346 321

3.4 Model shape

As discussed in Section 2.3, the specific knowledges can be externalized to explicit memo-
ries, and thus to minimize the total cost (1.1), the model parameters (or implicit memory)
only need to store abstract knowledges and the subset of specific knowledges that are fre-
quently used. The shape of our model, i.e. (the number of Transformer blocks L, heads H,
head dimension dh, width of the MLP layers W), is chosen to accommodate this desired
knowledge distribution. Informally speaking, given a fixed parameter size P, the shape
maximizes the following objective:

max
L,H,dh,W

{

capacity for abstract knowledge

capacity for specific knowledge

∣

∣

∣
size(L, H, dh, W) ≈ P

}

. (3.2)

Here we set P to be 2.4 billion.
Some recent works suggest that the capacities for learning specific knowledges and

abstract knowledges are subject to different constraints. On one hand, [26] observes that
the amount of bits of trivia information (such as a person’s name, date of birth and job
title) that a LLM can store depends only on its parameter size. Regardless of L and H, the
max capacity is always around 2 bits per parameter.

On the other hand, [118] trains Transformers to learn simple algorithms such as re-
versing a list and counting the occurrence of each letter. It is observed that for several
such tasks, there exists a minimum L0 and H0 such that a Transformer with L ≥ L0 and
H ≥ H0 can learn the task with perfect accuracy, whereas the accuracy drops signifi-
cantly for Transformers with either L = L0 − 1 or H = H0 − 1 (given that either L0 or
H0 ≥ 2). This sharp transition supports the view that the layers and heads of Transformer
LLMs can be compared to algorithmic steps, and tasks with a certain level of complexity
require at least a certain amount of steps. It is worth mentioning that the emergent phe-
nomenon [101, 117] of LLMs can also be explained by this view and thus adds support to
it, although it may not be the only explanation.

By Definition 2.4, the abstract knowledges are expected to be circuits with greater com-
plexity than specific knowledges, since their associated inputs and outputs exhibit greater
variability and thus express more complex patterns. It follows that, in the context of the
aforementioned works, the separation of specific and abstract knowledges should be pos-
itively correlated with the distinction between trivia information and algorithmic proce-
dures. Hence, it is reasonable to adopt the approximation that the capacity of an LLM for
specific knowledges only depends on its parameter size, whereas the capacity for abstract
knowledges depends only on L and H.

The informal problem (3.2) reduces to the maximization of L and H given a fixed pa-
rameter size. However, we are left with two ambiguities: First, this formulation does not
specify the ratio between L and H, and second the head dimension dh and MLP width
W cannot be too small as the training may become unstable. Regarding the second point,
our experiments indicate that pretraining becomes more unstable with increased spikes if
dh ≤ 64, so we set dh = 80 (though it needs to be pointed out that the loss spikes may
not be solely attributed to the choice of dh, and high-quality data for instance may sta-
bilize training and allow us to choose a smaller dh). Also, the MLP width W is set to be

J. Mach. Learn., 3(3):300-346 322

equal to the hidden dimension d = Hdh. Regarding the first point, controlled experiments
(Fig. 3.2) indicate that the loss decreases slightly more rapidly with L : H ≈ 1 than with
other ratios, so we adopt this ratio.

In addition, as discussed in Section 3.3, our model uses grouped query attention (GQA),
so the number of key-value heads Hkv is set to be 8, which is the usual choice for GQA.
The MLP layers are gated two-layer networks without bias, which are the default choice
in recent years [5, 9, 19, 108].

Finally, the model shape is set to be L = 44, H = 40, Hkv = 8, dh = 80, W = 3200, with
the total non-embedding parameter size being 2.4B.

Figure 3.2: Comparison of the training losses of models with different shapes, whose parameter sizes range in
2.1 ∼ 2.4B. The legend l44h40d80 denotes L = 44, H = 40, dh = 80, and the x-axis denotes the amount of
training samples. Nevertheless, this comparison is not definite, since this is only the implicit memory stage of our
training scheme (Section 3.6) and the ranking may change in the explicit memory stage that follows.

3.5 Training designs

Similar to our architecture design, the design of our training scheme focuses on learning
abstract knowledges. The goal is to reduce the training compute, as the LLM no longer
needs to memorize many of the specific knowledges. This shift in learning objective im-
plies that all the default settings for pretraining LLMs may need to be redesigned, as they
were optimized for the classical scenario when the LLMs learn both abstract and specific
knowledges.

1. Data: Ideally, the pretraining data should have a high concentration of abstract know-
ledges and minimum amount of specific knowledges. It is known that LLM pretrain-
ing is very sensitive to the presence of specific knowledges. For instance, [52] ob-
serves that a small model can master arithmetic (e.g. addition of large numbers) if
trained on clean data. However, if the training data is mixed with trivial information
(e.g. random numbers), then the test accuracy stays at zero unless the model size is
increased by a factor of 1500. It suggests that training on specific knowledges sig-
nificantly inhibits the learning of abstract knowledges, and may explain why emer-

J. Mach. Learn., 3(3):300-346 323

gent abilities [117] are absent from small models. Notably, the Phi-3 model [1] is
pretrained with a data composition that closely matches our desired composition.
Although the technical details are not revealed, it is stated that they filter data based
on two criteria: the data should encourage reasoning, and should not contain infor-
mation that is too specific.

2. Initialization: [130] observes that initializing Transformer parameters with a smaller

standard deviation (dc with c < −1/2 instead of the usual Θ(d−1/2) [44, 49]) can
encourage the model to learn compositional inference instead of memorization. Spe-
cially, an arithmetic dataset is designed with a train set and an out-of-distribution
test set, which admits two possible answers. One answer relies on memorizing more
rules during training, while the other requires an understanding of the compositional
structure underlying these rules. The proposed mechanism is that training with
smaller initialization belongs to the condensed regime that encourages sparse solu-
tions, contrary to training with large initialization that belongs to the kernel regime
or critical regime [17, 74].

3. Weight decay: [85,87] observe that using a larger weight decay coefficient (i.e. greater
than the usual range of 0.001 ∼ 0.1) can guide LLMs to favor generalization over
memorization, and accelerate the learning of generalizable solutions. They consider
settings that exhibit grokking [87] such that training would transit from perfect train
accuracy and zero test accuracy to perfect test accuracy, and generalization ability
is measured by how quickly this transition occurs. Moreover, theoretically speak-
ing, it is expected that training generative models needs stronger regularization than
training regression models, in order to prevent the generated distributions from col-
lapsing onto the training data and become trivial [127].

In summary, it is recommendable to pretrain the Memory3 model with a data compo-
sition that emphasizes abstract knowledges and minimizes specific information, a smaller
initialization for parameters, and a larger weight decay coefficient.

Since this work is only a preliminary version of Memory3, we decide to stick with the
conventional setting for training and have not experimented with any of these ideas. We
look forward to incorporating these designs in future versions of the Memory3 model.

3.6 Two-stage pretrain

The Memory3 model learns to write and read explicit memories during pretraining. Each
training sample is accompanied by retrieved references, the model encodes these refer-
ences into explicit memories and integrates them into the self-attention of the training
sequence. The format is identical to that of inference (Fig. 3.1), except that the memories
are made in real time. Then, the loss is computed over the tokens of the training sequence,
ignoring the references.

Our pretraining consists of two stages, the implicit memory stage and explicit memory
stage. Only the second stage involves explicit memories, while the implicit memory stage
follows the same format as ordinary pretraining. Our motivation is depicted in Fig. 3.3.

J. Mach. Learn., 3(3):300-346 324

Figure 3.3: Left: Comparison of pretraining with and without explicit memory. The blue/green curves are trained
without/with explicit memories. Right: Comparison of continual pretraining. The blue/green curves are initialized
with their checkpoints in the left plot and continually pretrained without/with explicit memories, while the red
curve is initialized with the checkpoint of the blue curve and continually pretrained with explicit memory. These
plots indicate that pretraining a Memory3 model requires an implicit-memory-only stage. These experiments use
a smaller model with 0.92 B non-embedding parameters (L = 40, H = 32, dh = 64). The left plot uses 60 B data
while the right plot uses 22 B. The same learning rate schedule is adopted in each plot.

We observe that pretraining with explicit memories from the beginning would render
the memories useless, as there appears to be no gain in training loss compared to ordi-
nary pretraining. Meanwhile, given a checkpoint from ordinary pretraining, continually
pretraining with explicit memory exhibits a visible decrease in training loss. This com-
parison implies that the plain, implicit memory stage might be necessary for pretraining
a Memory3 model. One possible explanation for this phenomenon is that in the beginning
of pretraining, the model is too weak to understand and leverage the explicit memories
it generates. Then, to reduce distraction, the self-attention layers learn to always ignore
these memories, thus hindering indefinitely the development of explicit memory.

Another modification is to reduce the cost of the explicit memory stage. Recall from
Section 3.1 that each 64-token chunk attends to five explicit memories, or equivalently
five 128-token references if using cold start, increasing the amount of tokens by 10 times.
The inference process avoids the cost of memory encoding by precomputation or warm
start, but during pretraining, the references need to be encoded in real time as the model
parameters are constantly evolving. Our solution is to let the chunks share their references
to reduce the total number of references in a batch. Specifically, each chunk of a training
sequence retrieves only one reference, and in compensation, attends to the references of
the previous four chunks, besides its own reference. Each train sequence has length 2048
and thus 32 chunks, so it is equipped with 32 × 128 = 4096 reference tokens. The hidden
features of these reference tokens are discarded once passing the last memory layer, since
after that they no longer participate in the update of the hidden feature of the train tokens.
Hence, each step in the explicit memory stage takes slightly more than twice the amount
of time of a step in the implicit memory stage.

