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Abstract. Accurate and automatic segmentation of the pancreas from abdominal computed tomography (CT)
scans is crucial for diagnosing and treating pancreatic diseases. However, the pancreas is a tiny target abdom-
inal organ with high anatomical variability and low tissue contrast in CT scans, making segmentation tasks
challenging. To address this challenge, we propose a multilevel attention feature extraction network to seg-
ment the pancreas in abdominal CT images. Specifically, a multi-field attention convolution module (MFAC)
and a connection feature fusion module (CFF) are added to the encoding and decoding structure to improve
the extraction of pancreatic features. To further enhance the segmentation network’s extraction of pancreatic
edge features, we propose a decoding feature recall module (DFC), which can be migrated to other encoding
and decoding structures and pruned to capture pancreatic edge information better. We compared the perfor-
mance of our method with that of the most advanced method on the NIH pancreatic segmentation dataset and
the challenging pancreatic cancer CT image dataset collected by the Zhujiang Hospital of Southern Medical
University. The experimental results show that the DSC of our method on NIH dataset and pancreatic cancer
dataset is 84.69% and 78.18% respectively, which is superior to the existing methods.
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1 Introduction

In recent years, pancreatic cancer has become an increasingly serious public health prob-
lem worldwide. Its early detection is very difficult, and the choice of treatment options is
also very limited [26]. By 2030, pancreatic cancer will become the second leading cause
of cancer deaths worldwide [12]. Pancreatic cancer is still the tumor with the lowest sur-
vival rate at present, the five-year survival rate is between 5% and 15% [1]. Computed
tomography images are the main means for doctors to obtain information about pancreas
and pancreatic cancer. We can segment the pancreas through CT images to better assist
doctors in diagnosing and treating pancreatic cancer.

The pancreas is a retroperitoneal organ. Due to the influence of surrounding organs
such as stomach and duodenum, as well as the invasive growth characteristics of pancre-
atic cancer, it is difficult to obtain the typical features of pancreatic cancer in the early stage
by CT and magnetic resonance imaging (MRI) [18]. Therefore, pancreatic segmentation is
one of the most representative tasks in the field of medical image segmentation, for the
following reasons:
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• The pancreas is closely related to surrounding organs and has a high degree of sim-
ilarity to surrounding tissues and organs, and its edge position is difficult to distin-
guish.

• Targets vary greatly in shape, size, and location [5]. The proportion of the pancreas
in the entire abdomen is less than 0.5%. In Fig. 1.1, we can better understand infor-
mation about the pancreas.

Figure 1.1: Here are three CT images from one case. The first row is the original CT image. The second row

is a CT section of the pancreas labeled in red. The third row is a CT image cut based on the position of the

pancreas, with the red color indicating the edge of the pancreas.
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In Fig. 1.1, we can observe that the proportion of the pancreas in the entire CT image is
very small. In the second row of Fig. 1.1, we compare the position and shape of the pan-
creas in three sections, and we observe significant differences in the distribution, shape,
and size of the pancreas in different CT images. In the third row of Fig. 1.1, we can find
that the edge of the pancreas is highly similar to surrounding related tissues or organs and
is difficult to distinguish. The uncertainty of the shape, size, and location of the pancreas
poses a significant challenge to pancreatic segmentation.

With the continuous development of deep learning, more and more researchers are
applying it to medical image segmentation. Compared with the segmentation of lung [19],
liver [25,28] and other large organs, the segmentation of pancreas and pancreatic cancer is
more difficult. Most existing deep learning segmentation networks are based on a coding-
decoding network structure called UNet [13] to extract features. However, networks learn
through a unified sensory field, ignoring other features of the same data. The global loss
caused by the output probability map and real labels makes the network not fully learn
the edge features of the pancreas and pancreatic cancer, and the boundary segmentation
of the pancreas and pancreatic cancer is not accurate. Therefore, we have introduced the
multi-field attention convolution module to expand the receptive field of convolution,
allowing the network to learn more features; add the connection feature fusion modules
to the encoding and decoding layers. For ordinary feature stitching, the CFF can give
different weights to each channel, making the network pay more attention to the required
features; add the decoding feature callback module to the decoder. During training, the
DFC outputs decoders at each layer. By calculating the loss functions of different decoding
layers and performing weighted summation, it can enhance the learning of the network
for related weak learning regions, increase the generalization ability of the network, and
improve the accuracy of segmentation; during prediction, the DFC is pruned to reduce the
model size and improve prediction speed.

