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Abstract. This paper presents a mathematical analysis of ODE-Net, a continuum model of deep neural net-
works (DNNs). In recent years, machine learning researchers have introduced ideas of replacing the deep
structure of DNNs with ODEs as a continuum limit. These studies regard the “learning” of ODE-Net as the
minimization of a “loss” constrained by a parametric ODE. Although the existence of a minimizer for this
minimization problem needs to be assumed, only a few studies have investigated the existence analytically
in detail. In the present paper, the existence of a minimizer is discussed based on a formulation of ODE-Net
as a measure-theoretic mean-field optimal control problem. The existence result is proved when a neural
network describing a vector field of ODE-Net is linear with respect to learnable parameters. The proof em-
ploys the measure-theoretic formulation combined with the direct method of calculus of variations. Secondly,
an idealized minimization problem is proposed to remove the above linearity assumption. Such a problem is
inspired by a kinetic regularization associated with the Benamou-Brenier formula and universal approxima-
tion theorems for neural networks.
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1 Introduction

Deep neural networks, or deep learning, now constitute a core of artificial intelligence
technology, but their theoretical inner mechanisms have yet to be explored. In particular,
there have been few theoretical contributions regarding “learning” DNNs, despite prac-
tical demands for them, where “learning” is, broadly speaking, to minimize the so-called
“loss” by optimizing a parameter θ of DNNs.

Our research aims to establish a well-posed mathematical formulation of the learning.
To achieve this aim, some researchers have brought languages of dynamical systems and
differential equations into DNNs, for example, in [22, 27, 54]. In short, one can regard
a continuum limit of DNNs in their depth as an ODE. Many researchers have attempted
to dissect DNNs through some ODEs, designated as ODE-Net throughout the paper. For
more information on these attempts, see the survey in Section 2. Based on this survey,
well-posednesses, such as the existence of a minimizer of loss, have not yet been fully
explored in the context of these studies.
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Accordingly, our goal in this paper is to prove the existence of a minimizer for learning
ODE-Net, formulated as a regularized minimization problem constrained by a continuity
equation.

1.1 Target problems and main results

First of all, we are going to study the existence of a minimizer of the following kinetic-
regularized minimization problem.

Problem 1.1 (Kinetic Regularized Learning Problem Constrained by ODE-Net). Let λ ≥ 0

and ǫ > 0 be constants, let Y be a subset of R
d and let v : R

d ×R
m → R

d and ℓ : R
d ×Y →

R+ be continuous. Let µ0 ∈ Pc(Rd ×Y) be a given training data. Set

J(µ, θ) :=
∫

Rd×Y
ℓdµT +

∫ T

0

∫

Rd×Y

(
λ

2
|v(x, θt)|2 +

ǫ

2
|θt|2

)
dµt(x, y)dt (1.1)

for µ ∈ C([0, T]; (P2(R
d × Y), W2)) and θ ∈ L2(0, T; R

m). Note that v(•, θ) ∈ L2(dµ) is

a vector field on R
d for µ ∈ Pc(Rd) and θ ∈ R

m. The learning problem constrained by
ODE-Net is posed as the following constrained minimization problem:

inf
{

J(µ, θ) µ ∈ C
(
[0, T];

(
P2(R

d ×Y), W2

))
, θ ∈ L2(0, T; R

m)
}

subject to
{

∂tµt + divx

(
µt(x, y)v(x, θt)

)
= 0, (x, y) ∈ R

d ×Y , t ∈ (0, T),

µt|t=0 = µ0,
(1.2)

where Pc(R
d × Y) denotes the set of regular and Borel probability measures compactly

supported on R
d × Y , (P2(R

d × Y), W2) denotes the (L2-)Wasserstein space defined in

Section 3.2, C([0, T]; (P(Rd ×Y), W2)) denotes the set of curves which is continuous with
respect to the Wasserstein topology (see also Definition 3.1), and

µ ∈ C
(
[0, T];

(
P2(R

d ×Y), W2

))

is supposed to solve the Eq. (1.2) in the distributional sense of Definition 3.2.

Remark 1.1. In Problem 1.1, the ODE-Net corresponds to the continuity equation (1.2)
with a parameter θt, and the learning to the minimization of a functional J with respect to
a parameter θt and a solution µt to ODE (1.2).

The first term in (1.1) measures the so-called loss. The second term in (1.1) is called
a “kinetic regularization” in [25] because it represents the kinetic energy when v(•, θ)
(θ ∈ R

m) is regarded as a velocity field on R
d. By letting this kinetic energy be as small as

possible, we could control the velocity field so that the support of the solution µt to (1.2)
does not change wildly. The third term is often called an L2-regularization, which is fa-
miliar with the well-known Ridge regression.

In order to prove existence of a minimizer for Problem 1.1, we shall impose the follow-
ing assumptions on Y , ℓ and v.
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Assumption 1.1. The label set Y ⊂ R
d is compact, and the loss function ℓ : R

d ×Y → R+

is a continuous function of 2-growth, see also Definition 3.1.

In addition, following the previous works on ODE-Net [7, 48, 49, 52, 61], we impose
the assumption below that the neural network v(x, θ) is linear with respect to θ, but not
necessarily linear with respect to x.

Assumption 1.2. The neural network v in (1.2) is linear with respect to θ, i.e. the parame-
ter θ is a d × p matrix and v satisfies

v(x, θ) = θ f (x), (1.3)

where f : R
d → R

p is a Lipschitz continuous function.

Assumption 1.2 is not a serious restriction. In fact, [58, Theorem 1] shows that for a neu-
ral network v that is nonlinear with respect to θ, there exists another neural network that
is linear with respect to θ and can approximate the solution µ of ODE-Net (1.2). Thus,
Assumption 1.2 is not so restrictive in discussing the existence of the minimizer for Prob-
lem 1.1. Rather, Assumption 1.2 can address neural networks unbounded with respect to
parameters θ, which commonly appear in modern DNNs. In contrast, previous theoretical
works often assume a bounded neural network, details of which will be given in Section 2
below.

Under these assumptions, we obtain one of our main results in the present paper.

Theorem 1.1 (Existence of a Minimizer). Under Assumptions 1.1 and 1.2, there exists a mini-

mizer (µ, θ) ∈ C([0, T]; (P2(R
d ×Y), W2))× L2(0, T; R

m) for Problem 1.1.

It should be noted that by virtue of this theorem, one can assume that the deep learning
model as in Problem 1.1 with Assumptions 1.1 and 1.2 is well-defined so that we can
pursue the mathematical analysis of the learning of ODE-Nets. We also remark here that
the uniqueness of such minimizers cannot be generally expected since the problem is over-
determined with a large degree of freedom in θ. We will also mention the uniqueness in
Remark 4.3 below.

We note that Assumption 1.2 does not hold for all neural networks. For example, two-

layer ReLU networks v(x, θ) = A(Bx)+, θ = (A, B), A, B ∈ R
d×d, are not linear with

respect to θ. This network is quite commonly used, not only in ODE-Net but also in the
so-called ResNet, as illustrated in [28, Fig. 2].

In order to provide existence results for these cases as well, we shall consider an ideal or
relaxed version of Problem 1.1. To this end, we shall employ the universal approximation
theorem by Cybenko [18] or the Kolmogorov-Arnol’d representation theorem shown by
[5,33,55], they insist that neural networks v can approximate or represent arbitrary vector
fields. Those theorems inspire that the ODE-Net is no longer parametrized by θ, i.e. the
ODE-Net is just driven by a family of vector fields (vt)t∈[0,T]. From this perspective, our
ideal setting for the learning reads:

Problem 1.2 (Ideal Learning Problem). Let λ > 0 be a strictly positive constant, let ℓ : R
d ×

Y → R+ be continuous, and let µ0 ∈ Pc(Rd ×Y) be a given input data. Set
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Ĵ(µ, v) :=
∫

Rd×Y
ℓdµT +

∫ T

0

∫

Rd×Y
λ

2
|v(x, t)|2dµt(x, y)dt (1.4)

for µ ∈ C([0, T]; (P2(R
d × Y), W2)) and v ∈ L2(dµtdt), where v ∈ L2(dµtdt) means that

the squared integral of v(x, t) in the measure dµt(x) over R
d is integrable in time t over

[0, T]. Then an ideal learning problem constrained by ODE-Net is posed as the following
constrained minimization problem:

inf
{

Ĵ(µ, v) µ ∈ C
(
[0, T];

(
P2(R

d ×Y), W2

))
, v ∈ L2(dµtdt)

}

subject to
{

∂tµt + divx(vtµt) = 0 (in the sense of Definition 3.2),

µt|t=0 = µ0.
(1.5)

In contrast to Problem 1.1, where the parameter θ is a variable to the functional J, the vector

field v itself is a variable to the functional Ĵ in Problem 1.2. For this idealized problem
containing a broader class of vector fields, we also establish the existence of a minimizer
as in the following theorem.

Theorem 1.2 (Existence of a Minimizer). Under Assumption 1.1, there exists a minimizer µ ∈
C([0, T]; (P2(R

d ×Y), W2)) and v ∈ L2(dµtdt) for Problem 1.2.

We have been discussing the well-posedness of “learning” of ODE-Net by formulating
it via a mean-field optimal control problem, in the sense that we have to control trajectories
in the space of probability measures µt. Through the above discussion, it is suggested that
such a learning framework successfully gives a mathematical way to analyze the learn-
ing processes of DNNs. Our main results obtained in this analysis are interesting from
the viewpoint of the calculus of variations in that minimizers exist for nonlinear optimal
control problems such as Problems 1.1 and 1.2. Moreover, the proofs of our theorems will
ensure that every minimizing sequence contains a convergent subsequence in a suitable
topology, leading to the well-posedness of sequential minimization algorithms such as
gradient descent (GD).