It is necessary to avoid information leakage when equipping the training data with
references (i.e. the train sequence and its retrieved references could be the same text), for
otherwise training becomes too easy and the model would not learn much. Previously,
Retro [14] requires that no train sequence can retrieve a reference from the same docu-
ment, but this criterion may be insufficient since near-identical paragraphs may appear

J. Mach. Learn., 3(3):300-346 325

in multiple documents. Thus, we require that no train sequence can be accompanied by
a reference sequence that has greater than 90% overlap with it. The overlap is measured
by the length of their longest common subsequence divided by the length of the reference.
Specially, given any train sequence t and reference r, define their overlap by

overlap(t, r) :=
1

|r| max
{

N
∣

∣ ∃ 1 ≤ i1 < · · · < iN ≤ |t| and ∃ 1 ≤ j1 < · · · < jN ≤ |r|

and |iN−i1| ≤ 2|r| such that tik = rjk for k=1, . . . , N
}

. (3.3)

The constraint |iN − i1| ≤ 2|r| ensures that the overlap is not over-estimated as |t| → ∞.

4 Pretraining data

This section describes the procedures for collecting and filtering our pretraining dataset
and knowledge base (or reference dataset).

4.1 Data collection

The pretrain data is gathered from English and Chinese text datasets, mostly publicly
available collections of webpages and books. We also include code, SFT data (supervised
finetuning), and synthetic data.

Specially, the English data mainly consists of RedPajamaV2 [106], SlimPajama [100]
and the Piles [40], in total 200 TB prior to filtering. The Chinese data mainly comes from
Wanjuan [48], Wenshu [119], and MNBVC [78], in total 500 TB prior to filtering. The
code data mainly comes from Github, and we take the subset with the highest repository
stars. The SFT data is included since these samples generally have higher quality than
the webpages. We use the same data as in SFT training (Section 6.1), except that these
samples are treated as ordinary texts during pretraining, i.e. all tokens participate in the
loss computation, not just the answer tokens.

4.2 Filtering

The raw data is filtered with three steps: deduplication, rule-based filtering, and model-
based filtering.

First, deduplication is performed with MinHash for most of the datasets. One excep-
tion is RedPajamaV2, which already comes with deduplication labels.

Second, we devise heuristic, rule-based filters analogous to the ones from [22, 72, 89].
The purpose is to eliminate texts that are ostensibly unsuitable for training, such as ones
that only contain webpage source codes, random numbers, or incomprehensible shards.
Our filters remove documents with less than 50 words, documents whose mean word
lengths exceed 10 characters, documents with 70% of context being non-alphabetic charac-
ters, documents whose fractions of unique words are disproportionately high, documents
whose entropy of unigrams is excessively low, and so on.

J. Mach. Learn., 3(3):300-346 326

Finally, we select the subset of data with highest “quality”, a score produced by a fine-
tuned BERT model. Specially, we sample ten thousand documents and grade them by
the XinYu-70B model [62,65] with prompt-guided generation. The prompt asks the model
to determine whether the input text is informative and produce a score between 0 and 5.
Then, these scores are used to finetune the Tiny-BERT model [54], which has only 14 M pa-
rameters. The hyperparameters of this finetuning are optimized with respect to a held-out
validation set. After that, we use this lightweight BERT to grade the entire dataset.

Remark 4.1. Recall from Section 3.5 that the pretraining data of Memory3 should empha-
size abstract knowledges and minimize specific knowledges. The purpose is to not only
obtain a lightweight LLM with an ideal distribution of knowledges in accordance with the
memory hierarchy (Fig. 2.4), but also prevent the specific knowledges from hindering the
learning process of the model. The focus of our prompt on “informativeness” might be
contradictory to this goal, since the selected texts that are rich in information content may
contain too many specific knowledges. For future versions of Memory3, we will switch to
a model-based filter favoring texts that exhibit more reasoning and less specifics.

The filtered dataset consists of around four trillion tokens, and its composition is illus-
trated in Fig. 4.1.

Figure 4.1: Composition of our pretraining dataset.

4.3 Tokenizer

Similar to our dataset, our tokenizer mainly consists of Chinese and English tokens. The
English vocabulary comes from the 32000 tokens of the LLaMA2 tokenizer. We include
roughly the same amount of Chinese tokens produced from byte-pair encoding (BPE).

J. Mach. Learn., 3(3):300-346 327

The BPE is trained on a 20 GB Chinese corpus that consists of Chinese news and e-books.
After deduplication, the final vocabulary has 60299 tokens.

4.4 Knowledge base

The knowledge base (or reference dataset) is used during training and inference as the
source of explicit memories, as depicted in Fig. 1.2. It consists of reference texts that are
split into token sequences with length less than or equal to 128, as described in Section 3.1.

Heuristically, a larger knowledge base is always better, as long as it does not contain
misinformation, so it is not surprising that the reference dataset of Retro contains its entire
pretrain dataset [14]. Nevertheless, the storage of explicit memories is more costly than
plain texts despite our sparsification (Section 3.3), and thus to save storage space, we select
a small subset of our pretrain dataset as the knowledge base.

With a focus on high quality data, we include for references the English Wikipedia,
WikiHow, the Chinese baike dataset, the subset of English and Chinese books whose titles
appear academic, Chinese news, synthetic data and high quality codes. These texts are
tokenized and split into chunks of 128 tokens, resulting in 1.1 × 108 references in total.

One may be curious whether our knowledge base may contain some of the evaluation
questions, rendering our evaluation results (Section 7.1) less credible. To prevent such
leakage, we include in our evaluation code a filtering step, such that for each evaluation
question, if a retrieved reference has an overlap with the question that exceeds a threshold,
then it is discarded. This deduplication is analogous to the one used when preparing for
the explicit memory pretraining stage (Section 3.6), with overlap measured by (3.3). The
threshold 2/3 is chosen since we observe that typically a reference that contains a question
would have an overlap greater than or equal to 80%, while a relevant but distinct reference
would have an overlap less than or equal to 40%.

Remark 4.2. Currently, the compilation of the knowledge base is based on human pref-
erence. For future versions of Memory3, we plan to take a model-oriented approach and
measure the fitness of a candidate reference by its actual utility, e.g. the expected decrease
in the validation loss of the LLM conditioned on this reference being retrieved by a ran-
dom validation sample.

5 Pretrain

This section describes the details of the pretraining process. The two-stage pretrain and
memory-augmented data follow the designs introduced in Section 3.6. As an interpre-
tation, the Memory3 model during the implicit memory stage develops its reading com-
prehension, which is necessary during the explicit memory stage for initiating memory
formation.

5.1 Set-up

Training is conducted with the Megatron-DeepSpeed package [76] and uses mixed-preci-
sion training with bfloat16 model parameters, bfloat16 activations, and float32 AdamW

J. Mach. Learn., 3(3):300-346 328

states. The batch size is around 4 million training tokens with sequence length 2048, not
including the reference tokens. The weight decay is the common choice of 0.1.

We adopt the “warmup-stable-decay” learning rate schedule of MiniCPM [51], which
is reportedly better than the usual cosine schedule in term of training loss reduction. The
learning rate linearly increases to the maximum value, then stays there for the majority of
training steps, and finally in the last 10% steps decays rapidly to near zero. Our short-term
experiments confirm the better performance of this schedule. Nevertheless, frequent loss
spikes and loss divergences are encountered during the official pretraining, so we have to
deviate from this schedule and manually decrease the learning rate to stabilize training.

Originally, it is planned that both the implicit/explicit memory stages go through the
entire 4T token pretrain dataset (Section 4). Due to the irremediable loss divergences, both
stages have to be terminated earlier.

5.2 Implicit memory stage

The training loss and learning rate schedule are plotted in Fig. 5.1. Whenever severe loss
divergence occurs, we restart from the last checkpoint before the divergence with a smaller
learning rate, and thus the divergences are not shown in the figure. Eventually, the train-
ing terminates at around 3.1 T tokens, when reducing the learning rate can no longer avoid
loss divergence.

5.3 Explicit memory stage

The explicit memories enter into the Memory3 model at this stage. The training steps are
slower since the model needs to encode the references retrieved for the pretrain data to
explicit memories in real time, and each step takes a bit more than twice the time of a step
in the implicit memory stage. The training loss and learning rate schedule are plotted in
Fig. 5.2.

The loss divergence soon becomes irremediable at around 120 B training tokens, much
shorter than the planned 4 T tokens, and training has to stop there. One possible cause
is that the model is initialized from the last checkpoint of the implicit memory stage, lo-
cated immediately before the break down of that stage, and thus is already at the brink

Figure 5.1: The implicit memory stage. Left: Training loss. Right: Learning rate schedule.

J. Mach. Learn., 3(3):300-346 329

Figure 5.2: The explicit memory stage. Left: Training loss. Right: Learning rate schedule.

of divergence. The smaller learning rate of the explicit memory stage delays the onset of
divergence but not for long.

6 Fine-tuning and alignment

This section describes our model finetuning, specifically supervised finetuning and direct
preference optimization (DPO).