This paper proposes the multilevel attention feature extraction network (MAFE-Net).
This article adds three attention modules based on UNet: the MFAC module in the codec,
the CFF module in the encoding and decoding connection, and the DFC module in the
decoder. Specifically, based on UNet, the convolution in UNet is replaced with the MFAC
module; adding the CFF module to the semantic connection of the same layer encoding
and decoding; and The DFC module is added to the decoder. This paper trains and tests
the model on the NIH-CT-82 dataset [14]. The results show that this model is superior to
existing segmentation models. Our contributions are as follows:

• We proposed the MAFE-Net network structure, adding the MCF modules to the net-
work, expanding the receptive field of each layer of the network, and allowing the
network to learn more features.

• This paper proposes the DFC module that calculates the loss of output features at
each decoding layer to improve learning of features such as pancreatic edges. During
testing, pruning can be performed to reduce model parameters.

• In feature fusion, to give different weights to each channel and reduce the differ-
ences in encoding and decoding semantic features at each layer, we propose the CFF
module that uses attention to select key features.
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2 Related work

Pancreas segmentation is mainly divided into traditional image feature segmentation me-
thods and depth learning-based segmentation methods.

Traditional image feature segmentation methods. Several traditional methods have been
pivotal in the early stages of pancreas segmentation. Shan et al. [16] proposed a method
leveraging the Otsu threshold to obtain an approximate contour of the pancreas, followed
by morphological operations to separate the pancreas from surrounding tissues. This
threshold and morphology-based segmentation method laid the groundwork for more
refined approaches. Similarly, Tam et al. [21] utilized region growth technology to la-
bel pancreatic regions and achieve segmentation results, emphasizing the importance of
region-based segmentation methods. Furthermore, Shimizu et al. [17] introduced a sophis-
ticated method combining abdominal standardization, atlas-guided segmentation, and
the expectation-maximization (EM) algorithm. They integrated the active contour model
(Chan-Vese model) into DenseUNet to form a deep active contour network (DACN), sig-
nificantly advancing medical image segmentation.

Deep learning-based segmentation methods. The advent of deep learning has signif-
icantly enhanced pancreas segmentation techniques. Zhou et al. [29] developed a two-
stage method where a rough network segments the pancreatic boundary, followed by
a fine network for detailed segmentation, demonstrating the potential of deep learning
in refining segmentation processes. Asaturyan et al. [2] employed a 3D energy minimiza-
tion algorithm and a loss function based on the Hausdorff metric and sinusoidal compo-
nents to refine segmentation, highlighting the utility of advanced mathematical models in
improving accuracy. Roth et al. [15] presented an automated system for segmenting pan-
creas from 3D CT volumes, employing a two-stage cascaded approach for localization and
segmentation, thereby illustrating the effectiveness of automated deep learning systems.
Cai et al. [3] proposed an RNN to address spatial inconsistency in segmentation across ad-
jacent image slices, refining CNN outputs to improve shape smoothness, which showcases
the integration of RNNs in enhancing spatial coherence. Additionally, several researchers
have focused on 3D networks for pancreatic segmentation. Wang et al. [24] introduced
a multimodal fusion and calibration network for tumor segmentation using 3D PET-CT
images, and Zheng et al. [27] developed a scalable transformation network (ECTN) within
a cascaded two-stage framework for precise pancreatic segmentation. Despite the high
accuracy of 3D networks, their parameter count increases geometrically compared to 2D
networks, posing challenges in computational efficiency.