1.2 Contributions of the paper

The present paper contributes to establishing the existence of a minimizer under situations
where the regularization parameter λ is not necessarily large in Theorem 1.1. This situa-
tion can be addressed because, in contrast to the paper [10], we use an argument that does
not rely on a strong convexity of J to prove the existence of a minimizer. In addition, this
theorem can apply to unbounded and non-differentiable neural networks v(x, θ), which
are important targets in applications.

As a comparison, a key to our convergence results is to obtain the existence of a min-
imizer of both µ and θ under reasonable assumptions. Bonnet et al. [10] required strong
convexity of J, or a sufficiently large parameter λ, in order to obtain strong compactness.
In addition, Thorpe and Gennip [57] and Esteve et al. [24] obtained existence results un-
der an H1-regularization of θt, and Herty et al. [29] under boundedness for the Lipschitz
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constant of θ : [0, T] → R
m, broadly speaking, both of them are assuming that the “dif-

ferentials” of the parameters θt in time are controlled. While these studies are novel in
that they do not impose assumptions on regularization parameters such as λ, the assump-
tions of the continuity or differentiability on parameters θ : [0, T] → R

m should be relaxed
or removed because the functions that ODE-Net can approximate are limited and the ex-
pected value of ℓ cannot be sufficiently small. Furthermore, in the field of ensemble op-
timal control, an existence result in the L2-setting using ODE similar to (2.4) is proved by
Scagliotti [53, Theorem 3.2]. Pogodaev [45] proved the existence of optimal control of the
continuity equation with parameters θ relaxed to Young measures on a bounded domain.
As a corollary, the existence of optimal parameters follows if the neural network satisfies
certain convexity conditions, but the continuity of an optimal curve µ∗ with respect to t is
not clear.

Theorem 1.1 also provides one theoretical justification for the experimental algorithm
in [25]. The authors developed an algorithm to approximate the minimizer of the Bena-
mou-Brenier type problem, which is guaranteed to exist. However, the guarantee does not
hold for the algorithm because the vector field v in the continuity equation is constrained
by the neural network vθ . This study supplements the existence of a minimizer, even in
this case.

In Section 5, we combine the neural network property of universal approximation with
the training of ODE-Net in Problem 1.2. This new combination makes it possible to ob-
tain existence results (Theorem 1.2) without the linearity assumption (Assumption 1.2). It
is also interesting that Problem 1.2 has a similar formulation to (variational) mean-field
game (MFG) [9, 35, 50]. This similarity between deep learning and MFG has recently been
pointed out by E et al. [23] and Ruthotto et al. [47]. Our results are expected to suggest
a strong connection between MFG and ODE-Net. In fact, for the proof of Theorem 1.2,
we will give an auxiliary theorem (Lemma 5.1) that is proved via the so-called Lagrange
perspective for easy handling of the vector fields v (see also [50, Section 2.2.2]).

1.3 Organization of the paper

This paper is organized as follows. In Section 2, we will give a brief review of previous
studies on ODE-Net. In the first half, we summarize the history of the development of
ODE-Net, and in the second half, we review mathematical formulations of the learning of
ODE-Net. In Section 3, we will provide preliminary facts on the convergence of probabil-
ity measures and distributional solutions of the continuity equation, which will be used to
set up and prove our main results. In Section 4, we will prove Theorem 1.1. By virtue of
the regularization term in (1.1) and the Benamou-Brenier formula in Lemma 3.6, we will
easily get the appropriate compactness of minimizing sequences. Hence, we can apply
the direct method of the calculus of variations to reach the existence results. In Section 5,
we will exhibit how Problem 1.2 is formulated through an idealization in a detailed man-
ner, and then we prove our main result (Theorem 1.2). One cannot prove the theorem by
simply applying the arguments used in Section 4. Instead, we show the theorem by the
use of a supplementary problem (see Problem 5.1 and Lemma 5.1) based on the Lagrange
perspective. Section 6 presents a summary of the paper and discusses some tasks to be
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undertaken in future studies. In Appendices A and B, we show and review the existence
results for problems given by Bonnet et al. [10] and Thorpe and Gennip [57]. These prob-
lems adopt different regularization terms from Problem 1.1. By comparing the proofs of
Theorems 1.1, A.1 and B.1, one can observe differences in how compactness is obtained to
minimizing sequences.

2 Background and related works

This section provides an overview of previous research on learning of ODE-Net. Sec-
tion 2.1 reviews how ODE-Net has been proposed. Section 2.2 describes how the learning
has been formulated and discussed.

2.1 Background to the development of ODE-Net

Before describing the history of the development of ODE-Net, we shall review a type of
DNN called ResNet that led to the improvement of DNN’s performance. ResNet was
devised to facilitate optimization of DNN [28]. The simplest L-layer ResNet consists of
the difference equation

x0 = g(x, θ),

xt+1 = xt + v(xt, θt), t = 0, . . . , L − 1,

y = h(xL, θL),

(2.1)

where x ∈ R
d is an input data, y ∈ Y denotes a final output, and g(•, θ) : R

d → R
d0

and h(•, θL) : R
dL → Y ⊂ R

dY are some linear maps with parameters θ ∈ R
d0×d and

θL ∈ R
dY×dL respectively. In addition, v(•, θt) : R

dt → R
dt+1 is multiple compositions

of some affine maps with θt, and nonlinear functions, called activation functions, such
as rectified linear unit (ReLU) [42]. Out of various models of (Deep) Neural Networks,
we shall refer to the above mapping v(•, θt) associated with ResNet as a neural network
simply in this paper. Experimentally, ResNet is known to perform better than other DNNs.
In particular, deep ResNet, i.e. (2.1) with L ≫ 1 outperforms other machine learning
methods.

When ResNet is very deep, it is natural to observe ResNet (2.1) as the explicit Eu-
ler discretization of an ODE with unit step size. With the pioneering works [22, 27, 54],
a trend started to analyze DNNs and develop algorithms by replacing “discrete” DNNs
with “continuum” ODEs. For example, Haber et al. [27] employed the linear stability anal-
ysis in the theory of dynamical systems to stabilize ResNet, and Lorin et al. [37] utilized
the parallel computing for differential equations to speed up the training of ResNet. These
“continuum” ODEs corresponding to DNNs are often called Neural ODE [16], or ODE-
Net [46, 62]. Specifically, the following parameterized dynamical system is often called
ODE-Net:

x0 = g(x, θ),

ẋt = v(xt, θt), t ∈ (0, T),

y = h(xT, θT),

(2.2)
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where x ∈ R
d, y ∈ Y , g : R

d × R
d×d → R

d, h : R
d × R

dY×d → Y and v are defined as in

(2.1). Note that for simplicity, it is assumed that xt ∈ R
d for any t ∈ [0, T], and accordingly,

the neural network v(•, θt) becomes a vector field on R
d. Also, the finite-dimensional

parameters θ0, θ1, . . . , and θL−1 in (2.1) are replaced with a (measurable) function on [0, T].
While θ : [0, T] → R

m is sometimes supposed to be continuous for theoretical reasons, the
function θ on [0, T] can be discontinuous during the learning process as seen in [39, Fig. 2]
and [6, Fig. 1]. Thus, we impose the Lebesgue integrability condition on θ in our setting.
The terminal time T > 0 is an arbitrary given constant.

Although there is not so much mathematical research on ODE-Net, the basic properties
of general DNNs have also been studied for ODE-Net. For example, ODE-Net has univer-
sal approximation properties proved by [56] and that the objective functional J has no local
minima shown in [19, 20, 38]. It is also known that specific additional assumptions (e.g.
continuity of θ : [0, T] → R

m) are necessary to regard ResNet as the discretization of ODE-
Net (see, e.g. [31, 49, 57]) and to guarantee the convergence of learning algorithms [31].

2.2 Formulations of the learning of ODE-Net and existence results

Practically, people want ODE-Net to output a desired y for an input x. For this purpose,
ODE-Net needs to learn, i.e. we optimize the parameter θ in ODE-Net (2.2). Thus, it is
necessary to establish a theory of the learning of ODE-Net. E et al. [22, 23] were the first
to attempt a general formulation of the learning of ODE-Net (2.2). They modeled the
learning as a mean-field optimal control problem as follows.

Problem 2.1 (Learning Problem Constrained by ODE-Net, [23, Eq. 3]). Let Y = R
l, let Θ

be a subset of R
m and let v : R

d × R
m → R

d, ℓ : R
d ×Y → R+ and L : R

d × R
m → R+ be

continuous. For a given input data µ0 ∈ Pc(R
d ×Y), the learning problem constrained by

ODE-Net is posed as the following constrained minimization problem:

min
θ∈L∞(0,T;Θ)

E

[
ℓ(xT, y) +

∫ T

0
L(xt, θt)dt

]
(2.3)

subject to
{

ẋt = v(xt, θt), t ∈ (0, T),

(x0, y) ∼ µ0.
(2.4)

The meanings of symbols appearing in Problem 2.1 are as follows. The given probability
measure µ0 is called training data, a probability distribution of input-output pairs of a ran-

dom variable (x, y) in (2.2) used for the learning. The vector field v(•, θ), θ ∈ R
m, on R

d

represents the neural network explained in (2.2). After expanded by the linearity of the ex-
pected values, the first term of (2.3) represents the expected value of a loss function ℓ(x, y),
which is the target we want to make as small as possible during the learning process.
One often uses the squared loss ℓ(x, y) = |x − y|2/2 for regression problems or the cross-
entropy for classification problems (see, e.g. Pytorch’s document for the specific form).
However, when using a neural network with many parameters, minimizing only the loss
E[ℓ(xT, y)] can lead to the so-called overfitting, see basic statistics and machine learning

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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textbooks, e.g. [41, Section 1.4.7]. To avoid this overfitting, we also minimize the second
expected value, which is called a regularization term. For example, some researchers use
the L2-regularization L(x, θ) = λ|θ|2/2, L1-regularization L(x, θ) = λ|θ|, and entropy reg-
ularization used in [26, 31]. In addition, the kinetic regularization L(x, θ) = λ|v(x, θ)|2/2
that Finlay et al. [25] proposed with the help of the Benamou-Brenier formula can make
the trajectories of ODEs’ solutions well-behaved. Another way to deal with the overfitting
is to restrict Θ ⊂ R

m to compact sets. In optimal control theory, by virtue of the compact-
ness of Θ, one can easily show the existence of optimal parameters (see, e.g. [13, Theo-
rem 5.1.1]). It should be noted that these various regularizations require an assumption
upon a function space to which the parameters θ belong. As is seen in the above Prob-
lem 2.1, E et al. [23] set the function space to L∞-space.