6.1 Supervised finetuning

Analogous to the StableLM model [12], our Memory3 model is finetuned on a diverse
collection of SFT datasets. We use the following datasets, which are publicly accessible on
the Hugging Face Hub: UltraChat [31], WizardLM [124], SlimOrca [64], ShareGPT [112],
Capybara [28], Deita [69], and MetaMathQA [129]. We also include synthetic data with
emphasis on multi-round chat, mathematics, commonsense and knowledge. Each training
sample consists of one or more rounds of question and answer pairs. We remove any
sample with more than eight rounds. The final composition is listed in Table 6.1.

Table 6.1: Composition of SFT dataset.

Dataset Source Number of samples

UltraChat HuggingFaceH4/ultrachat 200k 194409

WizardLM WizardLM/WizardLM evol instruct V2 196k 80662

SlimOrca Open-Orca/SlimOrca-Dedup 143789

ShareGPT openchat/openchat sharegpt4 dataset 3509

Capybara LDJnr/Capybara 7291

Deita hkust-nlp/deita-10k-v0 2860

MetaMathQA meta-math/MetaMathQA 394418

Multi-round Chat synthetic 20000

Mathematics synthetic 20000

Commonsense synthetic 150000

Knowledge synthetic 270000

J. Mach. Learn., 3(3):300-346 330

The training process uses the cosine learning rate schedule with a max learning rate of
5 × 10−5 and a 10% linear warmup phase. The weight decay is 0.1, batch size is 512, and
max sequence length is 2048 tokens. Finetuning is performed for 3 epochs.

6.2 Direct preference optimization

The Memory3 model is further finetuned by DPO [90], to align with human preference
and improve its conversation skills. The DPO dataset consists of general conversations
(UltraFeedback Binarized [109]), math questions (Distilabel Math [7]) and codes questions
(Synth Code [33]). The training uses the cosine learning rate schedule with max lr 4× 10−6.
The inverse temperature β of the DPO loss is set to 0.01. The improvement from DPO is
displayed in Section 7.2.

7 Evaluation

We evaluate the general abilities (benchmark tasks), conversation skills, professional abil-
ities (law and medicine), and facutality & hallucination of the Memory3 model. We also
measure its decoding speed. Our model is compared with SOTA LLMs of similar and
larger sizes, as well as RAG models.

7.1 General abilities

To evaluate the general abilities of Memory3, we adopt all tasks from the Huggingface
leaderboard and also include two Chinese tasks. Most of the results are displayed in Ta-
ble 7.1, while TruthfulQA is listed in Table 7.4. All results are obtained in bfloat16 format,
using the lm-evaluation-harness package [41] and the configuration of HuggingFace Open
LLM leaderboard [11], i.e. the number of few-shot examples and grading methods.

As described in Section 4.4, to prevent cheating, a filtering step is included in the re-
trieval process so that the model cannot copy from references that resemble the evaluation
questions.

The results of our model without using explicit memory is included, which indicates
that explicit memory boosts the average score by 2.51%. In comparison, the score dif-
ference between Llama2-7B and 13 B is 4.91% while the latter has twice the amount of
non-embedding parameters. Thus, it reasonable to say that explicit memory can increase
the “effective model size” by 2.51/4.91 ≈ 51.1%. (Also, the score difference between
Qwen-1.8B and 4 B is 8.48% while the latter has 167% more non-embedding parame-
ters. With respect to this scale, explicit memory increases the “effective model size” by
1.2.51/8.48× 1.67 ≈ 49.4%.)

We also include the results of Memory3 with vector compression (Section 3.3). Even
though the key-value vectors of the explicit memories are compressed to 8.75% of their
original sizes, the performance of our model does not show any degradation.

Other supplementary evaluations can be found in Appendix C.
Next, we compare with a LLM that is pretrained with text retrieval. Specially, we con-

sider the largest version of the Retro++ model [111], Retro++ XXL with 9.5 B parameters.

J. Mach. Learn., 3(3):300-346 331

All tasks from [111, Table 6] are taken, except for HANS, which is not available on lm-eval-
harness, and all tasks are zero-shot. Similar to Table 7.1, Memory3 is tested with a filtering
threshold of 2/3. The results are listed in Table 7.2, where Memory3 outperforms the
model with much larger parameter size and reference dataset size.

Table 7.1: Few-shot evaluation of general abilities. The model sizes only include non-embedding parameters.

English Chinese

LLM Size Avg. ARC-C HellaSwag MMLU Winogrande GSM8k CEVAL CMMLU

Falcon-40B 41B 55.75 61.86 85.28 56.89 81.29 21.46 41.38 42.07

Llama2-7B-Chat 6.5B 46.87 52.90 78.55 48.32 71.74 7.35 34.84 34.40

Llama2-13B-Chat 13B 51.78 59.04 81.94 54.64 74.51 15.24 38.63 38.43

Llama3-8B-it 7.0B 65.77 62.03 78.89 65.69 75.77 75.82 50.52 51.70

Vicuna-13B-v1.5 13B 52.02 57.08 81.24 56.67 74.66 11.30 41.68 41.53

Mistral-7B-v0.1 7.0B 59.15 59.98 83.31 64.16 78.37 37.83 45.91 44.49

Gemma-2B-it 2.0B 36.64 38.02 40.36 55.74 35.29 55.88 8.26 29.94

Gemma-7B-it 7.8B 47.23 51.45 71.96 53.52 67.96 32.22 27.93 25.70

MiniCPM-2B-SFT 2.4B 54.37 47.53 71.95 51.32 67.72 45.26 48.07 48.76

Phi-2 2.5B 55.70 61.09 75.11 58.11 74.35 54.81 34.40 32.04

ChatGLM3-6B 5.7B 54.62 41.38 66.98 50.54 64.25 51.25 54.01 53.91

Baichuan2-7B-Chat 6.5B 55.16 52.73 74.06 52.77 69.77 28.28 53.12 55.38

Qwen1.5-1.8B-Chat 1.2B 49.67 38.74 60.02 45.87 59.67 33.59 55.57 54.22

Qwen1.5-4B-Chat 3.2B 58.15 43.26 69.73 55.55 64.96 52.24 61.89 59.39

Qwen1.5-7B-Chat 6.5B 64.80 56.48 79.02 60.52 66.38 54.36 68.20 68.67

Memory3-SFT 2.4B 63.31 58.11 80.51 59.68 74.51 52.84 59.29 58.24

- vector compression 2.4B 63.33 57.94 80.65 59.66 75.14 52.24 59.66 58.05

- without memory 2.4B 60.80 57.42 73.14 57.29 74.35 51.33 56.32 55.72

Table 7.2: Zero-shot comparison of LLMs pretrained with retrieval. The scores of Retro++ are taken from [111].
The size of a reference dataset is its number of tokens. The non-embedding parameter size of Retro++ is inferred
from its vocabulary size.

LLM Param size Avg. HellaSwag BoolQ Lambada RACE

Retro++ XXL 9.1B 61.0 70.6 70.7 72.7 43.2

Memory3-SFT 2.4B 64.7 83.3 80.4 57.9 45.3

Reference size PiQA Winogrand ANLI-R2 WiC

330B 77.4 65.8 35.5 52.4

14.3B 76.6 75.8 41.6 56.9

7.2 Conversation skill

Next we evaluate the conversation skills of Memory3. We use MT-Bench (the Multi-turn
Benchmark) [132] that consists of multi-round and open-ended questions. The results

J. Mach. Learn., 3(3):300-346 332

Table 7.3: MT-Bench scores. The model sizes only include non-embedding parameters.

LLM Size MT-Bench Score

Phi-3 3.6B 8.38

Mistral-7B-Instruct-v0.2 7.0B 7.60

Qwen1.5-7B-Chat 6.5B 7.60

Zephyr-7B-beta 7.0B 7.34

MiniCPM-2B-DPO 2.4B 6.89

Llama-2-70B-Chat 68B 6.86

Mistral-7B-Instruct-v0.1 7.0B 6.84

Llama-2-13B-Chat 13B 6.65

Llama-2-7B-Chat 6.5B 6.57

MPT-30B-Chat 30B 6.39

ChatGLM2-6B 6.1B 4.96

Falcon-40B-Instruct 41B 4.07

Vicuna-7B 6.5B 3.26

Memory3-SFT 2.4B 5.31

Memory3-DPO 2.4B 5.80

are listed in Table 7.3, including the Memory3 model finetuned by DPO introduced in
Section 6.2.

We obtain all these scores using GPT-4-0613 as grader, following the single answer
grading mode of MT-Bench. Our model outperforms Vicuna-7B, Falcon-40B-Instruct, and
ChatGLM2-6B with fewer parameters.

7.3 Hallucination and factuality

Despite considerable progress, LLMs still face issues with hallucination, leading to out-
puts that often stray from factual accuracy [94]. Conceptually, Memory3 should be less
vulnerable to hallucination, since its explicit memories directly correspond to reference
texts, whereas compressing texts into the model parameters might incur information loss.
To evaluate hallucination, we select two English datasets, TruthfulQA [66] and HaluE-
val, and one Chinese dataset [61], HalluQA [18]. TruthfulQA is implemented with lm-
evaluation-harness [41], while HaluEval and HalluQA are implemented with UHGEval
[65]. The results are shown in Table 7.4, with Memory3 achieving the highest scores on
most tasks.