Advances in UNet-based architectures. The UNet architecture, introduced by Ronneber-
ger et al. [13] at the MICCAI conference, has inspired numerous enhancements due to its
symmetrical structure and excellent segmentation effects. Oktay et al. [11] incorporated
attention gates into the UNet network, proposing Attention UNet to enhance the learn-
ing of task-related features. This integration marked a significant step in improving seg-
mentation accuracy through focused learning mechanisms. Zhou et al. [30] redesigned
the skip connections in the UNet network and added dense blocks and convolutional
layers, resulting in UNet++, which improves segmentation accuracy through enhanced
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structural design. Lu et al. [10] introduced the CBAM attention module into the UNet
network, replacing the convolution module with a ring residual module to effectively uti-
lize spatial context information, thereby improving segmentation outcomes. Additionally,
Hu et al. [9] proposed Squeeze and Excitation (SE) blocks, which recalibrate channel fea-
ture responses by modeling interdependencies between channels, further advancing the
UNet architecture. Szegedy et al. [20] introduced the Inception architecture, integrating
multi-scale feature information for improved classification and detection, which has influ-
enced subsequent designs in segmentation networks.

Recent innovations. Recent studies have introduced novel architectures and training
strategies to further advance pancreas segmentation. Valanarasu et al. [23] proposed a gat-
ed axial-attention model that extends existing architectures by incorporating a control
mechanism in the self-attention module. They also introduced a Local-Global (LoGo)
training strategy for enhanced performance on medical images, showcasing innovative
approaches to model training and attention mechanisms. Guo et al. [6] proposed SegNeXt,
demonstrating that convolutional attention is more efficient and effective than the self-
attention mechanism in Transformers. They designed a convolutional attention network
that employs inexpensive convolutional operations, highlighting the shift towards more
efficient and effective context encoding methods. Hatamizadeh et al. [7, 22] redefined the
3D brain tumor semantic segmentation task as a sequence-to-sequence prediction prob-
lem with Swin UNETR. This model utilizes a hierarchical Swin Transformer encoder and
an FCNN-based decoder connected via skip connections at multiple resolutions, illustrat-
ing the application of advanced transformer architectures in medical image segmentation.

3 Methods

3.1 Overview

We describe the details of MAFE-Net in this section. Fig. 3.1 illustrates the overall architec-
ture of MAFE-Net. MAFE-Net mainly includes an encoder, decoder, and decoding feature
recall module. The encoder and decoder are composed of convolutional and MFAC mod-
ules. The MFAC module is shown in Fig. 3.2. As shown in Fig. 3.5, the CFF module is
added to the feature connection between the encoder and decoder to eliminate the prob-
lems caused by irrelevant and noisy responses in the skip connection. As shown in Fig. 3.3,
the DFC module is added to the decoder to weighted sum the loss after feature extraction
of the output of each decoding layer, which can capture weak learning feature regions and
improve the segmentation of gray value abnormal regions.

3.2 Multi-field attention convolution module

Suppose convolutions with the same core size are used in encoding and decoding. In that
case, the receptive field of the network will be limited, which will result in the network
being unable to capture the semantic information of the larger receptive field, thereby los-
ing some feature information. Inspired by [9], we first convolution or maximize pooling
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Figure 3.1: Multilevel attention feature extraction network. MAFE-Net has the encoding and decoding structure,

including the MAFC and CFF modules in the encoder and decoder. The DFC modules are added to each

decoding layer for output, and each decoding layer constitutes a loss function to improve the decoder’s learning

of pancreatic-related features.

Figure 3.2: The overall architecture of MFAC. The MFAC module is nested in the encoder and decoder, obtaining

different receptive field feature information through convolution of multiple core sizes. According to the weight

values of various receptive field feature information, the feature information is given corresponding weights, and

the corresponding feature information is output.

of multiple cores with different sizes for semantic information X, then obtain the corre-
sponding weight W for X by squeezing and expanding, and then output W and X by dot
multiplication. The MFAC module can better give corresponding weights to different re-
ceptive fields in encoding and decoding so that the network can mine more information
related to the segmented region.

In Fig. 3.2, if the input semantic information is X, first pass through two layers of con-
volution

X1 = Fc(X) = W1

(

W2(X)
)

, (3.1)

where W1 is the 1 × 1 convolution and W2 is the 3 × 3 convolution.
Input X1 into multiple convolutional cores of different sizes and maximize pooling,

and concat the output

X2 = Fmulti(X1) = connect
(

H1(X1), H2(X1), H3(X1)
)

, (3.2)
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where H2 is the 3 × 3 convolution, H1 is the 1 × 1 convolution, H3 is the maximum pool
size of the core, and connect is the number of channels for connecting.