Remark 2.1 (On Neglecting Input and Output Transformations in (2.2)). ODE-Net intro-
duced in (2.2) contains input and output transformations g and h, leading to a learning

problem corresponding to a minimization with respect to θ ∈ R
d×d, θ• ∈ L2(0, T; R

m)
and θL ∈ R

dY×d. However, current theoretical studies of ODE-Net often use formulations
that ignore g(x, θ) and h(x, θL), and consider minimization only in θt as in Problem 2.1.
In the author’s view, the reason for this neglect is that the existence of minimizers for θ
and θL is easy to check if one proposes a variational formulation that considers g and h.

For example, if one imposes the L2-regularization |θ|2 + |θL|2 for the parameters θ ∈ R
d×d

and θL ∈ R
dY×d associated with g(•, θ) : x 7→ x0 and h(•, θL) : xT 7→ y respectively, the

existence of minimizers θ∗ ∈ R
d×d and θ∗L ∈ R

dY×d follows immediately by virtue of
the direct method of the Calculus of Variations, a minimizing sequence of ((θn, θn

L))n has
a convergent subsequence thanks to the Bolzano-Weierstrass theorem. Hence, only the
ODE ẋt = v(xt, θt) in (2.2) is sometimes referred to as ODE-Net. On the other hand, g
and h should not be ignored when we explore the learning process, that is, the dynamics
of solving the problem with mathematical optimization methods such as GD. It is reported
that singular values of a parameter defining g and h affect the convergence of GD [7, The-
orem 2].

On the other hand, for Problem 2.1, Bonnet et al. [10, Section 1.4] brought a measure-
theoretical formulation inspired by mean-field optimal control problems. A trick used in
their formulation is that laws µt, t ∈ (0, T), of random variables (xt, y) subject to (2.4)
satisfy the following continuity equation:

{
∂tµt + divx

(
µt(x, y)v(x, θt)

)
= 0, (x, y) ∈ R

d ×Y , t ∈ (0, T),

µt|t=0 = µ0,

in the sense of distributions defined in Definition 3.2. They utilized this trick to translate
Problem 2.1 into the following Problem 2.2 in the case of L(x, θ) = λ|θ|2.

Problem 2.2 (Measure-Theoretical Learning Problem, [10, Eq. 1.8]). Let λ > 0 be constants

and let v : R
d ×R

m → R
d and ℓ : R

d ×Y → R+ be continuous. For a given input data µ0 ∈
Pc(R

d × R
d), the learning problem constrained by ODE-Net is posed as the following

constrained minimization problem:
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min
θ∈L2(0,T;Rm)

∫

Rd×Rd
ℓ(x, y)dµT(x, y) + λ

∫ T

0
|θt|2dt (2.5)

subject to
{

∂tµt + divx

(
v(x, θt)µt

)
= 0, (x, y) ∈ R

d × R
d, t ∈ (0, T),

µt|t=0 = µ0.
(2.6)

In addition, µ belongs to Cw([0, T];Pc(Rd × R
d)) which is the space of narrowly continu-

ous curves (see also Definition 3.1).

As for Problem 2.2, Bonnet et al. [12, Theorem 3.2] studied the unique existence of a min-
imizer θ∗ under the assumption that λ > 0 is sufficiently large and the neural network
v(x, θ) is bounded for θ. In practice, however, in order to minimize the loss, the regular-
ization parameter λ is usually set to be a sufficiently small positive number rather than
a large one.

The difficulty in obtaining existence theorems to Problem 2.2 is attributed to the varia-
tional formulation. From (2.5) and (2.6), we observe that the learning of ODE-Net has the
following aspects:

(i) The objective functional J in (2.5) is minimized over an infinite-dimensional space
L2(0, T; R

m).

(ii) The minimization is constrained by the continuity equation (2.6) which is a differen-

tial equation on the infinite-dimensional space of probability measures P(Rd ×Y).

When one tries to show the existence of a minimizer for a variational problem such as
Problem 2.2 by using the direct method of the Calculus of Variations, it is difficult to obtain
the strong compactness of minimizing sequences due to the infinite dimensionality in (i).
In addition, even if minimizing sequences converge, it is not generally obvious whether
limits satisfy the continuity equation (2.6) mentioned in (ii).

3 Preliminaries

This section presents fundamental mathematical tools.

3.1 Compactness lemma

For T > 0, we denote by C([0, T]; X) the set of continuous mappings from [0, T] to a topo-
logical space X with the uniform convergence topology.

Lemma 3.1 (Ascoli-Arzelá’s Theorem). Let (X, d) be a metric space. Then, a family F ⊂
C([0, T]; X) is relatively compact in the uniform convergence topology if and only if

• for each t ∈ [0, T], the set {x ∈ X x = f (t) for some f ∈ F} is relatively compact in X,
and

• F is equi-continuous.
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Proof. A more general version of the above lemma in the case where X is a uniform space
is proved in, e.g. [32, Chapter 7.17].

3.2 Probability measures and the Wasserstein space

Hereinafter, P(X) denotes the set of Borel probability measures on a separable metric
space X. Here, we review some definitions and lemmas regarding properties and conver-
gence of probability measures, as well as properties of the Wasserstein space.

Definition 3.1. Let p ≥ 1 and let (X, d) be a Polish space, i.e. a complete and separable metric
space.

(i) (narrow convergence) A sequence (µn) in P(X) is said to be narrowly convergent to
µ ∈ P(X) as n → ∞ if

lim
n→∞

∫

X
f dµn =

∫

X
f dµ for every function f ∈ Cb(X),

where Cb(X) is the space of continuous and bounded real functions defined on X. A topology
induced by the convergence is said to be the narrow topology.

(ii) (uniformly integrable p-moments) A subset K in P(X) has uniformly integrable p-mo-
ments if

lim
R→∞

sup
µ∈K

∫

X\BX(R,x)
d(x, x)pdµ(x) = 0 for some x ∈ X,

where BX(R, x) is the open ball of radius R and center x in X.

(iii) (finite p-th moment) A probability measure µ ∈ P(X) is said to have the finite p-th mo-
ment if ∫

X
d(x, x)pdµ(x) < ∞ for some x ∈ X,

and the set of probability measures on X with the finite p-th moment is denoted by Pp(X).

(iv) (function of p-growth) A function f : X → R is said to have p-growth if there exist A, B ≥ 0
and x ∈ X such that

| f (x)| ≤ A + B
(
d(x, x)

)p
, ∀ x ∈ X.

(v) (Wasserstein distance) The (Lp-)Wasserstein distance between µ1, µ2 ∈ Pp(X) is defined by

Wp(µ
1, µ2) := inf

{(∫

X2
d(x1, x2)

pdπ(x1, x2)

) 1
p
∣∣∣∣π ∈ Γ(µ1, µ2)

}
,

where Γ(µ1, µ2) denotes the set of all Borel probability measures π on X2 such that for any
measurable subset A ⊂ X,

π[A × X] = µ1[A], π[X × A] = µ2[A].
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By using the Hölder inequality, one easily gets

Corollary 3.1. Let 1 ≤ p < q < ∞, let X be a Polish space and let µ1, µ2 ∈ Pq(X). Then

Wp(µ1, µ2) ≤ Wq(µ1, µ2).

Lemma 3.2 (Kantorovich-Rubinstein Duality, [59, Theorem 1.14]). Let (X, d) be a Polish
space and let ρ0, ρ1 ∈ P1(X). Then

W1(ρ0, ρ1)=sup

{∫

X
ϕd(ρ1−ρ0)

∣∣∣∣ ϕ ∈ L1(|ρ1−ρ0|), Lip
X

(ϕ) := sup
x 6=y∈X

|ϕ(x)−ϕ(y)|
d(x, y)

≤1

}
.

Proof. See [21, Section 11.8].

A sufficient condition for a family with the uniformly integrable p-moments is known,
and the proof of the following lemma is given for the sake of the reader’s convenience.

Lemma 3.3 ([4, Section 5.1.1]). Let p ≥ 1. If a subset K ⊂ P(X) satisfies

sup
µ∈K

∫

X
d(x, x)p1dµ(x) < +∞

for some p1 > p and x ∈ X, then K has uniformly integrable p-moments.

The following lemma shows a fine criterion that reveals whether a sequence (µn) ⊂
P(X) has the uniformly integrable p-moments.

Lemma 3.4 (Narrow Convergence for p-Growth Functions). A sequence (µn) in P(X) has
uniformly integrable p-moments if and only if

1. the sequence is narrowly convergent to µ ∈ P(X), and

2. for every continuous function f : X → R of p-growth,

lim
n→∞

∫

X
f dµn =

∫

X
f dµ.

Proof. See [4, Lemma 5.1.7].

By Lemma 3.4 and [4, Proposition 7.1.5], convergence in Wp and narrow convergence
for p-growth functions are equivalent.

3.3 Continuity equation

The following definition and lemma are based on a famous text [4, Chapter 4], to which
we refer the reader who wants a general discussion of the continuity equations.

Definition 3.2 (Solutions in the Sense of Distributions). Let T > 0. A continuous curve
µ ∈ Cw([0, T];P(Rd ×Y)) is called a solution to the continuity equation

∂tµt + divx(vtµt) = 0 in (0, T)× R
d ×Y , (3.1)
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in the sense of distribution, if

∫ T

0

∫

Rd×Y

(
∂tψt(x, y) +∇xψt(x, y) · vt(x)

)
dµt(x, y)dt = 0 (3.2)

for every ψ ∈ C∞
c ((0, T)× R

d × Y). Here a mapping vt : R
d ∋ x 7→ vt(x) ∈ R

d, t ∈ [0, T], is
a Borel vector field.