7.4 Professional tasks

One benefit of using explicit memory is that the LLM can easily adapt to new fields and
tasks by updating its knowledge base. One can simply import task-related references into
the knowledge base of Memory3, and optionally, convert them to explicit memories in
the case of warm start. Then, the model can perform inference with this new knowledge,
skipping the more costly and possibly lossy process of finetuning, and running faster than

J. Mach. Learn., 3(3):300-346 333

Table 7.4: Evaluation of hallucination. HaluE and TruQA denote HaluEval and TruthfulQA, respectively. Bolded
numbers are the best results. The model sizes only include non-embedding parameters. Vicuna-13B-v1.5 gets
one N/A since that entry is near zero and seems abnormal.

English Chinese

LLM Size Avg. HaluE-QA HaluE-Dialogue TruQA-MC1 TruQA-MC2 HalluQA

Falcon-40B 41B 35.37 46.84 40.80 27.29 41.71 20.18

Llama2-13B 13B 28.01 23.34 31.05 25.95 36.89 22.81

Vicuna-13B-v1.5 13B 37.07 24.93 37.35 35.13 50.88 N/A

Baichuan2-13B 13B 37.64 46.02 45.45 26.81 39.79 30.12

Gemma-7B 7.8B 37.03 50.91 48.19 20.69 46.65 18.71

Mistral-7B-v0.1 7.0B 34.18 40.68 37.64 28.03 42.60 21.93

Llama2-7B 6.5B 36.80 52.46 51.93 25.09 38.94 15.59

Baichuan2-7B 6.5B 38.63 62.33 47.84 23.01 37.46 22.51

ChatGLM3-6B 5.7B 40.96 43.38 50.03 33.17 49.87 28.36

Qwen1.5-4B-Chat 3.2B 33.30 24.64 37.72 29.38 44.74 30.00

Phi-2 2.5B 38.31 50.71 39.55 31.09 44.32 25.89

MiniCPM-SFT 2.4B 36.47 49.24 47.80 24.11 37.51 23.71

Gemma-2B 2.0B 38.04 53.41 52.22 24.60 39.78 20.18

Qwen1.5-1.8B-Chat 1.2B 37.52 47.18 52.11 26.68 40.57 21.05

Memory3-SFT 2.4B 48.60 56.61 53.91 38.80 57.72 35.96

RAG. This cost reduction has been demonstrated in Fig. 1.1 and Appendix A, and could
facilitate the rapid deployment of LLMs across various industries.

Besides cost reduction, we need to demonstrate that Memory3 can perform no worse
than RAG. We consider two professional tasks in law and medicine. The legal task con-
sists of multiple-choice questions from the Chinese National Judicial Examination (JEC-
QA) dataset [133]. The field-specific references are legal documents from the Chinese na-
tional laws and regulations database [105]. These references are merged with our general-
purpose knowledge base (Section 4.4) for inference.

The medical task consists of the medicine-related questions of C-Eval, MMLU and
CMMLU, specifically from the following subsets:

• C-Eval: clinical medicine, basic medicine.

• MMLU: clinical knowledge, anatomy, college medicine, college biology, nutrition,
virology, medical genetics, professional medicine.

• CMMLU: anatomy, clinical knowledge, college medicine, genetics, nutrition, tradi-
tional Chinese medicine, virology.

Our knowledge base is supplemented with medical texts from the open-source medical
books dataset [97].

The results are shown in Table 7.5, and Memory3 achieves better performance than
most of the models. All evaluations use 5-shot prompting. The RAG models retrieve
from the same knowledge bases and FAISS indices, except that they receive text references

J. Mach. Learn., 3(3):300-346 334

Table 7.5: Comparison with RAG on professional tasks.

JEC-QA MED

LLM 3 refs 5 refs 7 refs 3 refs 5 refs 7 refs

MiniCPM-2B-SFT 38.83 37.65 37.94 53.73 53.29 52.84

Gemma-2B 28.16 28.06 25.29 42.04 42.49 42.96

Gemma-2B-it 30.04 31.13 29.34 41.70 43.24 42.66

Llama-2-7B 28.06 24.70 24.90 45.14 44.43 37.96

Llama-2-7B-Chat 26.18 25.10 25.20 48.18 47.29 39.39

Phi-2 25.00 25.30 23.32 50.05 45.42 45.59

Qwen1.5-1.8B-Chat 42.98 43.87 41.50 52.16 52.50 52.16

Qwen1.5-4B-Chat 51.98 50.49 50.99 61.19 61.02 61.06

Memory3-2B-SFT 39.38 56.22

instead of explicit memories. They only retrieve once for each question, using only the
question text for query, so the 5-shot examples do not distract the retrieval. Since the
optimal number of references is not known for these RAG models, we test them for 3, 5,
and 7 references per question, and it seems that 3 ∼ 5 references are optimal. The usual
formatting for RAG is used, i.e. header 1 + reference 1 + reference 2 + reference 3 + header 2
+ few-shot examples + question, all separated by line breaks.

The performance plotted in Fig. 1.3 (right) is the average of the scores of the two tasks
in Table 7.5 with five references.

7.5 Inference speed

Finally, we evaluate the decoding speed or throughput of Memory3, measured by gener-
ated tokens per second. The results are compared to those of RAG models, to quantify the
speedup of explicit memory over text retrieval.

A direct comparison of speeds is uninformative: The memory hierarchy (Fig. 2.4) im-
plies that the Memory3 model is more reliant on retrieval to supply knowledge, and natu-
rally Memory3 performs retrieval with higher frequency (5 references per 64 tokens, pos-
sibly higher in future versions). Therefore, it is necessary to jointly compare performance
and speed. The speed measured in this section is plotted against the retrieval-augmented
test accuracy from Section 7.4, resulting in Fig. 1.3 (right).

We measure decoding speed on a A800 GPU, and run all models with Flash Attention
[29]. All models receive an input of batch size 32 and length 128 tokens, and generate an
output with length 128 tokens. The throughput is computed by 32 × 128 divided by the
time spent. We test each model 9 times, remove the first record, and take the average of
the rest. Memory3 performs 2 × 128/64 − 1 = 3 retrievals (the −1 means that the first
decoded chunk inherits the explicit memories retrieved by the last input chunk). Each
retrieval uses 32 queries to get 32 × 5 explicit memories. We consider the warm start
scenario, with the explicit memories precomputed and saved to drives. We implement the
worst case scenario, such that the reference ids are reset to be unique after vector search
and the memory cache on RAM is disabled, forcing Memory3 to load 32 × 5 memories

J. Mach. Learn., 3(3):300-346 335

from drives. Meanwhile, each RAG model performs one retrieval with query length 64
tokens, receives 5 references for each sample, and inserts them at the beginning of the
sample, similar to the setup for Table 7.5.

The results are listed in Table 7.6 (local server). The throughput of these models without
retrieval is also provided.

In addition, we study the throughput of these models when they are hosted on an end-
side device and retrieve from a knowledge base on a remote server. Specifically, we use
Jetson AGX Orin, and the server uses the vector engine MyScale [79]. The models are
run with plain attention, with batch size 1. To simulate real-world use cases, the input
is a fixed text prompt, with approximately 128 tokens, while the exact length can vary
among different tokenizers. The output length is fixed to be 128 tokens. The results are
listed in Table 7.6 (end-side device), and the Memory3 model.

Remark 7.1. Table 7.6 indicates that our Memory3-2B model is 1 − 733/1131 ≈ 35.2%
slower than the same model without using memory. This is peculiar considering that
reading explicit memories accounts for only a tiny fraction of the total compute

2.884× 10−3 TFlops

1.264 TFlops
≈ 0.228%.

(The calculations are based on Appendix A.) Controlled experiments indicate that the time
consumption is mainly due to two sources:

• Loading the memory key-values from drives to GPU: This overhead becomes promi-
nent as Memory3 retrieves with higher frequency.

• Python implementation of chunkwise attention: When encoding a prompt, since
each chunk attends to a different set of explicit memories, we use a for loop over
the chunks to compute their attentions.

Table 7.6: Inference throughput, measured by tokens per second.

Local server End-side device

LLM Size with retrieval w/o retrieval with retrieval w/o retrieval

MiniCPM-2B 2.4B 501.5 974.0 21.7 51.79

Gemma-2B-it 2.0B 1581 2056 22.0 29.23

Gemma-7B-it 7.8B 395.6 1008 9.5 18.61

Mistral-7B-Instruct-v0.1 7.0B 392.9 894.5 11.1 28.7

Llama-2-7B-Chat 6.5B 382.8 1005 10.0 23.19

Llama-2-13B-Chat 13B 241.1 632.5 2.5 5.44

Qwen1.5-1.8B-Chat 1.2B 908.2 1770 - -

Qwen1.5-4B-Chat 3.2B 460.7 1002 22.3 53.39

Qwen1.5-7B-Chat 6.5B 365.8 894.5 - -

Phi-2 2.5B 622.2 1544 - -

Memory3-2B 2.4B 733.0 1131 27.6 44.36

J. Mach. Learn., 3(3):300-346 336

They dominate other sources such as computing query vectors by the embedding model
and searching the vector index. We will try to optimize our code to reduce these over-
heads to be as close as possible to 0.228% of the total inference time, e.g. implement the
chunkwise attention with a CUDA kernel.

8 Conclusion

The goal of this work is to reduce the cost of LLM training and inference, or equivalently, to
construct a more efficient LLM that matches the performance of larger and slower LLMs.
We analyze LLMs from the new perspective of knowledge manipulation, characterizing
the cost of LLMs as the transport cost of “knowledges” in and out of various memory
formats. Two causes of inefficiency are identified, namely the suboptimal placement of
knowledges and the knowledge traversal problem. We solve both problems with explicit
memory, a novel memory format, along with a new training scheme and architecture. Our
preliminary experiment, the Memory3-2B model, exhibits stronger abilities and higher
speed than many SOTA models with greater sizes as well as RAG models.