Then input X2 to the global pooling and full connection layers for extrusion operations

X3 = Fre

(

Fsq(X2)
)

= L2

(

L1

(

Q(X2)
))

, (3.3)

where Q is global pooling, and L1 and L2 are full connectivity layers.
Finally, perform expansion and dot multiplication operations. X3 first passes through

the sigmod function, then performs expansion, and finally performs dot multiplication
with X1

X4 = Fmu

(

X1, Fex(X3)
)

= X1 ∗
(

EX
(

Sigmod(X3)
))

, (3.4)

where Sigmod is the Sigmod function and EX is a matrix expansion operation.
Then the semantic information X passes through the MFAC module to obtain X4. X4

is semantic information with multiple different receptive fields, which allows the network
to learn more features of the pancreas.

3.3 Decoding feature recall module

After the medical image is encoded, although the network has extracted rich feature infor-
mation, and before decoding each layer, the CFF module connects the feature information
output by the same layer coding, there is still the possibility of missing the feature infor-
mation of small target objects. The deeper the network goes, the more advanced semantic
information can be extracted, and relatively simple information will start to be omitted.
As the number of network layers increases, the network undergoes a degradation phe-
nomenon. For this issue, [8] proposes the deep residual learning framework to solve the
problem of network degradation. The residual network structure block superimposes the
upper layer’s output onto the lower layer’s input to solve the network degradation prob-
lem. In order to solve the problem of decoder degradation, this paper proposes the de-
coding feature recall module. The network structure diagram of DFC is shown in Fig. 3.3.
The DFC module consists of the convolution with the core of 3 × 3, the MFAC module,
and the Sigmod function.

We add DFC modules to coding layers other than the first during training. The feature
information output by the i (i > 1) layer decoding layer Yi will be input to the i − 1 coding
layer, and Yi will also be input to the DFC module. At this point, the layer i decoding and
DFC module can act as the dividing network Ui, which ultimately outputs the result Y1i,
which can be reduced by i − 1 times the original image (H ×W) to form the loss function.
In this way, the output of each layer of decoding layer will be calculated into a loss function
and back-propagated through the loss function, so that the network will pay attention to
the output of the i layer decoding layer, thereby avoiding network degradation issues.

During the test, we can see from Fig. 3.1 that although each decoding layer has output,
they only calculate the loss function, and the actual output is only the output decoded by
layer 1 for the predicted image. We can prune the DFC module to reduce the model size
and improve the prediction speed when predicting.

DFC modules can be applied to networks with different encoding and decoding struc-
tures for the prunability of DFC modules. During training, it can be connected to the
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decoding layer output. During testing, this portion of the network can be pruned with-
out increasing the network parameters. To verify this conjecture, we apply it directly to
the UNet network, as shown in Fig. 3.4. During training, we added a DFC module to the
decoding layer I of the UNet network. During testing, pruning is performed directly so
that the parameters of the UNet network do not change. The addition of DFC modules
to the network during training can enhance the network’s learning of related weak learn-
ing areas and increase the network’s generalization ability. Under the same data, the dice
coefficient (DSC) of UNet+DFC is 0.76% higher than that of UNet.

Figure 3.3: The overall architecture of DFC. The DFC module consists of convolution, MFAC module, and sigmod

function. This module can be added to networks with different encoding and decoding structures to recall relevant

decoding features.

Figure 3.4: UNet with DFC module. The red dotted line shows the UNet network structure and the gray dotted

line shows the DFC module. Encode and decode represent the decoding and encoding layers of the UNet network,

respectively.
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3.4 Connection feature fusion module

In a segmented network of encoding and decoding, the semantic information of encoding
and decoding at the same layer differs significantly. If simply connecting two semantic in-
formation with significant differences, there will be a precipitous information gap inside
the new semantic information. That makes the network pay attention to semantic gaps,
which affects its attention. However, if the semantic information of the encoder is not con-
nected, the network will directly lose the semantic information of the encoder, which is
not conducive to network feature extraction. To preserve the semantic information gener-
ated by the encoder and reduce the semantic gap between the encoder and decoder, this
paper designs a module to connect feature fusion. CFF can generate a weight matrix of
the semantic information connected by the encoder and decoder, significantly reducing
the semantic differences at the connection. It can form more continuous new semantic
information while retaining the semantic information of the encoder and decoder.

