Towards a Fully Nonlinear Sharp Sobolev Trace Inequality

Jeffrey S. Case¹ and Yi Wang ^{2,*}

¹ 109 McAllister Building, Penn State University, University Park, PA 16802
² Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218.

Received October 31, 2019; Accepted September 3, 2020; Published online December 21, 2020.

Dedicated to Professors Sun-Yung Alice Chang and Paul C. Yang on their 70th birthdays

Abstract. We classify local minimizers of $\int \sigma_2 + \oint H_2$ among all conformally flat metrics in the Euclidean (n+1)-ball, n=4 or n=5, for which the boundary has unit volume, subject to an ellipticity assumption. We also classify local minimizers of the analogous functional in the critical dimension n+1=4. If minimizers exist, this implies a fully nonlinear sharp Sobolev trace inequality. Our proof is an adaptation of the Frank–Lieb proof of the sharp Sobolev inequality, and in particular does not rely on symmetrization or Obata-type arguments.

AMS subject classifications: 58J32, 53C21, 35J66, 58E11

Key words: conformally covariant operator; boundary operator; σ_k -curvature; Sobolev trace inequality; fully nonlinear PDE.

1 Introduction

The first sharp Sobolev trace inequality was proven by Escobar [21]. In geometric terms, he showed that if *g* is any conformally flat metric on the Euclidean ball $B^{n+1} \subset \mathbb{R}^{n+1}$, n > 1, of radius one, then

$$\frac{1}{2n} \int_{B^{n+1}} R^g \operatorname{dvol}_g + \oint_{S^n} H^g \operatorname{dvol}_{\iota^*g} \ge \omega_n^{\frac{1}{n}} \operatorname{Vol}_{\iota^*g}(S^n)^{\frac{n-1}{n}},$$
(1.1)

where ω_n is the volume of the standard *n*-sphere, $\iota: S^n \to B^{n+1}$ is the inclusion of $S^n = \partial B^{n+1}$, and H^g is the mean curvature of S^n induced by g, with the convention that S^n has mean curvature 1 with respect to the standard metric. Moreover, he showed that equality

^{*}Corresponding author. Email addresses: jscase@psu.edu (J.S. Case), ywang@math.jhu.edu (Y. Wang)

holds in (1.1) if and only if g is flat. His proof relies on an Obata-type argument which classifies all conformally flat, scalar flat metrics g on the ball for which the boundary has constant mean curvature. The inequality (1.1) plays a crucial role in studying a version of the boundary Yamabe problem; see [2, 22, 31–33] and references therein.

In analytic terms, Eq. (1.1) states that

$$\int_{B^{n+1}} v L_2 v + \oint_{S^n} v B_1 v \ge \frac{n-1}{2} \omega_n^{\frac{1}{n}} \left(\oint_{S^n} |v|^{\frac{2n}{n-1}} \right)^{\frac{n-1}{n}}$$
(1.2)

for all $v \in W^{1,2}(B^{n+1})$, where $L_2 = -\Delta$ is the conformal Laplacian, $B_1 = \partial_r + \frac{n-1}{2}$ is the conformal Robin operator [19, 21], and all integrals are taken with respect to the Riemannian volume element of the Euclidean metric on B^{n+1} or the induced metric on S^n , as appropriate. The link between Eq. (1.1) and Eq. (1.2) is obtained by setting $g = v^{\frac{4}{n-1}}g$. Moreover, equality holds if (1.2) if and only if

$$v(x) = a \left| rx - \xi_0 \right|^{1-n}$$

for constants $a \in \mathbb{R}$ and $r \in [0,1)$ and a point $\xi_0 \in S^n$. The inequalities (1.1) and (1.2) are equivalent due to the conformal covariance of L_2 and B_1 . Other proofs of (1.2) which exploit conformal covariance and the linearity of L_2 and B_1 are known; e.g. [5, 10].

Given $k \in \mathbb{N}$, Viaclovsky [38] defined the σ_k -curvature of a Riemannian manifold (X^{n+1}, g) as the *k*-th elementary symmetric function of the eigenvalues of the *Schouten tensor* $P := \frac{1}{n-1} \left(\text{Ric} - \frac{R}{2n} g \right)$. For example, $\sigma_1 = \frac{1}{2n} R$. Let $[g_0]$ be the set of metrics conformal to g_0 . When written in terms of a fixed background metric g_0 , the equation $\sigma_k^g = f, g \in [g_0]$, is a second-order fully nonlinear PDE which is elliptic in the positive *k*-cone; i.e. it is elliptic if $\sigma_j^g > 0$ for $1 \le j \le k$; see [38]. On closed manifolds, the equation $\sigma_k^g = 1$ is variational if and only if $k \le 2$ or g is locally conformally flat [8].

Initial studies of the σ_k -curvature involved constructing minimizers of the total σ_k -curvature functional among all volume-normalized metrics in the positive *k*-cone (e.g. [29, 30, 37]). In the critical case of dimension four, Chang, Gursky and Yang [13] noted that one could instead work in the positive 1-cone provided the total σ_2 -curvature was positive. Later studies (e.g. [26, 27, 36]) generalized this to show that one can minimize in the positive (k-1)-cone under a suitable integral assumption. For example, combining results of Guan and Wang [28] and Ge and Wang [26] yields sharp fully nonlinear Sobolev inequalities of closed *n*-spheres, n > 4, stated in terms of the σ_2 -curvature and the positive 1-cone. Note that Obata's argument generalizes to prove that any conformally flat metric of constant σ_k -curvature on the sphere has constant sectional curvature, subject to the above ellipticity condition [14, 38].

Given $k \in \mathbb{N}$, S. Chen [18] defined the H_k -curvature of the boundary of a Riemannian manifold (X^{n+1},g) in terms of elementary symmetric functions of the Schouten tensor of the interior and the second fundamental form of the boundary. The key points are that H_1 is the mean curvature; H_k^g , $g \in [g_0]$, when written in terms of a fixed boundary metric