For future work, we plan to explore the following directions:

1. Efficient training with abstract knowledges: Ideally, the training cost of Memory3

model should be proportional to the small amount of non-separable knowledges,
approaching the learning efficiency of humans. One approach is to filter the training
data to maximize abstract knowledges and minimize specific knowledges (cf. Sec-
tion 3.5 and Remark 4.1), and preferably the LLM should assess the quality of its
own training data and ignore the unhelpful tokens.

2. Human-like capabilities: As described in the introduction, the explicit memory al-
lows for interesting cognitive functions such as handling infinite contexts (conver-
sion of working memory to explicit memory), memory consolidation (conversion
of explicit memory to implicit memory), and conscious reasoning (reflection on the
memory recall process). These designs may further improve the efficiency and rea-
soning ability of Memory3.

3. Compact representation of explicit memory: The explicit memory of humans can be
subdivided into episodic memory, which involve particular experiences, and seman-
tic memory, which involve general truths [56]. This classification is analogous to our
definition of specific and abstract knowledges. Our current implementation of ex-
plicit memory is closer to the episodic memory of humans, as each memory directly
corresponds to a reference text. To improve its reasoning ability, one can try to equip
Memory3 with semantic memories, e.g. obtained from induction on the episodic
memories.

Besides these broad topics, there are also plenty of engineering works that can be done.
For instance, an internalized retrieval process that matches sparse attention queries with
memory keys (Remark 3.1), sparser memory heads with routing (Remark 3.4), memory
extraction that fully preserves contexts (Remark 3.2), compilation of the knowledge base

J. Mach. Learn., 3(3):300-346 337

based on machine preference (Remark 4.2), reduction of the time consumption of explicit
memory to be proportional to its compute overhead (Remark 7.1), and so on.

Appendix A Cost estimation

This section provides the calculations for Fig. 1.1, and we equate cost with the amount of
compute measured in Tflops.

Our 2.4 B Memory3 model is adopted as the backbone. Recall from Section 3.4 that this
model has shape:

• Transformer blocks L = 44.

• Query heads H = 40 and key-value heads Hkv = 8.

• Head dimension dh = 80 and hidden dimension d = Hdh = 3200.

• MLP width W = d.

• Vocabulary size as well as LM head size nvocab = 60416.

• Memory layers Lmem = 22, which is also the depth of the deepest memory layer.

Fix a separable knowledge K, and represent it by one of its realizations t (Definition 2.5),
and assume that t has length lref = 128 tokens, following the setup of our reference dataset
(Section 4.4). Recall from Section 3.3 that each memory has lmem = 8 tokens per memory
head, and it is read by a chunk of length lchunk = 64.

Since we want to show that explicit memory is cheaper than implicit memory and RAG,
it suffices to use coarse lower bounds on their costs.

A.1 Implicit memory

The write cost of implicit memory or model parameters is the training compute with t as
input. Usually the training data of Transformer LLMs have length 2048 ∼ 8192, so we
assume that t is a subsequence of a train sample ttrain with length ltrain = 2048. By [81],
the training compute of one step with one sample is approximately

3 · 2 ·
[

L

(

ltrain

(

2d2 + 2ddhHkv + 3dW
)

+ 2
l2
train

2
d

)

+ ltrainnvocabd

]

,

where 3 means that the backward step costs twice as the forward step (and thus 3 times in
total), the first 2 means that the compute of matrix multiplication involves same amount
of additions and multiplications. The five terms in the bracket come from QO embedding,
KV embedding, MLP, attention, and LM head, respectively. The lower order terms, such as
layer normalizations, are omitted. The fraction of the compute attributable to t is given by

3 · 2 ·
[

L

(

lref

(

2d2 + 2ddhHkv + 3dW
)

+ 2lref
ltrain

2
d

)

+ lrefnvocabd

]

.

J. Mach. Learn., 3(3):300-346 338

Assume that one training step is sufficient for storing knowledge K into model parame-
ters. Then, the write cost is equal to the above term, and we obtain

costwrite ≈ 2.24 TFlops.

Meanwhile, we lower bound the read cost by zero

costread ≥ 0 TFlops.

This lower bound is obviously correct and suits our comparison, since it makes implicit
memory appear more competitive. The difficulty in estimating the cost is that the corre-
spondence between knowledges and parameters is not fully understood. Nevertheless,
we describe a possible way to obtain a reasonable bound. Recall from Section 1 that the
model parameters suffer from the issue of knowledge traversal such that each parame-
ter (and thus each implicit memory) is invoked during each call of the LLM. So the read
cost of each implicit memory does not depend on its usage count nk, but instead on the
total amount of model calls during the lifespan of this LLM. Dividing the total amount
of inference compute used by this LLM by the amount of knowledges it possesses gives
an estimation of the average read cost of a knowledge. The amount of knowledges in the
LLM can be upper bounded based on the knowledge capacities measured by [4].

A.2 Explicit memory

The write cost of an each explicit memory mainly comes from Lmem self-attention lay-
ers, Lmem − 1 MLP layers, and Lmem token sparsification operations (computing the full
attention matrix)

costwrite = 2·
[

Lmem

(

lref

(

2d2+2ddhHkv

)

+2
l2
ref

2
d

)

+(Lmem−1)(lref · 3dW)+Lmem

(

l2
refd
)

]

≈ 0.308 TFlops.

The read cost consists of the attention to the sparse tokens of an explicit memory from
the chunk that retrieves this memory

costread = 2Lmem · 2lchunklmemd ≈ 1.44× 10−4 TFlops.

A.3 External information

The write cost of text retrieval-augmented generation is set to be zero, since the reference
is stored as plain text

costwrite = 0 TFlops.

The read cost is the additional compute brought by the retrieved references that are
inserted in the prompt. To make RAG appear more competitive, we assume that only
a chunk of the prompt or decoded text with length lchunk can attend to the references, and
each reference can only attend to itself, which in general is not true. Then,

J. Mach. Learn., 3(3):300-346 339

costwrite ≥ 2 ·
[

L

(

lref

(

2d2 + 2ddhHkv

)

+ 2lref

(

lref

2
+ lchunk

)

d

)

+ (L − 1)(lref · 3dW)

]

≈ 0.624 TFlops.

In summary, the total cost (TFlops) of writing and reading each separable knowledge
in terms of its expected usage count n is given by

cimplicit(n) ≥ 2.24,

cexplicit(n) = 0.308+ 0.000144n,

cexternal(n) ≥ 0.624n.

These curves are plotted in Fig. 1.1. Hence, if n ∈ (0.494, 13400), then it is optimal to store
the knowledge as an explicit memory.

Remark A.1 (Knowledge Retention). One aspect not covered by problem (1.1) is the re-
tention of knowledges in the model if its parameters are updated, e.g. due to finetuning.
Both implicit memory and explicit memory are vulnerable to parameter change. Usually,
model finetuning would include some amount of pretrain data to prevent catastrophic for-
getting [84]. Similarly, if some explicit memories have already been produced, then they
need to be rebuilt in order to remain readable by the updated model. It is an interesting
research direction to design a more efficient architecture such that the implicit and explicit
memories are robust with respect to model updates.

Appendix B Vector compression

Regarding the vector quantizer discussed in Sections 3.3 and 7.1, we use the compos-
ite index of FAISS with index type OPQ20x80-Residual2x14-PQ8x10. It can encode a 80-
dimensional bfloat16 vector into a 14-dimensional uint8 vector, and thus its compression
rate is (80 × 2)/(14 × 1) ≈ 11.4.

To train this quantizer, we sample references from our knowledge base, encode them
into explicit memories by our Memory3-2B-SFT model, and feed these key-value vectors
to the quantizer. The references are sampled uniformly and independently, so the training
is not biased towards the references that are retrieved by any specific evaluation task.

Appendix C Supplementary evaluation results

First, Table C.1 records the growth of the test scores (Table 7.1) over the two pretraining
stages and SFT. We believe that for future versions of Memory3, fixing the loss divergence
during the implicit memory stage will allow the explicit memory stage to proceed much
further (cf. Section 5.3), and thus increase the performance boost of the second stage.

Next, recall that for the evaluations in Section 7.1, a filter is included in the retrieval
process to prevent copying, which removes references that overlap too much with the
evaluation question. The filtering threshold should lie between 100% and the usual level

J. Mach. Learn., 3(3):300-346 340

of overlap between two related but distinct texts, and we set it to 2/3 in Table 7.1. Table C.2
records the impact of the filtering threshold on the test scores. The scores are stable for
most tasks, indicating that their questions do not appear in our knowledge basis.

Finally, Table C.3 studies the influence of the few-shot prompts on the benchmark tasks.
Recall that the number of few-shot examples for each task is ARC-C (25), HellaSwag (10),
MMLU (5), Winogrande (5), GSM8k (5) as in HuggingFace OpenLLM Leaderboard [11],
and we also adopt CEVAL (5), CMMLU (5). Interestingly, the boost from explicit memory
increases from 2.51% to 3.70% as we switch to 0-shot.

Table C.1: Performance of Memory3-2B at different stages of training. The setup of the evaluation tasks is the
same as in Table 7.1.