The structure diagram of the CFF module is shown in Fig. 3.5. Assuming that the
semantic information X1 and X2 of the same layer codec and decoder are to be connected.
After inputting X1 and X2 into the CFF module, a new weight W is generated, and then

Figure 3.5: The overall architecture of CFF. The CFF module is located at the encoder and decoder connection.

X1 and X2 are from the encoding and decoding layers, respectively. According to the weight value of each channel,

the corresponding weight is given to the feature information to enhance useful features and suppress features that

are not currently useful.
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point multiplication is performed to form new semantic information. The detailed process
of the CFF module is described below.

X1 and X2 first pass the convolution with a core of 1 × 1 before connecting on the
channel

Y1 = Wcon(X1, X2) = connect
(

K1(X1), K2(X2)
)

, (3.5)

where in K1 and K2 represent convolutions with a core of 1 × 1 , and connect represents
the number of channels for splicing operations.

After compressing Y1, the corresponding weight for each channel number is obtained

Y2 = Wsq(Y1) = ReLU
(

H3

(

D1

(

D2(Y1)
))

)

, (3.6)

where Re is the ReLu function, H3 is global pooling, and D1 and D2 are convolutions with
a core of 3 × 3.

Finally, Y2 is expanded to obtain the weight W, then dot multiplied with Y1 to obtain
new semantic information X3

X3 = W ∗Y1 = Wex(Y2) ∗Y1 = EX
(

Sigmod(Y2)
)

∗Y1, (3.7)

where Sigmod is the Sigmod function and EX is a matrix expansion operation.
The semantic information X1 and X2 encoded and decoded at the same layer are con-

nected through the CFF module. This effectively reduces the semantic gap between X1

and X2. Weighting based on different feature information can highlight some features and
enhance their expression.

3.5 Loss function of training

In Section 3.3, we introduce the DFC module. We add the DFC module to each layer of
decoding to output the probability graph Y1i (0 < i < 5, where i is the number of decoding
layers). Y1i and the real tag P perform loss calculations. In Fig. 3.1, we can see that the
output size of layer 1 decoding is the same as the original image size. Assuming that the
original image size H × W, the output size of layer 2 decoding is half the original image

size H/2 × W/2, and the output size of layer i decoding is H/2i−1 × W/2i−1. Therefore,
when calculating the loss of decoding at layer i, we need first to reduce the length and
width of the real label P to half the original size by i − 1 and then reduce the size of the
label P to obtain Pi−1. The loss between probability plots Y1i and P is calculated as follows.

The first layer of decoding is directly calculated using Diceloss

Diceloss =
1 − 2 ∑

H
h=1 ∑

W
w=1 C1h,w

Ph,w

∑
H
h=1 ∑

W
w=1 C1h,w

+ ∑
H
h=1, ∑

W
w=1 Ph,w

, (3.8)

where H and W represent the height and width of the image, C1h,w
represent the values of

probability graph Y11 at (h, w), and P1h,w
represent the values of the real label P at (h, w).

To make the network pay more attention to the edge characteristics of the target, we
use edge loss to calculate the decoding loss function at layer i. Layer i decoding loss
calculation



J. Mach. Learn., 3(4):445-463 455

Kh,w =

{

|Cih,w
− Pih,w

|, |Cih,w
− Pih,w

| < a,

0, otherwise,
(3.9)

Edgelossi =
1

m

H
′

∑
h=1

W
′

∑
w=1

Kh,w, (3.10)

where H
′

and W
′

represent the scaled length and width of the real label P, and Cih,w
rep-

resent the values of the probability graph Y1i at (h, w). Pih,w
represents the value of the

real label Pi in (h, w), and m represents the number of non zero elements in the K matrix,
0 < a < 1.

By calculating the Diceloss decoded at layer 1 and the loss decoded at layer i, the total
network loss is obtained by weighted summation

loss = Diceloss +
4

∑
i=2

bi ∗ Edgelossi, (3.11)

where 0 < bi < 0.5.

4 Experiment

4.1 Introduction and preprocessing of data sets

Datasets. To validate the segmentation method proposed in this paper, numerical experi-
ments were conducted using two pancreatic datasets: the publicly available NIH Pancreas
Dataset [14,15] and a private dataset provided by the Zhujiang Hospital of Southern Med-
ical University.