In the following, we adopt Definition 3.2 as the solution of the continuity equation (3.1)
with a vector field v.

Lemma 3.5 (Representation Formula for (3.1), [4, Proposition 8.1.8]). Let T > 0 and let

µ ∈ Cw([0, T];P(Rd ×Y)) be a distributional solution of (3.1) with Borel vector fields v = (vt)t.
Assume that v satisfies that ∫ T

0

∫

Rd×Y
|vt|dµtdt < ∞, (3.3)

and ∫ T

0

(
sup

K

|vt|+ Lip
K

(vt)
)

dt < ∞ for every compact set K ⊂ R
d. (3.4)

Here LipK(vt) denotes a Lipschitz constant of the mapping vt : R
d → R

d on K, i.e.

Lip
K

(vt) := sup
x 6=y∈K

|vt(y)− vt(x)|
|y − x| .

Then, for µ0-a.e. (x, y) ∈ R
d ×Y , there exists a unique solution X•(x) ∈ C([0, T]; R

d) such that

X0(x) = x,

d

dt
Xt(x) = vt

(
Xt(x)

)
.

Furthermore, the solution µt is represented as

µt = (Xt × IdY )#µ0, ∀ t ∈ [0, T], (3.5)

where IdX : X → X is the identity mapping on X.

Proof. The existence result can be shown by the use of the standard argument of the Pi-
card iteration method. For the representation result, details are proved in, e.g. [4, Proposi-
tion 8.1.8].

The following lemma indicates the strong relation between the Wasserstein distance
and the continuity equation.

Lemma 3.6 (Benamou-Brenier Formula, [8]). Let ρ0, ρ1 ∈ P2(R
d). Then

W2(ρ0, ρ1)
2 = inf

{∫ 1

0

∫

Rd
|vt(x)|2dρt(x)dt

∣∣∣ (ρ, v) ∈ V(ρ0, ρ1)

}
, (3.6)
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where

V(ρ0, ρ1) :=



(ρ, v) ∈ C

(
[0, 1];P2(R

d)
)
× L2(dρtdt)

(3.1) holds in the sense of
Definition 3.2, and
ρt|t=0 = ρ0, ρt|t=1 = ρ1.



 .

Proof. See [3, Theorem 17.2].

4 Kinetic regularization and an existence theorem

In this section, we discuss the existence of a minimizer to the kinetic regularized learning
problem introduced in Problem 1.1. The section begins with some background on kinetic
regularization. Subsequently, we proceed to the proof of Theorem 1.1. Throughout the
paper, we denote by C a generic non-negative constant which may vary from line to line.

4.1 Kinetic regularization

In general, to argue minimizers of a functional J as in (1.1) via the direct method of the
calculus of variations, a minimizing sequence ((µn, θn))n of the functional needs to be
compact in an appropriate topological space. Moreover, the topology must be sufficiently
strong to lead to a (lower semi) continuity of the functional. Driven by this necessity,
some previous studies have tried to strengthen the topology of the space of the parameter
θ : [0, T] → R

m in [10,29,57]. However, this strong topology leads to unusual assumptions,
as reviewed in Section 2.2. Instead, we seek for compactness of the continuous curves

µn : [0, T] → P(Rd × Y), rather than of the parameters θn (n ∈ N). This idea is rarely
seen in machine learning but often in the MFG theory (see, e.g. [43, Theorem 6.6.] and
[11, Theorem 6]). To illustrate this idea, we need the following lemma derived from the
Benamou-Brenier formula (Lemma 3.6).

Lemma 4.1 (Uniform Continuity Estimate). Let µ ∈ Cw([0, T];P(Rd × Y)) be a distribu-

tional solution to the continuity equation (3.1) with Borel vector fields vt : R
d ∋ x 7→ vt(x) ∈ R

d,
t ∈ [0, T]. Then it holds that

W2(µt, µs)
2 ≤ (s − t)

∫ s

t

∫

Rd×Y
|v(τ, x)|2dµτ(x, y)dτ

for 0 ≤ t < s ≤ T.

In the rest of the paper, we often abbreviate
∫

Rd×Y f (x)dµ(x, y) to
∫

Rd f dµ for a function

f : R
d → R independent of y ∈ Y .

Proof. From Lemma 3.6, we have

W2(µt, µs)
2 ≤ inf

ρ,w

{∫ 1

0

∫

Rd×Y
|wt(x)|2dρt(x, y)dt ∂tρ + divx(wρ) = 0, ρ0 = µt, ρ1 = µs.

}

= inf
ρ,w

{∫ s

t

∫

Rd
|wτ |2dρτd

τ

s − t
(s − t)∂τρ + divx(wρ) = 0, ρt = µt, ρs = µs.

}
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= (s − t) inf

{∫ s

t

∫

Rd
|wτ |2dρτdτ ∂τρ + divx(wρ) = 0, ρt = µt, ρs = µs.

}

≤ (s − t)
∫ s

t

∫

Rd
|vτ |2dµτdτ

for 0 ≤ t < s ≤ T.

This lemma readily leads to the following:

Corollary 4.1. Let n ∈ N and let µn ∈ Cw([0, T];Pc(Rd × Y)) be a distributional solution to
the continuity equation (3.1) corresponding to Borel vector fields (vn

t )t∈[0,T]. If

sup
n∈N

∫ 1

0

∫

Rd

∣∣vn
t

∣∣2 dµtdt < ∞,

then the family (µn) is equi-continuous.

To use Corollary 4.1 explicitly, we add a term

λ

2
|v(x, θ)|2, λ > 0, (4.1)

to the objective functional J (1.1) in Problem 1.1. This regularization term |v(x, θ)|2 is
reported to be effective in generative models in [25]. Here, we use kinetic regularization
for simplicity, but in fact, one can prove the existence of a minimizer without a kinetic
regularization term. See Remark 4.2 for details.

4.2 Existence theorem

Our strategy is to use the direct method of the calculus of variations, containing the fol-
lowing three steps:

(i) Take a minimizing sequence ((µn, θn))n and extract a convergent subsequence in suit-
able topologies.

(ii) Check that J is lower semicontinuous with respect to those topologies.

(iii) Verify that the limits of convergent subsequences satisfy the constraint (1.2).

As for a minimizing sequence, we get a weakly convergent subsequence of (θn) in L2(0, T;

R
m) and the strongly convergent subsequence of (µn) in C([0, T]; (P2(R

d×Y), W2)) by
virtue of Corollary 4.1 and the Ascoli-Arzelá theorem. From these convergences and As-
sumption 1.2, we observe that the functional J is lower semicontinuous in (µ, θ). Also, we
can verify that the limits solve the continuity equation again. This is why we impose the
kinetic regularization term onto the functional J.

For the proof of Theorem 1.1, we need a lemma on the boundedness of the support
of µt uniformly in t ∈ [0, T].
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Lemma 4.2. Let θ ∈ L2(0, T; R
m) and let µ ∈ C([0, T]; (P2(R

d × Y), W2)) be a distributional
solution of (1.2) corresponding to vector fields (v(•, θt))t∈[0,T]. If Assumption 1.2 holds, there

exists a radius R∗ = R∗(µ0, f , T, ‖θ‖L2(0,T;Rm)) > 0 such that

supp µt ⊂ B
Rd×Y (R∗, 0) := B

Rd×Y (R∗), ∀ t ∈ [0, T].

Proof. To use Lemma 3.5, we check the assumptions (3.3) and (3.4). By Assumption 1.2
and the Lipschitz continuity of f , we have

∫ T

0

∫

Rd×Y
|v(x, θt)|dµtdt

≤
∫ T

0

∫

Rd×Y
|θt| | f (x)|dµtdt

≤ ‖θ‖L2(0,T;Rm)

√∫ T

0

(∫

Rd×Y
| f (x)|dµt(x, y)

)2

dt

≤
√

T‖θ‖L2(0,T;Rm)

√
sup

t∈[0,T]

∫

Rd×Y
| f (x)|2dµt(x, y)

≤ C‖θ‖L2(0,T;Rm)

(
1 + sup

t∈[0,T]

√∫

Rd×Y
|x|2dµt(x, y)

)
< ∞.

Similarly, it holds that

∫ T

0

(
sup

K

|v(•, θt)|+ Lip
K

|v(•, θt)|
)

dt ≤ C
(

T + ‖θ‖2
L2(0,T;Rm)

)
< ∞

for every compact set K ⊂ R
d × Y . We thus find from Lemma 3.5 that µt can be repre-

sented as µt = (Xt, IdY )#µ0 where Xt : R
d → R

d is the flow maps of the corresponding
ODE satisfying 




d

dXt(x)
t = v

(
Xt(x), θt

)
, t ∈ (0, T),

X0(x) = x

for almost all (x, y) ∈ supp µ0. By Grönwall’s inequality and Assumption 1.2, we have

|Xt(x)| ≤
(
|x|+ C

∫ T

0
|θs|ds

)
exp

(
C
∫ T

0
|θs|ds

)

≤ C
(

diam(supp µ0) + T +
√

T‖θ‖L2(0,T;Rm)

)
exp

(
C
√

T‖θ‖L2(0,T;Rm)

)
≤ R∗

for some R∗ > 0 independent of t since θ ∈ L2(0, T; R
m), whence follows supp µt ⊂ B(R∗)

for all t ∈ [0, T].

Remark 4.1. Assumption 1.2 can be generalised to Assumption 6.1 when one only proves
Lemma 4.2. See also Lemma A.1.
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With Lemma 4.2, one can now proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. Set

S =
{
(µ, θ) ∈ C

(
[0, T];

(
P2(R

d ×Y), W2

))
× L2(0, T; R

m) (µ, θ) satisfies (1.2)
}

.

