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Abstract. In this paper, we study some basic geometric properties of pseudohermitian
submanifolds of the Heisenberg groups. In particular, we obtain the uniqueness and
existence theorems, and some rigidity theorems.
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1 Introduction

In this paper, for m≤n, we specify the ranges of indices as follows

1≤α,β,γ,σ,ρ,···≤n, 1≤ j,k,l,···≤m,
m+1≤ a,b,c,···≤n, 1≤A,B,C,···≤2n.

1.1 The Heisenberg groups

The origin of pseudohermitian geometry came from the construction of a pseudohermi-
tian connection, independently by N. Tanaka [15] and S. Webster [16]. In this paper, the
Heisenberg group is a pseudohermitian manifold and it plays the role of the model in
pseudohermitian geometry. That is, any pseudohermitian manifold with vanishing cur-
vature and torsion locally is part of the Heisenberg group. Let Hn be the Heisenberg
group, with coordinates (xβ,yβ,t). The group multiplication is defined by

(x,y,t)◦(x′,y′,t′)=(x+x′,y+y′,t+t′+yx′−xy′).
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The associated standard CR structure J and contact form Θ are defined respectively by

Je̊β = e̊n+β, Je̊n+β =−e̊β,

Θ=dt+
n

∑
β=1

xβdyβ−yβdxβ,

where

e̊β =
∂

∂xβ
+yβ

∂

∂t
, e̊n+β =

∂

∂yβ
+xβ

∂

∂t
.

The contact bundle is ξ =kerΘ. We refer the reader to [2, 3, 5] for the details about the
Heisenberg groups, and to [6, 11, 12, 15, 16] for pseudohermitian geometry.

The symmetry group PSH(n) of Hn is the group consisting of all pseudohermitian
transformations. Left translations Lp are symmetries. Another kind of examples are a
rotation ΦR around the t-axis which is defined by

ΦR

 x
y
t

=

(
R 0
0 1

) x
y
t

,

where R=

(
A −B
B A

)
∈SO(2n). In [5], we showed that each symmetry Φ∈PSH(n) has

the unique decomposition Φ= Lp◦ΦR, for some p∈Hn and R∈SO(2n). Since the action
of PSH(n) on Hn is transitive, the associated geometry is a kind of Klein geometry. The
corresponding Cartan geometry is just pseudohermitian geometry.

1.2 Pseudohermitian submanifolds

We now give the definition of pseudohermitian submanifold.

Definition 1.1. A (2m+1)-dimensional pseudohermitian manifold (M, Ĵ, θ̂) is called a pseudo-
hermitian† submanifold of Hn, 1≤m≤n, if

• ξ̂=TM∩ξ;

• Ĵ= J|ξ̂ ;

• θ̂=Θ|M,

where ξ̂=kerθ̂ is the contact structure on M. The number m is called the CR dimension of M.

Example 1.1. Suppose M ↪→Hn is an embedded submanifold with CR dimension n−1.
Then it is not hard to see that

†In [6], S. Dragomir and G. Tomassini call it isopseudo-hermitian, instead of pseudohermitian.