The NIH Pancreas Dataset 1 was collected by the National Institutes of Health in the
United States. The NIH dataset includes 82 cases, each containing CT data with a resolu-
tion of 512× 512× L, where L ∈ [181, 466] represents the number of slices along the body’s
long axis. The slice thickness ranges from 1.5 mm to 2.5 mm. A medical student manu-
ally annotated the pancreas organ in this dataset and then verified it by an experienced
radiologist.

The private dataset used in this paper was provided by the Zhujiang Hospital of South-
ern Medical University(ZJH) and consists of venous phase CT images of pancreatic cancer
cases, totaling 45 cases. The image data for each case is 512 × 512× L, where L represents
the number of slices, which varies among different patients. The labels in this dataset in-
clude both the pancreas and pancreatic cancer. Medical students manually annotated all
labels and subsequently checked and finalized them by professional chief surgeons.

Data preprocessing. CT images use grayscale to reflect X-ray absorption by organs and
tissues, which varies among different organs. Due to the wide grayscale range of CT slices,
window width and level adjustments are required during image reading. This study fo-

1https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT

https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
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cuses on segmenting the pancreas and pancreatic cancer, retaining detailed abdominal
organs to facilitate segmentation.

We set the CT value range to [−100HU, 240HU] and map these values to grayscale
pixel values. Fig. 4.1 shows CT slices after adjusting window width and level, with clearer
edges and reduced interference from surrounding organs, aiding feature learning and im-
proving segmentation accuracy.

CT images are 3D, formed by stacking slices, with size and resolution determined by
pixel size and spacing. Spacing, the distance between adjacent pixels, varies across cases.
For consistent training and prediction, all images were resampled to a (1, 1, 1) spacing.

Original CT slices alone do not sufficiently teach the network model about pancreatic
positional variations, limiting generalization. Therefore, data augmentation was used, in-
creasing training samples fivefold by enlarging, shrinking, rotating, translating, and flip-
ping the original data.

Fig. 4.1 shows the small proportion of the pancreas in the image and the blank areas
around the CT image. Training on the whole image would cause the model to learn ir-
relevant parameters and use excessive memory. Thus, the CT scan size was adjusted to
256 × 256 based on the pancreas’s approximate range, ensuring each slice contains the
complete pancreatic region.

Figure 4.1: The first image is the original CT slice. The second image shows the CT slice with adjusted CT

values in the range of [−100HU, 240HU]. The third image displays the ground truth labels for the slice.

4.2 Evaluating metrics

The Dice similarity coefficient (DSC) [4] is used as measurements for experiment results.
Dice is used to evaluate the similarity between the predicted sample Y11 and the real la-
bel P

DSC =
2‖Y11 ∩ P‖

‖Y11‖+ ‖P‖
. (4.1)

4.3 Implementation details

Experiments were conducted using the PyTorch framework on a server with one GeForce
RTX 3080 Ti GPU (11 GB RAM).
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The network model used the RMSprop optimizer with a learning rate of 1e-4, batch
size of 4, and 50 epochs.

Input image size was set to 256 × 256. In Table 4.1, we used the controlled variable
method to select the optimal image size. We only compared 512 × 512 and 256 × 256 in
the experiments. Further reduction in cropping, such as 128 × 128, would result in some
slices not fully encapsulating the pancreas, which is detrimental to practical applications.
Additionally, due to computer memory limitations, we could only conduct experiments
with an epoch count of 2 for images of size 512 × 512. As seen in the table, the segmen-
tation performance is significantly better with an image size of 256 × 256. Therefore, this
study selects an image size of 256 × 256 for the experiments.

For the NIH dataset, four-fold cross-validation (4-CV) was performed by dividing the
dataset into four parts (20, 20, 21, and 21 cases). Three parts were used for training and
one for testing, with results averaged over four iterations to estimate accuracy.

For the ZJH dataset, 30 cases were randomly selected for training and 15 for testing to
estimate accuracy.

Table 4.1: Image size selection.