Since (µ0, 0) ∈ S is a trivial and regular solution to the continuity equation, we see that
S 6= ∅. It is also obvious that 0 ≤ inf J < +∞ because the integrand ℓ is non-negative.
Then, there exists a minimizing sequence ((µn, θn))∞

n=1 ⊂ S such that J(µn , θn) → infS J as
n → ∞. For the sequence, there exists a constant C > 0 independent of n such that

λ

2

∫ T

0

∫

Rd

∣∣θn
t f (x)

∣∣2dµn
t (x)dt ≤ C, (4.2)

ǫ

2

∫ T

0

∣∣θn
t

∣∣2dt ≤ C. (4.3)

From Lemma 4.1 and (4.2), we have for 0 ≤ t < s ≤ T,

W2

(
µn

t , µn
s

)2 ≤ (s − t)
∫ s

t

∫

Rd

∣∣θn
τ f (x)

∣∣2dµn
τ(x)dτ ≤ 2C

λ
(s − t).

Hence, it follows that (µn) ⊂ C([0, T]; (P2(R
d × Y), W2)) is equi-continuous. Also, by

Lemma 4.2 and (4.3), there exists a constant R∗ > 0 independent of n and t such that

µn
t ∈

{
µ ∈ Pc(R

d ×Y) supp µ ⊂ B
Rd×Y (R∗)

}
∀ n ∈ N, ∀ t ∈ [0, T].

In addition, the set {µ ∈ Pc(R
d ×Y)| supp µ ⊂ B

Rd×Y (R∗)} is compact with respect to L2-
Wasserstein topology because of [4, Proposition 7.1.5]. Hence, Lemma 3.1 and (4.3) imply

that there exist a subsequence of (n), still denoted by n, µ∗ ∈ C([0, T]; (P2(R
d × Y), W2))

and θ∗ ∈ L2(0, T; R
m) such that

µn → µ∗ strongly in C
(
[0, T]; (P2(R

d ×Y), W2)
)
, (4.4)

θn → θ∗ weakly in L2(0, T; R
m). (4.5)

By the following Claim 4.1, we can deduce that (µ∗, θ∗) solves (1.2) in the sense of distri-
bution.

Claim 4.1. For the limits µ∗ and θ∗, it holds that

∫ T

0

∫

Rd×Y

(
∂tζt +∇xζt · v

(
•, θ∗t

))
dµ∗

t dt = 0 (4.6)

for all ζ ∈ C∞
c ((0, T)× R

d ×Y). Moreover, supp µ∗ ⊂ B
Rd×Y (R) for some R > 0.

Proof. We already know that

∫ T

0

∫

Rd×Y
∂tζtdµn

t dt +
∫ T

0

∫

Rd×Y
∇xζt · v

(
x, θn

t

)
dµn

t dt = 0 (4.7)
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for all ζ ∈ C∞
c ((0, T)× R

d ×Y) and n ∈ N. It follows that

0 =
∫ T

0

∫

Rd×Y
∂tζt d

(
µn

t − µ∗
t

)
dt

+
∫ T

0

∫

Rd×Y
∇xζt(x) · v

(
x, θ∗t

)
d
(
µn

t − µ∗
t

)
(x)dt

+
∫ T

0

∫

Rd×Y
∇xζt(x) ·

(
v
(

x, θn
t

)
− v
(

x, θ∗t
))

dµ∗
t (x)dt

+
∫ T

0

∫

Rd×Y
∇xζt(x) ·

(
v
(

x, θn
t

)
− v
(

x, θ∗t
))

d
(
µn

t (x)− µ∗
t (x)

)
dt

+
∫ T

0

∫

Rd×Y
∂tζt dµ∗

t dt +
∫ T

0

∫

Rd×Y
∇xζt(x) · v

(
x, θ∗t

)
dµ∗

t (x)dt

=: I1 + I2 + I3 + I4 + I5. (4.8)

It follow from (4.4) that

|I1| ≤
∫ T

0
Lip

Rd×Y
(∂tζt)

∫

Rd×Y
∂tζt

Lip
Rd×Y (∂tζt)

d
(
µn

t − µ∗
t

)
dt

≤ C
∫ T

0
W1

(
µn

t , µ∗
t

)
dt ≤ C

∫ T

0
W2

(
µn

t , µ∗
t

)
dt

≤ CT sup
t∈[0,T]

W2

(
µn

t , µ∗
t

)
→ 0,

as n → ∞ by the Kantorovich-Rubinstein duality (Lemma 3.2) and Corollary 3.1. By As-

sumption 1.2, the function ∂tζt(x)v(x, θ∗t ) is Lipschitz continuous in x and y over R
d ×Y ,

and thus we see again from Lemma 3.2 and Corollary 3.1 that

|I2| ≤ C
∫ T

0
W1

(
µn

t , µ∗
t

)
dt ≤ C

∫ T

0
W2

(
µn

t , µ∗
t

)
dt

≤ CT sup
t∈[0,T]

W2

(
µn

t , µ∗
t

)
→ 0 as n → ∞.

For I3, we use Assumption 1.2 to apply (4.5). We set

ϕ• :=
∫

Rd×Y
∇xζ• f⊤dµ∗

• ∈ L2(0, T; R
m).

In fact, it is shown that

‖ϕ‖2
L2(0,T;Rm) ≤

∫ T

0

∫

Rd×Y

∣∣∇xζt f⊤
∣∣2dµn

t dt ≤ C

(
1 + sup

t∈[0,T]

W2

(
µn

t , δ0

))
< ∞.

Then, we can deduce that

I3 =
∫ T

0

〈
ϕt, θn

t − θ∗t
〉
dt → 0 as n → ∞,

where 〈A, B〉 := Tr(A⊤B), A, B ∈ R
d×p is the inner product on R

d×p.
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As for I4, it follows from (4.4) and (4.5) that

|I4| =
∣∣∣∣
∫ T

0

〈
θn

t − θ∗t ,
∫

Rd×Y
∇xζ• f⊤d

(
µn

t − µ∗
t

)〉
dt

∣∣∣∣

≤ C
∫ T

0

∣∣θn
t − θ∗t

∣∣W1

(
µn

t , µ∗
t

)
dt

≤ C‖θn − θ∗‖L2(0,T;Rm) sup
t∈[0,T]

W2

(
µn

t , µ∗
t

)

≤ C sup
t∈[0,T]

W2

(
µn

t , µ∗
t

)
→ 0.

Passing to the limit as n → ∞ in (4.8), we get (4.6).
By the lower semicontinuity of the L2-norm, we have

‖θ∗•‖L2(0,T;Rm) ≤ sup
n∈N

‖θn
•‖L2(0,T;Rm) < ∞.

Then Lemma 4.2 implies that there exists R > 0 such that supp µ∗
t ⊂ B

Rd×Y (R) for all
t ∈ [0, T], whence follows the conclusion.

We resume the proof of Theorem 1.1. From Claim 4.1, we have (µ∗, θ∗) ∈ S. We then
show that J(µn , θn) → J(µ∗, θ∗) as n → ∞. First, from (4.4), Assumption 1.1, Lemma 3.4
and [4, Proposition 7.1.5], it follows that

∫

Rd×Y
ℓdµn

T →
∫

Rd×Y
ℓdµ∗

T (4.9)

as n → ∞. We next estimate the regularization term. Again from (4.3) and (4.4), we infer
that

∣∣∣∣
∫ T

0

∫

Rd

∣∣θn
t f (x)

∣∣2dµn
t (x)dt −

∫ T

0

∫

Rd

∣∣θn
t f (x)

∣∣2dµ∗
t (x)dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

〈
θn

t

∫

Rd
f f⊤d

(
µn

t − µ∗
t

)
, θn

t

〉
dt

∣∣∣∣

≤
∫ T

0

∣∣∣∣
∫

Rd
f f⊤d

(
µn

t − µ∗
t

)∣∣∣∣
∣∣θn

t

∣∣2dt

≤ 2C

ǫ
max

t∈[0,T]

∣∣∣∣
∫

Rd
f f⊤d

(
µn

t − µ∗
t

)∣∣∣∣ → 0 as n → ∞. (4.10)

Now we set

‖|∗‖|θ2
L2(0,T;Rm) :=

∫ T

0

〈
θt

(
λ
∫

Rd
f f⊤dµ∗

t + ǫ

)
, θt

〉
dt

for θ ∈ L2(0, T; R
m). Since λ

∫
Rd f f⊤dµ∗

t + ǫ is positive definite matrix, the function

‖|•‖|L2(0,T;Rm) defines an equivalent norm of L2(0, T; R
m). Hence, it follows from [14,

Proposition 3.5] that ‖|•‖|L2(0,T;Rm) is weakly lower semicontinuous. Thus, we conclude

that
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inf
S

J = lim inf
n→∞

J(µn, θn)

=
∫

Rd×Y
ℓdµ∗

T + lim inf
n→∞

∫ T

0

∫

Rd

(
λ

2

∣∣θn
t f (x)

∣∣2 + ǫ

2

∣∣θn
t

∣∣2
)

dµn
t (x)dt

=
∫

Rd×Y
ℓdµ∗

T + lim inf
n→∞

∫ T

0

∫

Rd

(
λ

2
Tr
(
θn

t f (x) f (x)⊤θn
t
⊤)+ ǫ

2

∣∣θn
t

∣∣2
)

dµn
t (x)dt

=
∫

Rd×Y
ℓdµ∗

T + lim inf
n→∞

∫ T

0

∫

Rd

(
λ

2

〈
θn

t f (x) f (x)⊤, θn
t

〉
+

ǫ

2

〈
θn

t , θn
t

〉)
dµn

t (x)dt

=
∫

Rd×Y
ℓdµ∗

T +
1

2
lim inf

n→∞

∫ T

0

〈
θn

t

(
λ
∫

Rd
f f⊤dµn

t + ǫ

)
, θn

t

〉
dt

≥
∫

Rd×Y
ℓdµ∗

T +
1

2
lim inf

n→∞
‖|θn‖|2L2(0,T;Rm)

+
λ

2
lim inf

n→∞

(∫ T

0

∫

Rd

∣∣θn
t f (x)

∣∣2dµn
t (x)dt −

∫ T

0

∫

Rd

∣∣θn
t f (x)

∣∣2dµ∗
t (x)dt

)

≥
∫

Rd×Y
ℓdµ∗

T +
1

2
‖|θ∗‖|2L2(0,T;Rm) + 0

= J(µ∗ , θ∗) ≥ inf
S

J, (4.11)

i.e. J(µ∗, θ∗) = infS J, and the proof of Theorem 1.1 is complete.

