An Equivalent Characterization of $CMO(\mathbb{R}^n)$ with A_p Weights

Minghui Zhong and Xianming Hou*

School of Mathematical Sciences, Xiamen University, Xiamen 361005, China.

Received December 5, 2018; Accepted April 26, 2019; Published online March 4, 2020

Abstract. Let $1 and <math>\omega \in A_p$. The space $CMO(\mathbb{R}^n)$ is the closure in $BMO(\mathbb{R}^n)$ of the set of $C_c^{\infty}(\mathbb{R}^n)$. In this paper, an equivalent characterization of $CMO(\mathbb{R}^n)$ with A_p weights is established.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07 **Key words**: $BMO_{\omega}(\mathbb{R}^n)$, $CMO(\mathbb{R}^n)$, A_p , John-Nirenberg inequality.

1 Introduction

The goal of this paper is to provide an equivalent characterization of $CMO(\mathbb{R}^n)$, which is useful in the study of compactness of commutators of singular integral operator and fractional integral operator.

The space $BMO(\mathbb{R}^n)$ is defined by the set of functions $f \in L^1_{loc}(\mathbb{R}^n)$ such that

$$\|f\|_{BMO(\mathbb{R}^n)} := \sup_{Q \subset \mathbb{R}^n} M(f,Q) < \infty,$$

where

$$M(f,Q) := \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| dx, \quad f_{Q} := \frac{1}{|Q|} \int_{Q} f(x) dx.$$

The space $CMO(\mathbb{R}^n)$ is the closure in $BMO(\mathbb{R}^n)$ of the set of $C_c^{\infty}(\mathbb{R}^n)$, which is a proper subspace of $BMO(\mathbb{R}^n)$.

In fact, it is known that $CMO(\mathbb{R}^n) = VMO_0(\mathbb{R}^n)$, where $VMO_0(\mathbb{R}^n)$ is the closure of $C_0(\mathbb{R}^n)$ in $BMO(\mathbb{R}^n)$, see [2,3,9]. Here $C_0(\mathbb{R}^n)$ is the set of continuous functions on \mathbb{R}^n which vanish at infinity. Neri [8] gave a characterization of $CMO(\mathbb{R}^n)$ by Riesz transforms. Meanwhile, Neri proposed the following characterization of $CMO(\mathbb{R}^n)$ and its proof was established by Uchiyama in his remarkable work [11].

^{*}Corresponding author. Email addresses: mhzhong95@163.com (M. Zhong), houxianming37@163.com (X. Hou)

Theorem 1.1. Let $f \in BMO(\mathbb{R}^n)$. Then $f \in CMO(\mathbb{R}^n)$ if and only if f satisfies the following three conditions

- (a) $\lim_{a\to 0} \sup_{|Q|=a} M(f,Q) = 0;$
- (b) $\lim_{a\to\infty} \sup_{|Q|=a} M(f,Q) = 0;$
- (c) $\lim_{|x|\to\infty} M(f,Q+x) = 0 \text{ for each cube } Q \subset \mathbb{R}^n, \text{ where } Q+x := \{y+x : y \in Q\}.$

Recently, Guo, Wu and Yang [6] established an equivalent characterization of space $CMO(\mathbb{R}^n)$ by local mean oscillations. Lots of works about space $CMO(\mathbb{R}^n)$ have been studied, see [4] for example. Muckenhoupt and Wheeden [7, Theorem 5] showed the norm of $BMO_{\omega}(\mathbb{R}^n)$ (see Definition 1.2) is equivalent to the norm of $BMO(\mathbb{R}^n)$, where the weight function ω is Muckenhoupt A_p weight. So it is natural to consider equivalent characterizations of $CMO(\mathbb{R}^n)$ associated to A_p weights.

To state our main results, we first recall some relevant notions and notations.

The following class of A_p was introduced in [1,5].

Definition 1.1. Let $\omega(x) \ge 0$ and $\omega(x) \in L^1_{loc}(\mathbb{R}^n)$. For $1 , we say that <math>\omega(x) \in A_p$ if there exists a constant C > 0 such that for any cube Q,

$$\left(\frac{1}{|Q|}\int_{Q}\omega(x)dx\right)\left(\frac{1}{|Q|}\int_{Q}\omega(x)^{-\frac{1}{p-1}}dx\right)^{p-1} \le C.$$
(1.1)

Also, for p = 1, we say that $\omega(x) \in A_1$ if there is a constant C > 0 such that

$$M\omega(x) \le C\omega(x),\tag{1.2}$$

where M is the Hardy-Littlewood maximal operator. For $p \ge 1$, the smallest constant appearing in (1.1) and (1.2) is called the A_p characteristic constant of ω and is denoted by $[\omega]_{A_p}$.

Definition 1.2. Let $\omega \in A_p$. For a cube Q in \mathbb{R}^n , we say a function $f \in L^1_{loc}(\mathbb{R}^n)$ is in $BMO_{\omega}(\mathbb{R}^n)$ if f satisfies

$$\|f\|_{BMO_{\omega}(\mathbb{R}^n)} := \sup_{Q \subset \mathbb{R}^n} M(f,Q)_{\omega} < \infty,$$

where

$$\begin{split} m(f,Q)_{\omega} &:= \frac{1}{\omega(Q)} \int_{Q} f(x) \omega(x) dx, \\ M(f,Q)_{\omega} &:= \frac{1}{\omega(Q)} \int_{Q} |f(x) - m(f,Q)_{\omega}| \omega(x) dx. \end{split}$$