Size Epochs=2 Epochs=4 Epochs=6

256*256 77.73 84.69 83.35

512*512 73.57 * *

4.4 Comparison with the state-of-the-art methods

In this subsection, we compare our method with state-of-the-art methods, such as Medical
Transformer, SegNeXt, and Swin UNETR methods. The experimental results are shown
in the following Table 4.2.
Performance-complexity trade-off. MAFE-Net demonstrates exceptional performance on
both the NIH and ZJH datasets while maintaining high efficiency in model complexity.
It achieves the top Dice Similarity Coefficient (DSC) of 84.69% on the NIH dataset for

Table 4.2: Performance of each methods on pancreas segmentation and pancreatic cancer segmentation tasks in

NIH and ZJH datasets.

Model Params. (M)

Dataset & Task

NIH ZJH

Pancreatic Pancreatic Pancreatic cancer

segmentation segmentation segmentation

Medical Transformer 1.8 75.62 67.2 51.03

SegNeXt 27.6 83.41 82.79 56.91

U-Net 39.4 80.97 74.53 67.91

Swin UNETR 149.1 82.84 78.91 56.75

MAFE-Net (Ours) 64.3 84.69 78.18 71.36
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pancreatic segmentation, and outperforms other models with a DSC of 71.36% on the
ZJH dataset for pancreatic cancer segmentation. Although MAFE-Net does not have the
lowest parameter count, it achieves high performance, showing a better balance between
performance and complexity.

Comparison with state-of-the-art in pancreatic segmentation. On the NIH dataset, MA-
FE-Net leads all models with a DSC of 84.69%, highlighting its high precision and relia-
bility in the task of pancreatic segmentation. Furthermore, on the ZJH dataset, MAFE-Net
follows closely with a DSC of 78.18%, just behind SegNeXt’s 82.79%, indicating its consis-
tent high performance across different datasets.

Comparison with state-of-the-art in pancreatic cancer segmentation. In the particularly
important task of pancreatic cancer segmentation, MAFE-Net proves its capability to han-
dle complex medical imaging tasks with a DSC of 71.36% on the ZJH dataset. In con-
trast, SegNeXt, which performed best on the ZJH dataset for pancreatic segmentation with
a DSC of 82.79%, achieved only a DSC of 56.91% for pancreatic cancer segmentation. This
performance advantage not only reflects MAFE-Net’s excellence in segmentation accuracy
but also shows the effectiveness of its algorithm in dealing with the challenging tissue of
pancreatic cancer.

Visual Comparison. In Fig. 4.2, we present three CT images of pancreases with different
shapes and locations from the NIH dataset and segmentation results from MAFE-Net and
U-Net. As shown in Fig. 4.2, comparing the segmentation results of U-Net and MAFE-
Net, both networks perform similarly well in regions where the pancreatic boundary is
distinct. However, U-Net’s results deviate significantly from the ground truth in areas
where the boundary is blurry or in contact with other organs or tissues. U-Net tends to
segment only the clearly defined internal parts of the pancreas accurately, while MAFE-
Net excels in delineating the boundary regions. Additionally, in cases where the pancreas
is disjointed in a single CT slice, our proposed network can accurately segment both parts.
This demonstrates that the multi-level attention mechanism enables the network to learn
richer features, resulting in more precise segmentation outcomes.

Fig. 4.3 shows the segmentation results of two pancreas and two pancreatic cancer cases
from the ZJH dataset. It is evident that, whether segmenting the pancreas or pancreatic
cancer, our proposed MAFE-Net model achieves more accurate segmentation.

In summary, MAFE-Net’s performance across all tasks highlights its outstanding ca-
pabilities and demonstrates the efficiency of its model design. MAFE-Net, with its high
DSC and reasonable parameter count, has proven its potential as an efficient and accurate
segmentation model in pancreatic or pancreatic cancer segmentation tasks. Particularly in
pancreatic cancer segmentation, MAFE-Net’s performance significantly surpasses other
models. This ability to balance performance and complexity gives MAFE-Net significant
application prospects in medical image segmentation.

4.5 Ablation study

Ablation experiments were conducted on the NIH dataset to evaluate the impact of dif-
ferent modules on the network’s performance. Specifically, the experiments assessed the
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CT images Ground truth UNet MAFE-Net

Figure 4.2: Segmentation of pancreas in NIH dataset. Red represents the real label and yellow represents the

network prediction label.