Remark 4.2 (The Case of λ = 0). If one only wants to show the existence of a minimizer,
it is sufficient to use only ǫ|θ|2/2 as the regularization term. In other words, we can prove
the theorem when λ = 0. Indeed, by Lemma 4.2 it is apparent that

∫

Rd
|x|2dµn

t ≤ (R∗)2

holds for every t ∈ [0, T] and n ∈ N, where R∗ > 0 is the same as the radius in Lemma 4.2.
Thus, we obtain

W2

(
µn

t , µn
s

)2 ≤ (s − t)
∫ s

t

∫

Rd

∣∣θn
τ f (x)

∣∣2dµn
τ(x)dτ

≤ (s − t)

(
‖θ‖2

L2(s,t;Rm)

∥∥∥∥
∫

Rd
| f (x)|2dµn

•(x)

∥∥∥∥
L∞(s,t)

)

≤ 2C

ǫ
(s − t)

∥∥∥∥
∫

Rd
| f (x)|2dµn

•(x)

∥∥∥∥
L∞(s,t)

≤ 2C

ǫ
(s − t)

∥∥∥∥(Lip f )2
∫

Rd
|x|2dµn

•(x) + | f (0)|2
∥∥∥∥

L∞(s,t)

≤ 2C

ǫ

(
(R∗ Lip f )2 + | f (0)|2

)
(s − t)

from Lemma 4.1 and Assumption 1.2, or (6.1), and (4.3). Here Lip f ≥ 0 is a Lipschitz
constant of f . Consequently, we can guarantee the equi-continuity of the curve µ without
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the kinetic regularization term. Then, we complete the proof using an argument similar
to the one above. In this case, the proof of the lower semicontinuity (4.11) becomes rather
simple. It is noteworthy, however, that even in this case, deriving the convergence of I3

in the proof of Claim 4.1 from the weak convergence of θ is difficult without imposing
Assumption 1.2. In this sense, it seems essential under L2-regularization that the neural
network is linear with respect to the parameters. If continuity of θ can be obtained, e.g.
by H1-regularization, then the convergence of I3 can be easily shown. See the proof of
Theorem A.1.

Remark 4.3 (Uniqueness of a Minimizer). When a regularization parameter ǫ is suffi-
ciently large, the uniqueness of the minimizer is proved by Bonnet et al. [10, Theorem 3.2].
For self-containdness, we will present details in Appendix B. On the contrary, we do not
refer to the uniqueness in Theorem 1.1 since ǫ might be small in most practical cases.

5 Ideal learning problem

This section discusses the existence of a minimizer to the ideal learning problem as intro-
duced in Problem 1.2. At the beginning of this section, we explain why we consider this
problem before we prove the main theorem (Theorem 1.2).

5.1 Idealization of learning problems

Neural networks v in (1.2) have, in general, a complex structure, while Assumption 1.2
imposes the simplicity of linearity of v in θ to prove Theorem 1.1. However, it is difficult
to show Claim 4.1 under the general assumption because the trick described in (4.11) is
unavailable.

Thus, we assume that v(•, θ) can be any square-integrable vector field. This assump-
tion might be justified by universal approximation properties resulting from the complex-
ity. Universal approximation means that the set of functions expressed by a neural net-

work {v(•, θ) : R
d → R

d|θ ∈ R
m} is dense in appropriate function spaces (for example,

Lebesgue spaces Lp(Rd)). We refer the reader to [18, 30, 44] for details. In light of these
results, one can infer that

{
Rd × [0, T] ∋ (x, t) 7−→ v(x, θt) ∈ Rd θ ∈ L2(0, T; Rm)

}‖•‖
L2(dµtdt) = L2(dµtdt)

holds where, by abuse of notation, we set for a fixed µ ∈ C([0, T];P(Rd)),

L2(dµtdt) :=

{
(vt)t∈[0,T] is a family of Borel vector fields on R

d

∣∣∣∣

‖v‖2
L2(dµtdt) :=

∫ T

0

∫

Rd
|vt|2dµtdt < +∞

}
. (5.1)

This abuse is referred to in the notation in Villani’s text [59, Eq. (8.6)]. Furthermore, if
ǫ = 0 in (1.1), θ only appears via v in Problem 1.1.
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Therefore, we can regard Problem 1.1 as a problem about vector fields (neural net-
work) v, rather than parameters θ. From the above, we consider Problem 1.2 as the further
idealized learning problem. The problem is similar to the variational form of MFG intro-
duced by Lasry and Lions [34,35]. We also refer the reader to more comprehensive lecture
notes by Santambrosio [50, Section 2.2].

5.2 Proof of the existence via the Lagrangian framework

We then consider the existence of a minimizer in Problem 1.2. For this problem, we want
to apply a similar argument to Theorem 1.1. However, unlike the previous problem,
the space L2(dµtdt) depends on µ, rendering it intractable. In such cases, it is helpful
to rewrite the problem with “probability measure on curves” as the variable instead of

“curve on probability measures” or µ ∈ C([0, T];P(Rd)) as the variable. That is, we con-

sider Q ∈ P(Rd × C([0, T]; R
d)) as presented in Proposition 5.1. Here AC2([0, T]; R

d)
denotes the set of an absolutely continuous curve γ : [0, T] → R

d such that there exists
m ∈ L2(0, T) satisfying

|γ(s)− γ(t)| ≤
∫ t

s
m(τ)dτ, ∀ s, t ∈ [0, T], s < t.

Proposition 5.1 (Probabilistic Representation). Let µ ∈ C([0, T]; (P2(R
d), W2)) satisfy the

continuity equation ∂tµt + div(vtµt) = 0 in the distributional sense for a Borel vector field vt

such that ∫ T

0

∫

Rd
|vt|2dµtdt < +∞. (5.2)

Then, there exists Q ∈ P(Rd × C([0, T]; R
d)) such that

(i) Q is concentrated on the set of pairs (x, γ) such that γ ∈ AC2([0, T], R
d) is an absolutely

continuous solution of γ̇(t) = vt(γ(t)) for a.a. t ∈ (0, T) with γ(0) = x;

(ii) µt = µQ
t for any t ∈ [0, T], where µQ

t is defined as
∫

Rd
ϕdµQ

t :=
∫

Rd×C([0,T];Rd)

ϕ
(
γ(t)

)
dQ(x, γ) (5.3)

for all ϕ ∈ Cb(R
d).

Conversely, if Q ∈ P(Rd × C([0, T]; R
s)) satisfies (i) and

∫

Rd×C([0,T];Rd)

T∫

0

|γ̇(t)|2dtdQ(x, γ) < +∞, (5.4)

then there exists µQ ∈ C([0, T]; (P2(R
d), W2)) induced via (5.3), which is a solution of the conti-

nuity equation with the following vector field:

ṽt(x) :=
∫

{γ∈C([0,T];Rd) | γ(t)=x}

γ̇(t)dQx(γ) ∈ L2
(
dµQ

t dt
)
, µQ

t -a.e. x ∈ R
d,
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where Qx is the disintegrated measures with respect to the evaluation map et : R
d ×C([0, T]; R

d)∋
(x, γ) 7−→ γ(t) ∈ R

d.

Proof. See proofs of [4, Theorem 8.2.1], [2, Theorem 5.3], and [36, Theorems 4 and 5].

Recently, in studies for MFG [9, 50], considering µ instead of Q is called the Lagrange
perspective. This perspective is summed up in the slogan “Think Eulerian, prove La-
grangian” in [60, Chapter 15], which is widely applied in, e.g. [51]. We refer the reader
to [4, Section 8.2] and [36] for a more general theory.

Referring to the formulation in MFG, we rewrite the ideal Problem 1.2 in terms of Q.
Before starting a more ideal problem, we introduce an evaluation map

et : (y, γ) ∈ Y × C([0, T]; R
d) 7−→

(
γ(t), y

)
∈ R

d ×Y , t ∈ [0, T].

With the above, one can rewrite Problem 1.2 as follows:

Problem 5.1 (Ideal Learning Problem in the Lagrangian Framework). Let λ > 0 be a con-

stant, let ℓ : R
d ×Y → R+ be continuous, and let µ0 ∈ Pc(Rd ×Y) be a given input data.

Set

J̃(Q) :=
∫

Y×C([0,T];Rd)

(
ℓ
(
γ(1), y

)
+
∫ T

0

λ

2
|γ̇(t)|2dt

)
dQ(y, γ) (5.5)

for Q ∈ P(Y × C([0, T]; R
d)). Then, the ideal learning problem in the Lagrangian frame-

work is posed as the following constrained minimization problem:

inf
{

J̃(Q) Q ∈ P
(
Y × C([0, T]; R

d)
)

such that (e0)#Q = µ0

}
.

Comparing Problems 1.2 and 5.1, the functional Ĵ in (1.4) and J̃ in (5.5) have the corre-
spondence such that

∫

Rd×Y
ℓ(x, y)dµT(x, y) ⇐⇒

∫

Y×C([0,T];Rd)
ℓ
(
γ(1), y

)
dQ(y, γ),

∫ T

0

∫

Rd×Y
λ

2
|v(x, t)|2dµt(x, y)dt ⇐⇒

∫

Y×C([0,T];Rd)

∫ T

0

λ

2
|γ̇(t)|2dtdQ(y, γ).