English Chinese

LLM Avg. ARC-C HellaSwag MMLU Winogrande GSM8k CEVAL CMMLU

Implicit memory stage 42.13 40.27 64.57 41.62 61.96 5.23 40.12 41.17

Explicit memory stage 45.12 42.66 79.21 41.81 59.43 6.29 42.20 44.21

- without memory 42.89 42.15 66.98 39.79 61.80 6.44 39.97 43.13

SFT 63.31 58.11 80.51 59.68 74.51 52.84 59.29 58.24

- without memory 60.80 57.42 73.14 57.29 74.35 51.33 56.32 55.72

Table C.2: Influence of the filtering threshold on the test scores in Table 7.1.

Threshold Avg. ARC-C HellaSwag MMLU Winogrande GSM8k CEVAL CMMLU

no filter 63.71 58.11 83.37 59.65 74.51 52.84 59.29 58.22

80% 63.62 58.11 82.69 59.65 74.51 52.84 59.29 58.24

2/3 63.31 58.11 80.51 59.68 74.51 52.84 59.29 58.24

without memory 60.80 57.42 73.14 57.29 74.35 51.33 56.32 55.72

Table C.3: Few-shot versus 0-shot for the benchmark tasks in Table 7.1.

Mode Avg. ARC-C HellaSwag MMLU Winogrande GSM8k CEVAL CMMLU

Few-shot 63.31 58.11 80.51 59.68 74.51 52.84 59.29 58.24

- without memory 60.80 57.42 73.14 57.29 74.35 51.33 56.32 55.72

0-shot 58.23 58.79 83.29 60.53 75.85 13.50 57.95 57.74

- without memory 54.54 57.34 73.15 58.59 74.98 10.46 54.53 54.26

Acknowledgments

We thank Prof. Zhiqin Xu, Prof. Zhouhan Lin, Fangrui Liu, Liangkai Hang, Ziyang Tao,
Xiaoxing Wang, Mingze Wang, Yongqi Jin, Haotian He, Guanhua Huang, Yirong Hu for
helpful discussions.

J. Mach. Learn., 3(3):300-346 341

This work is supported by the NSFC Major Research Plan – Interpretable and General
Purpose Next-generation Artificial Intelligence of China (Grant No. 92270001).

References

[1] M. Abdin et al., Phi-3 technical report: A highly capable language model locally on your phone, arXiv:
2404.14219, 2024.

[2] J. Achiam et al., GPT-4 technical report, arXiv:2303.08774, 2023.
[3] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai, GQA: Training general-

ized multi-query transformer models from multi-head checkpoints, arXiv:2305.13245, 2023.
[4] Z. Allen-Zhu and Y. Li, Physics of language models: Part 3.3, knowledge capacity scaling laws, arXiv:

2404.05405, 2024.
[5] E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojocaru, M. Debbah, É. Goffinet, D. Hesslow,

J. Launay, Q. Malartic, D. Mazzotta, B. Noune, B. Pannier, and G. Penedo, The falcon series of open
language models, arXiv:2311.16867, 2023.

[6] Anthropic AI, The Claude 3 model family: Opus, Sonnet, Haiku, Claude-3 Model Card https://www.

anthropic.com/claude, 2024.
[7] Argilla, Distilabel Math Preference DPO. https://huggingface.co/datasets/argilla/distilabel-

math-preference-dpo, 2023.
[8] Azure AI Services. GPT-4 and GPT-4 turbo models. https://learn.microsoft.com/en-us/azure/ai-

services/openai/concepts/models#gpt-4-and-gpt-4-turbo-models, 2024. [Accessed 22-05-2024]
[9] J. Bai et al., Qwen technical report, arXiv:2309.16609, 2023.

[10] P. J. Bayley and L. R. Squire, Failure to acquire new semantic knowledge in patients with large medial
temporal lobe lesions, Hippocampus, 15(2):273–280, 2005.

[11] E. Beeching, C. Fourrier, N. Habib, S. Han, N. Lambert, N. Rajani, O. Sanseviero, L. Tunstall, and T. Wolf,
Open LLM leaderboard, https://huggingface.co/spaces/HuggingFaceH4/open llm leaderboard,
2023.

[12] M. Bellagente et al., Stable lm 2 1.6 b technical report, arXiv:2402.17834, 2024.
[13] A. Bertsch, U. Alon, G. Neubig, and M. Gormley, Unlimiformer: Long-range transformers with unlim-

ited length input, Adv. Neural Inf. Process. Syst., Vol. 36, 2024.
[14] S. Borgeaud et al., Improving language models by retrieving from trillions of tokens, in: International

conference on machine learning, PMLR, 2206–2240, 2022.
[15] J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu, BGE M3-embedding: Multi-lingual, multi-

functionality, multi-granularity text embeddings through self-knowledge distillation, arXiv:2402.03216,
2024.

[16] Y. Chen, T. Guan, and C. Wang, Approximate nearest neighbor search by residual vector quantization,
Sensors, 10(12):11259–11273, 2010.

[17] Z.-A. Chen, Y. Li, T. Luo, Z. Zhou, and Z.-Q. J. Xu, Phase diagram of initial condensation for two-layer
neural networks, CSIAM Trans. Appl. Math., 5(3):448–514, 2024.

[18] Q. Cheng, T. Sun, W. Zhang, S. Wang, X. Liu, M. Zhang, J. He, M. Huang, Z. Yin, K. Chen, and X. Qiu,
Evaluating hallucinations in Chinese large language models, arXiv:2310.03368, 2023.

[19] A. Chowdhery et al., Palm: Scaling language modeling with pathways, arXiv:2204.02311, 2022.
[20] B. Chughtai, A. Cooney, and N. Nanda, Summing up the facts: Additive mechanisms behind factual

recall in LLMs, arXiv:2402.07321, 2024.
[21] A. Conmy, A. Mavor-Parker, A. Lynch, S. Heimersheim, and A. Garriga-Alonso, Towards automated

circuit discovery for mechanistic interpretability, Adv. Neural Inf. Process. Syst., Vol. 36, 16318–16352, 2023.
[22] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. Zettle-

moyer, and V. Stoyanov, Unsupervised cross-lingual representation learning at scale, arXiv:1911.02116,
2019.

[23] S. Corkin, What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci., 3(2):153–160, 2002.

J. Mach. Learn., 3(3):300-346 342

[24] N. Cowan, The magical number 4 in short-term memory: A reconsideration of mental storage capacity,
Behav. Brain. Sci., 24(1):87–114, 2001.

[25] N. Cowan, Working memory capacity: Classic Edition, Routledge, 2016.
[26] D. Dai, L. Dong, Y. Hao, Z. Sui, B. Chang, and F. Wei, Knowledge neurons in pretrained transformers,

arXiv:2104.08696, 2021.
[27] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov, Transformer-XL: Attentive lan-

guage models beyond a fixed-length context, arXiv:1901.02860, 2019.
[28] L. Daniele and Suphavadeeprasit, Amplify-instruct: Synthetically generated diverse multi-turn conver-

sations for effecient LLM training, https://huggingface.co/datasets/LDJnr/Capybara, 2023.
[29] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, Flashattention: Fast and memory-efficient exact attention

with IO-awareness, Adv. Neural Inf. Process. Syst., Vol. 35, 16344–16359, 2022.
[30] N. Dey, G. Gosal, Zhiming, Chen, H. Khachane, W. Marshall, R. Pathria, M. Tom, and J. Hestness,

Cerebras-GPT: Open compute-optimal language models trained on the cerebras wafer-scale cluster,
arXiv:2304.03208, 2023.

[31] N. Ding, Y. Chen, B. Xu, Y. Qin, Z. Zheng, S. Hu, Z. Liu, M. Sun, and B. Zhou, Enhancing chat language
models by scaling high-quality instructional conversations, arXiv:2305.14233, 2023.

[32] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-E. Mazaré, M. Lomeli, L. Hosseini, and
H. Jégou, The faiss library, arXiv:2401.08281, 2024.

[33] P. V. Duy, synth code preference 4k, https://huggingface.co/datasets/pvduy/synth code prefer

ence 4k, 2023.
[34] M. Elbayad, J. Gu, E. Grave, and M. Auli, Depth-adaptive transformer, arXiv:1910.10073, 2020.
[35] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds,

R. Lasenby, D. Drain, C. Chen, R. Grosse, S. McCandlish, J. Kaplan, D. Amodei, M. Wat-
tenberg, and C. Olah, Toy models of superposition, Transformer Circuits Thread, 2022. https://

transformer-circuits.pub/2022/toy model/index.html.
[36] J. Fang, L. Tang, H. Bi, Y. Qin, S. Sun, Z. Li, H. Li, Y. Li, X. Cong, Y. Yan, X. Shi, S. Song, Y. Lin, Z. Liu,

and M. Sun, UniMem: Towards a unified view of long-context large language models, arXiv:2402.03009,
2024.

[37] W. Fedus, B. Zoph, and N. Shazeer, Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity, J. Mach. Learn. Res., 23:120:1–120:39, 2022.

[38] E. Frantar and D. Alistarh, QMoE: Practical sub-1-bit compression of trillion-parameter models, arXiv:
2310.16795, 2023.

[39] J. D. Gabrieli, N. J. Cohen, and S. Corkin, The impaired learning of semantic knowledge following bilat-
eral medial temporal-lobe resection, Brain Cogn., 7(2):157–177, 1988.