MFAC, CFF, and DFC modules combined with a weighted loss function structure. The
segmentation results, with and without these modules, were compared to validate the
positive contributions of the proposed modules and structures to the pancreas segmenta-
tion task.

As shown in Table 4.3, the baseline model (UNet) achieved a DSC of 80.97% on the NIH
dataset. By progressively adding the MFAC, CFF, and DFC modules, the DSC scores in-
creased to 83.16%, 83.66%, and 84.69%, respectively. The MFAC module demonstrated the
most significant improvement, increasing the DSC by 2.19%. When all three modules were

Table 4.3: Ablation study of the effectiveness of each module. Experiments on the NIH dataset. “X” indicates

that the module is added to baseline for experiment.Max DSC and Min DSC are taken after 20 epochs.

MFAC CFF DFC DSC(%) Max DSC(%) Min DSC(%)

80.97 81.48 79.26

X 83.16 83.60 81.43

X X 83.66 84.44 82.73

X X X 84.69 85.49 83.81
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CT images Pancreas UNet MAFE-Net

CT images Pancreas tumour UNet MAFE-Net

Figure 4.3: Segmentation of pancreas and pancreatic cancer in ZJH dataset. Red represents the real label and

yellow represents the network prediction label.

used together, forming the proposed MAFE-Net, the performance peaked, with a 3.72%
improvement over the baseline.

Due to insufficient model training in the initial stage, we selected the prediction results
after 20 epochs to analyze the maximum and minimum values of DSC. It can be seen from
Table 4.3 that the maximum and minimum values of dsc in the model after the addition of
each module are significantly increased, indicating that the added modules have a positive
effect on the segmentation effect.

The results in Fig. 4.4 illustrate the stability and effectiveness of each module in en-
hancing model performance.
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Figure 4.4: Training process of each model with different modules.

5 Discussion

Accurate segmentation of the pancreas and pancreatic cancer can better assist doctors in
diagnosing and treating pancreatic cancer. This study aims to design a multilevel atten-
tion feature extraction segmentation network. However, the differences in shape, size,
and position of the pancreas make automatic pancreatic segmentation challenging. Sin-
gle network structure and Receptive field extract feature information is limited, especially
at the edge of the pancreas (Table 4.2 shows that the DSC of UNet is only 80.97%). The
image segmentation models with different Receptive fields effectively improve accuracy.
Feature fusion also plays a crucial role in the accuracy of segmentation. This study intro-
duces the convolution of different Receptive fields into the SE module [9] to construct the
MAFC module. The MAFC module is used for different receptive fields to obtain different
characteristic information to help the network pay attention to and learn useful character-
istic information. This study proposes a CFF module to fuse the feature information of
encoding and decoding, narrow the semantic gap between encoding and decoding, and
preserve the practical features of encoding and decoding. Many encoding and decoding
structure networks have only one layer of output, which can lead to the network pay-
ing too much attention to the output of the first layer, thereby ignoring the importance of
other layer networks for pancreatic feature extraction. Therefore, this study connects the
DFC module after the decoding layer to calculate the loss of decoding layer features. The
DFC module can effectively improve the extraction of decoding layer features, making
the network pay more attention to pancreatic edge features or features that the network
itself learns weakly. The DFC module also has transferability. As shown in Table 4.3, the
network of encoding and decoding structures added to the DFC module will improve its
segmentation accuracy. In addition, based on the position and function of DFC module
connections, DFC can prune without increasing network parameters during testing.
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6 Conclusion

This study uses a new and effective deep learning-based segmentation network, MAFE-
Net, to segment 2D pancreatic CT images. The MFAC module is proposed to obtain more
feature information during the encoding and decoding. The CFF module proposes the fu-
sion of encoded and decoded feature information to improve the effectiveness of feature
extraction. In addition, adding transferable and prunable DFC modules after the decoding
layer promotes the network’s recall of feature loss in the decoding layer, making the net-
work pay more attention to the pancreatic edge region. Finally, the MAFE-Net is verified
on the NIH pancreas dataset and the Zhujiang Hospital of Southern Medical University
dataset. The experimental results show that the proposed MAFE Net exceeds other most
advanced methods, proving the proposed method’s effectiveness.
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