We see that Problem 5.1 has fewer constraints and fewer variables than Problem 1.2. This
is because, according to Problem 1.2, µ and v satisfying the continuity equation (1.2) can
be recovered as long as Q is obtained. This fact leads us to the existence of a minimizer for
Problem 5.1.

Lemma 5.1 (Existence Result for Problem 5.1). Under Assumption 1.1, there exists a minimizer

Q ∈ P(Y × C([0, T]; R
d)) for Problem 5.1.

Proof. Set

S =
{

Q ∈ P
(
Y × C([0, T]; R

d)
)

(e0)#Q = µ0

}
,

here the probability measures P(Y × C([0, T]; R
d)) are endowed with the narrowly con-

vergence topology. We can easily check that a measure (eY × c•)#µ0 belongs to S, where
we set
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eY : R
d ×Y ∋ (x, y) 7−→ y ∈ Y ,

c : R
d ×Y ∋ (x, y) 7−→ [0, T] ∋ t 7−→ x ∈ R

d ∈ C([0, T]; R
d).

It is clear that 0 ≤ J̃ < +∞ since the integrand ℓ is non-negative. Thus, we take a mini-

mizing sequence (Qn)n ⊂ S such that J̃(Qn) → inf J ∈ R as n → ∞. From the second term
of (5.5), there exists a constant C independent of n such that

λ

2

∫

Y×C([0,T];Rd)

T∫

0

|γ̇(t)|2dtdQn(y, γ) ≤ C. (5.6)

Next, we claim that (Qn)n is tight. We choose the maps r1 and r2 defined on Y ×
C([0, T]; R

d) as

r1 : (y, γ) 7−→ y ∈ Y , r2 : (y, γ) 7−→ γ ∈ C([0, T]; R
d).

It is clear that (r1
#Qn)n is tight because of Assumption 1.1 and Prokhorov’s theorem. In

addition, the functional

A : C([0, T]; R
d) ∋ γ 7−→





∫ T

0

λ

2
|γ̇(t)|2dt, if γ is an absolutely continuous

curve with |γ̇| ∈ L2(0, T)

and γ(0) ∈ supp µ0,

+∞, otherwise

(5.7)

has a compact sublevel sets in C([0, T]; R
d) because of the Ascoli-Arzelá theorem. Hence,

we can see that (r2
#Qn)n is also tight thanks to an integral condition for tightness [4, Re-

mark 5.1.5] and (5.6). Then, we obtain the tightness of (Qn)n by applying a tightness
criterion [4, Lemma 5.2.2] for the maps r1 and r2.

Therefore, there exists a subsequence (n), still denoted by n, and Q∗ ∈ P(Y × C([0, T];
R

d)) such that

Qn
⇀ Q∗ in P

(
Y × C([0, T]; R

d)
)

by Prokhorov’s theorem. It remains to verify that the limit Q∗ satisfies (e0)#Q = µ0 and

J̃(Q∗) = inf J̃
(
= lim

n→∞
J̃(Qn)

)
.

The former is obtained by the continuity of the evaluation map et, t ∈ [0, T]. The latter is
shown as follows. By the continuity of ℓ and eT, we obtain that

lim
n→∞

∫

Rd×Y

ℓd(eT)#Qn = lim
n→∞

∫

Rd×Y

min ℓ ◦ eT , C′dQn

=
∫

Rd×Y

min ℓ ◦ eT, C′dQ∗ =
∫

Rd×Y

ℓd(eT)#Q∗
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for a sufficiently large constant C′ > 0. In addition, the functional A in (5.7) is lower

semicontinuous, and we can choose Ak ∈ Cb(C([0, T]; R
d)), k = 1, 2, . . . , such that Ak ր A

as k → ∞ by [3, Theorem 10.2]. Then, we get that for each k ∈ N,

lim inf
n→∞

∫

C([0,T];Rd)

AdQn ≥ lim inf
n→∞

∫

C([0,T];Rd)

AkdQn =
∫

C([0,T];Rd)

AkdQ∗.

Hence, passing to the limit as k → ∞ in the above inequality, we obtain

lim inf
n→∞

∫

C([0,T];Rd)

AdQn ≥ lim
k→∞

∫

C([0,T];Rd)

AkdQ∗ =
∫

C([0,T];Rd)

AdQ∗

by virtue of Fatou’s lemma.

From Lemma 5.1 and Proposition 5.1 we immediately obtain Theorem 1.2.

Proof of Theorem 1.2. Let Q∗ denote the minimizer of J̃. From Proposition 5.1, we can get

µQ∗ ∈ C([0, T];P2(R
d × Y)) satisfying (5.4) and ṽ ∈ L2(dµQ∗

t dt). By [36, Theorem 5], we

have J̃(Q∗) = Ĵ(µQ∗
, ṽ). From this equality and Proposition 5.1, it follows that

Ĵ(µQ∗
, ṽ) ≤ Ĵ(µ, v), ∀ µ ∈ C

(
[0, T];P2(R

d ×Y)
)
, v ∈ L2(dµtdt).

The proof is complete.

6 Conclusion

In this paper, we introduced the kinetic regularized learning problem (Problem 1.1) and
proved the existence of its minimizer in Theorem 1.1. A key idea in the proof is to show

that a sequence of curves (µn) ⊂ C([0, T]; (P2(R
d × Y), W2)), rather than a parameter

(θn) ⊂ L2(0, T; R
m), converges strongly. Furthermore, we attempted to idealize Prob-

lem 1.1 as Problem 1.2, although the relationship between this idealization and the exist-
ing neural network is unclear. However, considering the minimizers of Problem 1.2 will
provide essential clues for understanding deep learning in the future.

Our results can be further developed through a generalization of neural networks and
regularization terms. The directions of each generalization are described below and will
be subjects of future work.

6.1 For general neural network architectures

It remains to establish an existence result for neural networks more general than Assump-
tion 1.2. A general l-layer neural network v is a continuous vector field satisfying the
following assumptions.

Assumption 6.1 (General l-Layer Neural Network). There exists C > 0, it holds that

|v(x, θ)| ≤ C|θ|l(1 + |x|), x ∈ R
d, (6.1)
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|v(x1, θ)− v(x2, θ)| ≤ C|θ|l |x1 − x2|, x1, x2 ∈ R
d (6.2)

for θ ∈ R
m.

Note that we also assume that v : R
d × R

m → R
d is continuous in Problem 1.1.

For example, v satisfying Assumption 1.2 is a 1-layer neural network. In practice, 2, 3-
layer neural network is often used. We mentioned in Section 1.2 that the nonlinearity of
such l-layer neural networks hinders the proof of existence theorems, especially Claim 4.1.
To relax this nonlinearity, it may be effective to consider a mean-field neural network

V(x, ϑ) =
∫

Rm
v(x, θ)dϑ(θ), (6.3)

where ϑ is a learnable probability measure on R
m. This assumption has long been known

as the Young measure [15,45] in optimal control theory, but it has recently been recognized
again as a helpful approach to shallow neural networks [1,17,40] and ODE-Nets [20,31,38].
The author is in the process of conducting further theoretical research using this net-
work V .

Appendix A H1-Regularization

We discuss the existence of a minimizer in the same problem setting as [57].

Problem A.1 (H1-Regularized Learning Problem). Let λ > 0 be a constant, let Y be

a subset of R
d and let v : R

d × R
m → R

d and ℓ : R
d × Y → R+ be continuous. Let

µ0 ∈ Pc(Rd ×Y) a given input data. Set

JH1(µ, θ) :=
∫

Rd×Y
ℓdµT +

λ

2
‖θ‖2

H1(0,T;Rm) (A.1)

for µ ∈ C([0, T]; (P2(R
d × Y), W2)) and θ ∈ H1(0, T; R

m). The H1-regularized learn-
ing problem constrained by ODE-Net is posed as the following constrained minimization
problem:

inf
{

JH1(µ, θ) µ ∈ C
(
[0, T];

(
P2(R

d ×Y), W2

))
, θ ∈ H1(0, T; R

m)
}

subject to
{

∂tµt + divx

(
v(•, θt)µt

)
= 0,

µt|t=0 = µ0.
(A.2)

We note that the constraint (A.2) is the same as (1.2).
For Problem A.1, we can obtain an existence result without Assumption 1.2.

Theorem A.1 (Existence Theorem for Problem A.1). Under Assumptions 1.1 and 6.1, there ex-

ists a minimizer (µ, θ) ∈ C([0, T]; (P2(R
d ×Y), W2))× H1(0, T; R

m) of (A.1) in Problem A.1.

Before the proof of Theorem A.1, we prepare a lemma similar to Lemma 4.2.
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Lemma A.1. Let θ ∈ H1(0, T; R
m) and let µ ∈ C([0, T]; (P2(R

d ×Y), W2)) be a distributional
solution of (A.2) corresponding to a vector fields (v(•, θt))t. If Assumption 6.1 holds, there exists
a radius R∗ = R∗(µ0, f , T, ‖θ‖H1(0,T;Rm)) > 0 such that

supp µt ⊂ B
Rd×Y (R∗), ∀ t ∈ [0, T].

Proof. The strategy of the proof is the same as that of the proof of Lemma 4.2. By Assump-
tion 6.1 and Sobolev inequality, we have

∫ T

0

∫

Rd×Y
|v(x, θt)|dµtdt

≤ C
∫ T

0

∫

Rd×Y
|θt|l(1 + |x|)dµtdt

≤ C‖θ‖l
Ll(0,T;Rm)

(
1 + sup

t∈[0,T]

∫

Rd×Y
|x|dµt

)

≤ C‖θ‖l
H1(0,T;Rm)

(
1 + sup

t∈[0,T]

√∫

Rd×Y
|x|2dµt

)

= C‖θ‖l
H1(0,T;Rm)

(
1 + sup

t∈[0,T]

W2(µt, δ)

)
< ∞.