[40] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima,
S. Presser, and C. Leahy, The pile: An 800 gb dataset of diverse text for language modeling, arXiv:
2101.00027, 2021.

[41] L. Gao, J. Tow, B. Abbasi, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding, J. Hsu, A. Le Noac’h,
H. Li, K. McDonell, N. Muennighoff, C. Ociepa, J. Phang, L. Reynolds, H. Schoelkopf, A. Skowron,
L. Sutawika, E. Tang, A. Thite, B. Wang, K. Wang, and A. Zou, A framework for few-shot language
model evaluation, https://zenodo.org/records/10256836, 2023.

[42] M. Geva, J. Bastings, K. Filippova, and A. Globerson, Dissecting recall of factual associations in auto-
regressive language models, arXiv:2304.14767, 2023.

[43] M. Geva, R. Schuster, J. Berant, and O. Levy, Transformer feed-forward layers are key-value memories,
arXiv:2012.14913, 2021.

[44] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in:
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 249–256, 2010.

[45] S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. D. Giorno, S. Gopi, M. Javaheripi, P. Kauffmann,
G. de Rosa, O. Saarikivi, A. Salim, S. Shah, H. S. Behl, X. Wang, S. Bubeck, R. Eldan, A. T. Kalai, Y. T. Lee,
and Y. Li, Textbooks are all you need, arXiv:2306.11644, 2023.

[46] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, Retrieval augmented language model pre-training,
in: Proceedings of the 37th International Conference on Machine Learning, PMLR, 3929–3938, 2020.

J. Mach. Learn., 3(3):300-346 343

[47] Y. Hao, D. Angluin, and R. Frank, Formal language recognition by hard attention transformers: Perspec-
tives from circuit complexity, Trans. Assoc. Comput., 10:800–810, 2022.

[48] C. He, Z. Jin, C. Xu, J. Qiu, B. Wang, W. Li, H. Yan, J. Wang, and D. Lin, Wanjuan: A comprehensive
multimodal dataset for advancing english and chinese large models, arXiv:2308.10755, 2023.

[49] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, IEEE,
1026–1034, 2015.

[50] J. Hoffmann et al., Training compute-optimal large language models, arXiv:2203.15556, 2022.
[51] S. Hu, Y. Tu, X. Han, C. He, G. Cui, X. Long, Z. Zheng, Y. Fang, Y. Huang, W. Zhao, X. Zhang, Z. L. Thai,

K. Zhang, C. Wang, Y. Yao, C. Zhao, J. Zhou, J. Cai, Z. Zhai, N. Ding, C. Jia, G. Zeng, D. Li, Z. Liu, and
M. Sun, MiniCPM: Unveiling the potential of small language models with scalable training strategies,
arXiv:2404.06395, 2024.

[52] Y. Huang, S. Hu, X. Han, Z. Liu, and M. Sun, Unified view of grokking, double descent and emergent
abilities: A perspective from circuits competition, arXiv:2402.15175, 2024.

[53] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. El Sayed, Mistral 7b, arXiv:2310.06825, 2023.

[54] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu, Tinybert: Distilling bert for natural
language understanding, arXiv:1909.10351, 2020.

[55] J. Kaddour, The minipile challenge for data-efficient language models, arXiv:2304.08442, 2023.
[56] E. Kandel, J. Koester, S. Mack, and S. Siegelbaum, Principles of Neural Science, McGraw Hill LLC, 2021.
[57] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and

D. Amodei, Scaling laws for neural language models, arXiv:2001.08361, 2020.
[58] O. Khattab and M. Zaharia, Colbert: Efficient and effective passage search via contextualized late inter-

action over bert, arXiv:2004.12832, 2020.
[59] V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi, and B. Catanzaro, Reducing

activation recomputation in large transformer models, arXiv:2205.05198, 2022.
[60] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, and I. Stoica, Efficient

memory management for large language model serving with pagedattention, arXiv:2309.06180, 2023.
[61] J. Li, X. Cheng, X. Zhao, J.-Y. Nie, and J.-R. Wen, Halueval: A large-scale hallucination evaluation bench-

mark for large language models, in: The 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, 2023.

[62] M. Li, M.-B. Chen, B. Tang, S. Hou, P. Wang, H. Deng, Z. Li, F. Xiong, K. Mao, P. Cheng, and Y. Luo,
Newsbench: A systematic evaluation framework for assessing editorial capabilities of large language
models in chinese journalism, arXiv:2403.00862, 2024.

[63] Y. Li, S. Bubeck, R. Eldan, A. D. Giorno, S. Gunasekar, and Y. T. Lee, Textbooks are all you need II: phi-1.5
technical report, arXiv:2309.05463, 2023.

[64] W. Lian, G. Wang, B. Goodson, E. Pentland, A. Cook, C. Vong, and ”Teknium”, Slimorca: An open
dataset of gpt-4 augmented flan reasoning traces, with verification, https://huggingface.co/Open-
Orca/SlimOrca, 2023.

[65] X. Liang, S. Song, S. Niu, Z. Li, F. Xiong, B. Tang, Y. Wang, D. He, P. Cheng, Z. Wang, and H. Deng,
Uhgeval: Benchmarking the hallucination of chinese large language models via unconstrained genera-
tion, arXiv:2311.15296, 2024.

[66] S. Lin, J. Hilton, and O. Evans, TruthfulQA: Measuring how models mimic human falsehoods, in: Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Association for Computational Linguistics, 3214–3252, 2022.

[67] H. Liu, Z. Li, D. Hall, P. Liang, and T. Ma, Sophia: A scalable stochastic second-order optimizer for
language model pre-training, arXiv:2305.14342, 2024.

[68] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang, Lost in the middle:
How language models use long contexts, arXiv:2307.03172, 2023.

[69] W. Liu, W. Zeng, K. He, Y. Jiang, and J. He, What makes good data for alignment? A comprehensive
study of automatic data selection in instruction tuning, arXiv:2312.15685, 2023.

J. Mach. Learn., 3(3):300-346 344

[70] Z. Liu, A. Desai, F. Liao, W. Wang, V. Xie, Z. Xu, A. Kyrillidis, and A. Shrivastava, Scissorhands: Ex-
ploiting the persistence of importance hypothesis for LLM KV cache compression at test time, arXiv:
2305.17118, 2023.

[71] Z. Liu, J. Wang, T. Dao, T. Zhou, B. Yuan, Z. Song, A. Shrivastava, C. Zhang, Y. Tian, C. Ré, and B. Chen,
Deja Vu: Contextual sparsity for efficient llms at inference time, in: Proceedings of Machine Learning Re-
search, PMLR, 202:22137–22176, 2023.

[72] S. Longpre et al., A pretrainer’s guide to training data: Measuring the effects of data age, domain cover-
age, quality, & toxicity, arXiv:2305.13169, 2023.

[73] A. S. Luccioni, S. Viguier, and A.-L. Ligozat, Estimating the carbon footprint of bloom, a 176 b parameter
language model, arXiv:2211.02001, 2022.

[74] T. Luo, Z.-Q. J. Xu, Z. Ma, and Y. Zhang, Phase diagram for two-layer relu neural networks at infinite-
width limit, J. Mach. Learn. Res., 22(71):1–47, 2021.

[75] A. Lv, Y. Chen, K. Zhang, Y. Wang, L. Liu, J.-R. Wen, J. Xie, and R. Yan, Interpreting key mechanisms of
factual recall in transformer-based language models, arXiv:2403.19521, 2024.

[76] Megatron-DeepSpeed. https://github.com/microsoft/Megatron-DeepSpeed, 2022.
[77] W. Merrill and A. Sabharwal, A logic for expressing log-precision transformers, arXiv:2210.02671, 2023.
[78] MOP-LIWU Community and MNBVC Team. Mnbvc: Massive never-ending bt vast chinese corpus.

https://github.com/esbatmop/MNBVC, 2023.
[79] MyScale. MyScaleDB. https://github.com/myscale/MyScaleDB. [Accessed 20-03-2024]
[80] R. Nakano et al., WebGPT: Browser-assisted question-answering with human feedback, arXiv:

2112.09332, 2021.
[81] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. A. Korthikanti, D. Vainbrand,

P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee, and M. Zaharia, Efficient large-scale language
model training on GPU clusters using megatron-LM, arXiv:2104.04473, 2021.

[82] C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai,
A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah,
In-context learning and induction heads, arXiv:2209.11895, 2022.

[83] OpenAI. GPT-4 turbo and GPT-4. https://platform.openai.com/docs/models/gpt-4-turbo-and-

gpt-4, 2024. [Accessed 22-05-2024].
[84] L. Ouyang et al., Training language models to follow instructions with human feedback, Adv. Neural Inf.

Process. Syst., Vol. 35, 27730–27744, 2022.
[85] A. Pearce, A. Ghandeharioun, N. Hussein, N. Thain, M. Wattenberg, and L. Dixon. Do machine learning

models memorize or generalize? People+ AI Research, https://pair.withgoogle.com/explorables/
grokking/, 2023.

[86] B. Peng et al., RWKV: Reinventing RNNs for the transformer era, arXiv:2305.13048, 2023.
[87] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra, Grokking: Generalization beyond overfit-

ting on small algorithmic datasets, arXiv:2201.02177, 2022.
[88] P. Qi, X. Wan, G. Huang, and M. Lin, Zero bubble pipeline parallelism, arXiv:2401.10241, 2023.
[89] J. W. Rae et al., Scaling language models: Methods, analysis & insights from training Gopher, arXiv:

2112.11446, 2021.
[90] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn, Direct preference optimiza-

tion: Your language model is secretly a reward model, Adv. Neural Inf. Process. Syst., Vol. 36, 2024.
[91] D. Raposo, S. Ritter, B. Richards, T. Lillicrap, P. C. Humphreys, and A. Santoro, Mixture-of-depths:

Dynamically allocating compute in transformer-based language models, arXiv:2404.02258., 2024.
[92] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, Deepspeed: System optimizations enable training deep

learning models with over 100 billion parameters, in: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ACM, 3505–3506, 2020.

[93] N. Ratner, Y. Levine, Y. Belinkov, O. Ram, I. Magar, O. Abend, E. Karpas, A. Shashua, K. Leyton-Brown,
and Y. Shoham, Parallel context windows for large language models, arXiv:2212.10947, 2022.

[94] V. Rawte, S. Chakraborty, A. Pathak, A. Sarkar, S. T. I. Tonmoy, A. Chadha, A. Sheth, and A. Das, The
troubling emergence of hallucination in large language models – an extensive definition, quantification,

J. Mach. Learn., 3(3):300-346 345

and prescriptive remediations, in: Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational Linguistics, 2541–2573, 2023.

[95] Y. Ruan, C. J. Maddison, and T. Hashimoto, Observational scaling laws and the predictability of lan-
guage model performance, arXiv:2405.10938, 2024.

[96] T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli, E. Hambro, L. Zettlemoyer, N. Cancedda,
and T. Scialom, Toolformer: Language models can teach themselves to use tools, Adv. Neural Inf. Process.
Syst., Vol. 36, 2024.

[97] Scienceasdf. Medical books. https://github.com/scienceasdf/medical-books. [Accessed 20-03-
2024].

[98] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro, Megatron-LM: Training
multi-billion parameter language models using model parallelism, arXiv:1909.08053, 2020.

[99] Snowflake AI Research. Snowflake arctic: The best LLM for enterprise AI – efficiently intelligent, truly
open, https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-

snowflake/, 2024. [Accessed: 2024-05-15]
[100] D. Soboleva, F. Al-Khateeb, R. Myers, J. R. Steeves, J. Hestness, and N. Dey, SlimPa-

jama: A 627B token cleaned and deduplicated version of RedPajama. https://www.cerebras.

net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama, 2023.
[101] A. Srivastava et al., Beyond the imitation game: Quantifying and extrapolating the capabilities of lan-

guage models, arXiv:2206.04615, 2023.
[102] A. Stolfo, Y. Belinkov, and M. Sachan, A mechanistic interpretation of arithmetic reasoning in language

models using causal mediation analysis, in: Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, 7035–7052, 2023.

[103] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, Roformer: Enhanced transformer with rotary position
embedding, Neurocomputing, 568:127063, 2024.

[104] S. Sukhbaatar, E. Grave, G. Lample, H. Jegou, and A. Joulin, Augmenting self-attention with persistent
memory, arXiv:1907.01470, 2019.

[105] The Chinese National Laws and Regulations Database, https://flk.npc.gov.cn/. [Accessed 20-03-
2024]

[106] Together Computer. RedPajama: An open dataset for training large language models, https://

github.com/togethercomputer/RedPajama-Data, 2023.
[107] Y. Sun, L. Dong, Y. Zhu, S. Huang, W. Wang, S. Ma, Q. Zhang, J. Wang, and F. Wei, You only cache once:

Decoder-decoder architectures for language models, arXiv:2405.05254, 2024.
[108] H. Touvron et al., Llama 2: Open foundation and fine-tuned chat models, arXiv:2307.09288, 2023.
[109] L. Tunstall, E. Beeching, N. Lambert, N. Rajani, K. Rasul, Y. Belkada, S. Huang, L. von Werra, C. Four-

rier, N. Habib, N. Sarrazin, O. Sanseviero, A. M. Rush, and T. Wolf, Zephyr: Direct distillation of LM
alignment, arXiv:2310.16944, 2023.

[110] S. Tworkowski, K. Staniszewski, M. Pacek, Y. Wu, H. Michalewski, and P. Miłoś, Focused transformer:
Contrastive training for context scaling, Adv. Neural Inf. Process. Syst., Vol. 36, 2024.

[111] B. Wang, W. Ping, P. Xu, L. McAfee, Z. Liu, M. Shoeybi, Y. Dong, O. Kuchaiev, B. Li, C. Xiao, A. Anand-
kumar, and B. Catanzaro, Shall we pretrain autoregressive language models with retrieval? A compre-
hensive study, in: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, 7763–7786, 2023.

[112] G. Wang, S. Cheng, X. Zhan, X. Li, S. Song, and Y. Liu, Openchat: Advancing open-source language
models with mixed-quality data, arXiv:2309.11235, 2023.

[113] K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt, Interpretability in the wild: A circuit
for indirect object identification in GPT-2 small, arXiv:2211.00593, 2022.

[114] L. Wang, L. Li, D. Dai, D. Chen, H. Zhou, F. Meng, J. Zhou, and X. Sun, Label words are anchors:
An information flow perspective for understanding in-context learning, arXiv:2305.14160, 2023.

[115] M. Wang, H. He, J. Wang, Z. Wang, G. Huang, F. Xiong, Z. Li, W. E, and L. Wu, Improving generalization
and convergence by enhancing implicit regularization, arXiv:2405.20763, 2024.

[116] W. Wang, L. Dong, H. Cheng, X. Liu, X. Yan, J. Gao, and F. Wei, Augmenting language models with
long-term memory, Adv. Neural Inf. Process. Syst., Vol. 36, 2024.

J. Mach. Learn., 3(3):300-346 346

[117] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Met-
zler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus, Emergent abilities of large
language models, arXiv:2206.07682, 2022.

[118] G. Weiss, Y. Goldberg, and E. Yahav, Thinking like transformers, arXiv:2106.06981, 2021.
[119] Wenshu, https://wenshu.court.gov.cn/. [Accessed 20-03-2024]
[120] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng, G. Chang, F. A. Behram, J. Huang,

C. Bai, M. Gschwind, A. Gupta, M. Ott, A. Melnikov, S. Candido, D. Brooks, G. Chauhan, B. Lee,
H.-H. S. Lee, B. Akyildiz, M. Balandat, J. Spisak, R. Jain, M. Rabbat, and K. Hazelwood, Sustainable
AI: Environmental implications, challenges and opportunities, arXiv:2111.00364, 2022.

[121] W. Wu, Y. Wang, G. Xiao, H. Peng, and Y. Fu, Retrieval head mechanistically explains long-context
factuality, arXiv:2404.15574, 2024.

[122] Y. Wu, M. N. Rabe, D. Hutchins, and C. Szegedy, Memorizing transformers, in: International Conference
on Learning Representations, ICLR, 2021.

[123] X. Xie, P. Zhou, H. Li, Z. Lin, and S. Yan, Adan: Adaptive nesterov momentum algorithm for faster
optimizing deep models, arXiv:2208.06677, 2023.

[124] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and D. Jiang, Wizardlm: Empowering large
language models to follow complex instructions, arXiv:2304.12244, 2023.

[125] A. Yang et al., Baichuan 2: Open large-scale language models, arXiv:2309.10305, 2023.
[126] G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen, and J. Gao, Ten-

sor programs V: Tuning large neural networks via zero-shot hyperparameter transfer, arXiv:2203.03466,
2022.

[127] H. Yang, A mathematical framework for learning probability distributions, J. Mach. Learn., 1(4):373–431,
2022.

[128] Y. Yao, N. Zhang, Z. Xi, M. Wang, Z. Xu, S. Deng, and H. Chen, Knowledge circuits in pretrained
transformers, arXiv:2405.17969, 2024.

[129] L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu, Metamath:
Bootstrap your own mathematical questions for large language models, arXiv:2309.12284, 2023.

[130] Z. Zhang, P. Lin, Z. Wang, Y. Zhang, and Z.-Q. J. Xu, Initialization is critical to whether transformers fit
composite functions by inference or memorizing, arXiv:2405.05409, 2024.

[131] Z. Zhang et al., H2O: Heavy-hitter oracle for efficient generative inference of large language models,
Adv. Neural Inf. Process. Syst., Vol. 36, 2024.

[132] L. Zheng et al., Judging LLM-as-a-judge with MT-bench and Chatbot Arena, Adv. Neural Inf. Process.
Syst., Vol. 36, 2024.

[133] H. Zhong, C. Xiao, C. Tu, T. Zhang, Z. Liu, and M. Sun, JEC-QA: A legal-domain question answering
dataset, Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):9701–9708, 2020.

	Introduction
	Related work
	Retrieval-augmented training
	Sparse computation
	Parameter as memory

	Memory circuitry theory
	Preliminaries
	Knowledge
	Memory

	Design
	Inference process
	Writing and reading memory
	Memory sparsification and storage
	Model shape
	Training designs
	Two-stage pretrain

	Pretraining data
	Data collection
	Filtering
	Tokenizer
	Knowledge base

	Pretrain
	Set-up
	Implicit memory stage
	Explicit memory stage

	Fine-tuning and alignment
	Supervised finetuning
	Direct preference optimization

	Evaluation
	General abilities
	Conversation skill
	Hallucination and factuality
	Professional tasks
	Inference speed

	Conclusion
	Cost estimation
	Implicit memory
	Explicit memory
	External information

	Vector compression
	Supplementary evaluation results