Also, again using Assumption 6.1 and Sobolev inequality, we can estimate |Xt(x)| in the
proof of Lemma 4.2 by ‖θ‖H1(0,T;Rm).

Proof of Theorem A.1. Set

S =
{
(µ, θ) ∈ C

(
[0, T];

(
P2(R

d ×Y), W2

))
× H1(0, T; R

m) (µ, θ) satisfies (A.2)
}

.

It is obvious that S 6= ∅ and 0 ≤ JH1 < ∞ on S. Then, we can take a minimizing sequence
((µn, θn))∞

n=1 ⊂ S such that JH1(µn, θn) → infS JH1 as n → ∞. By the second term of (A.1),
there exists a constant C > 0 such that

λ

2
‖θn‖2

H1 ≤ C (A.3)

for all n ∈ N. From Lemma 4.1, Assumption 6.1, (A.3) and the Sobolev inequality, we
have for 0 ≤ t < s ≤ T,

W2

(
µn

t , µn
s

)2 ≤ (s − t)
∫ s

t

∫

Rd

∣∣v
(

x, θn
τ

)∣∣2dµn
τ(x)dτ

≤ C(s − t)
∫ s

t

∫

Rd
|θτ|2l(1 + |x|2)dµn

τ(x)dτ

≤ C(s − t)
∫ s

t

∫

Rd
|θτ|2l

(
1 + R∗2)dµn

τ(x)dτ

≤ C‖θ‖2l
L2l(0,T;Rm)

(s − t)
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≤ C‖θ‖2l
H1(0,T;Rm)(s − t)

≤ C(s − t),

where R∗ > 0 is the constant appeared in Lemma A.1. Hence, there exist a subsequence

(n′) :=
(
n(k)

)∞

k=1
⊂ Z>0,

(µ∗, θ∗) ∈ C
(
0, T;

(
P(Rd ×Y), W2

))
× H1(0, T; R

m)

such that

θn′ → θ∗ weakly in H1(0, T; R
m), (A.4)

θn′ → θ∗ strongly in C(0, T; R
m), (A.5)

µn′ → µ∗ strongly in C
(
0, T;

(
P(Rd ×Y), W2

))
. (A.6)

Here, we used the Sobolev embedding theorem in (A.5). By the above, we can deduce the
following claim.

Claim A.1. The limits µ∗ and θ∗ satisfy (4.6) for all ζ ∈ C∞
c ((0, T)× R

d ×Y).

Proof. As in the proof of Claim 4.1, the proof is completed by taking the limits of I1 to I4

in (4.8). From the proof of Claim 4.1, I1, I2 → 0 as n → ∞. Also, I3 → 0 as n → ∞ by
the uniform convergence (A.5), and the continuity of v(x, θ) with respect to θ. For I4, it
follows from (6.2), (A.4) and (A.6) that

|I4| ≤
∫ T

0
Lip

(
∇xζt ·

(
v
(
•, θn

t

)
− v
(
•, θ∗t

)))
W1

(
µn

t , µ∗
t

)
dt

≤ C
(
‖θn‖l

Ll(0,T;Rm)
+ ‖θ∗‖l

Ll(0,T;Rm)

)
sup

t∈[0,T]

W1

(
µn

t , µ∗
t

)

≤ C
(
‖θn‖l

H1(0,T;Rm) + ‖θ∗‖l
H1(0,T;Rm)

)
sup

t∈[0,T]

W2

(
µn

t , µ∗
t

)

≤ C sup
t∈[0,T]

W2

(
µn

t , µ∗
t

)
→ 0 as n → ∞.

Thus we obtain the conclusion.

We resume the proof of Theorem A.1. From Claim A.1, we have (µ∗, θ∗) ∈ S. In
addition, JH1 is lower semicontinuous from (4.9) and the weak lower semi-continuity of

the H1-norm ‖ • ‖H1(0,T;Rm). The proof is complete.

Appendix B Convexity assumptions

For comparison, using the proof technique by Bonnet et al. [10], we show that a unique
minimizer to Problem 1.1 exists. This proof technique makes use of the idea that we can

regard the functional J as a univariate functional J̃(θ) := J(µθ , θ), where µθ ∈ C([0, T];
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P(Rd × Y)) is a solution of (1.2) for a given θ ∈ L2(0, T; R
m). The existence and unique-

ness of the solution can be proved by showing the convexity of J̃. For this purpose, we

evaluate the Lipschitz constant of the Fréchet derivative ∇θ J̃ of J̃.

First, recall from Lemma 3.5 that µθ is represented as µθ
t = (Φθ(0, t; •)× IdY )#µ0 using

a flow map Φθ : [0, T]2 × R
d → R

d, θ ∈ L2(0, T; R
m) according to the ODE

{
∂tΦ

θ(t0, t; x) = v
(
Φθ(t0, t; x), θt

)
,

Φ
θ(t0, t0; x) = x.

(B.1)

We note here that from (1.3) it can be verified that the Lipschitz continuity assumption
(3.4) is satisfied, as in the proof of Lemma 4.2. The derivative of Φ with respect to θ can be
described by a linearization of (B.1).

Lemma B.1 (Taylor Expansion of Φθ). Suppose that the neural network v satisfies Assump-

tion 1.2 and f : R
d → R

p is differentiable. Then, for every θ, ϑ ∈ L2(0, T; R
m), the Taylor

expansion

Φ
θ+ǫϑ(t0, t; x) = Φ

θ(t0, t; x) + ǫ
∫ t

0
∆

θ
(s,t)(x)ϑs f

(
Φ

θ(t, s; x)
)
ds + o(ǫ)

holds in C([0, t] × supp µ0; R
d × Y), where, for (t0, x) ∈ [0, T] × R

d, the map [0, T] ∋ t 7−→
∆θ
(t0,t)

(•) ∈ C(Rd; R
d×d) is the unique solution of the linearized Cauchy problem

{
∂t∆

θ
(t0,t)(x) = θt J f

(
Φθ(t0, t; x)

)
∆θ
(t0,t)(x),

∆θ
(t0,t0)

(x) = Id
Rd ,

(B.2)

where J f : R
d → R

p denotes the Jacobian matrix of f .

Proof. See [13, Theorem 3.2.6].

To evaluate the Lipscitz continuity of ∇θ J̃, we need to estimate the variation of ∆θ
(0,t)

with respect to θ. This evaluation requires us to impose a further assumption on v(x, θ) =
θ f (x) in addition to Assumption 1.2. In the following, we will denote R∗(‖θ‖) the same
radius as in Lemma 4.2.

Assumption B.1 (Strong Smoothness on v). The function f is twice continuously differen-
tiable, and for given θ∈L2(0, T; R

m) and (x, y)∈B(R∗(‖θ‖)), f satisfies ‖ f‖C1(Rp;Rd)<∞.

This assumption correspond to [10, Assumption 2]. Under this assumption, we can
show the Lipschitz continuity by the same argument as in the proof of [10, Lemma 3.1].

Lemma B.2 (Fréchet-Differentiablity of the Loss Functional). The sum of loss and kinetic
regularization

Jℓ : θ 7−→
∫

Rd×Y
ℓdµθ

T +
λ

2

∫ T

0

∫

Rd
|v(x, θ)|2dµθ

t dt

is Fréchet-differentiable. In addition, for θ1, θ2 ∈ L2(0, T; R
m), there exists C(λ, ‖θ1‖, ‖θ2‖) > 0

such that ∥∥∇Jℓ(θ
1)−∇Jℓ(θ

2)
∥∥ ≤ C(λ, ‖θ1‖, ‖θ2‖)‖θ1 − θ2‖.
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From Lemma B.2, the following corollary follows immediately.

Corollary B.1 (Semiconvexity for the Parameter θ). The functional

J̃ : θ 7−→ J(µθ , θ) =
∫

Rd×Y
ℓdµθ

T +
∫ T

0

∫

Rd

(
λ

2
|v(x, θt)|2 +

ǫ

2
|θt|2

)
dµθ

t (x)dt (B.3)

satisfies

J̃
(
(1 − ζ)θ1 + ζθ2

)
≤ (1 − ζ) J̃(θ1) + ζ J̃(θ2)

−
(
ǫ − C(λ, ‖θ1‖, ‖θ2‖)

) ζ(1 − ζ)

2
‖θ1 − θ2‖2

for any θ1, θ2 ∈ L2(0, T; R
m) and ζ ∈ [0, 1]. Here C(λ, ‖θ1‖, ‖θ2‖) is the same positive number

as in Lemma B.2.

By this corollary, J̃ is strongly convex on a L2 ball if ǫ is sufficiently large compared to
other parameters such as λ and T. This plays an essential role in the proof of Theorem B.1
below.

Theorem B.1 (Existence and Uniqueness of Minimizer of J̃). Suppose that Assumptions 1.2

and B.1 If ǫ > 0 in (B.3) is sufficiently large, there exists θ ∈ L2(0, T; R
m) which minimize J̃,

and θ is a unique minimizer of J̃.

The proof is carried out using the direct method of calculus of variations as in Theo-
rem 1.1.

Proof. It is clear that 0 ≤ inf J̃ < +∞, then we can take a minimizing sequence (θn)∞
n=1 ⊂

L2(0, T; R
m) such that J̃(θn) → inf J̃ as n → ∞. Thus, there exists C > 0 independent

of n such that (4.3) holds. Then there exists a subsequence (n′) ⊂ Z>0 such that (4.5). In

addition, by Corollary B.1, we see that there exists ǫ > 0 such that J̃ is convex on B(2C/ǫ).
Therefore, by Mazur’s lemma, there exists another minimizing sequence (θ̂n)∞

n=1 such that

θ̂n → θ in L2(0, T; R
m). Because J̃ is lower semicontinuous, we conclude that

J(θ) ≤ lim inf
n→∞

J(θ̂n) = inf
L2(0,T;Rm)

J̃,

i.e. θ is a minimizer of J̃. The uniqueness is immediately obtained from the strong convex-

ity of J̃.
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