Regularity of Weak Solutions to a Class of Complex Hessian Equations on Kähler Manifolds

Weimin Sheng*and Jiaxiang Wang

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China.

Received October 28, 2019; Accepted January 20, 2020; Published online January 25, 2021.

Dedicated to Professors Sun-Yung Alice Chang and Paul C. Yang on their 70th birthdays

Abstract. We prove the smoothness of weak solutions to a class of complex Hessian equations on closed Kähler manifolds, by use of the smoothing property of the corresponding gradient flow.

AMS subject classifications: 32W20, 35K55, 53C44.

Key words: Complex Hessian equation, regularity of weak solutions, pluripotential theory, parabolic flows.

1 Introduction

Let (M, ω) be a compact Kähler manifold of dimension $n \ge 2$. For convenience, we write $\omega = \sqrt{-1}g_{i\bar{j}}dz^i \wedge d\bar{z}^j$ in a local coordinate chart. Let u be a smooth function of M. We denote $\omega_u = \omega + \sqrt{-1}\partial \bar{\partial}u$. Locally it can be written as $\sqrt{-1}(g_{i\bar{j}} + u_{i\bar{j}})dz^i \wedge d\bar{z}^j$. Then we consider the complex Hessian equations of the form

$$(\omega + dd^{c}u)^{k} \wedge \omega^{n-k} = f(x,u)\omega^{n}, \qquad (1.1)$$

where $f(x,z) \in C^{2,\alpha}(M \times \mathbb{R})$. When k = 1, it is a quasilinear equation; when k = n, it is the complex Monge-Ampére equation, which has been studied extensively in the literature.

For the non-degenerate case of (1.1), when f(x,u) = f(x) and $0 < f(x) \in C^{2,\alpha}(M)$, the existence of smooth solutions have been studied by Hou [13], Hou, Ma and Wu [12], and finally solved by Dinew and Kołodziej. However, like the similar case in complex Monge-Ampère equations, when the right hand side f(x,u) depends on the solution u, the existence will rely on the condition $\frac{\partial f}{\partial x}(x,z) > 0$.

^{*}Corresponding author. *Email addresses:* weimins@zju.edu.cn (W. Sheng), wangjx_manifold@126.com (J. Wang)

The pluri-potential theory for complex Hessian equations have also attracted many attentions, and it was developed in [2, 8, 16, 17] etc. In [16], Lu has considered the weak solution to (1.1) and obtained its existence under some integral conditions. He also studied the approximation properties and the stability of this equation. Furthermore, in [18], Nguyen has studied the Hölder continuity of the solution when $f(x,u) = f(x) \in L^p(M)$ with varying choice of p.

In this paper, we are going to study the regularity of equation (1.1) for smooth function f(x,z) under the assumption that the equation (1.1) has a weak solution. Our method is based on the arguments in [19]. As an application, we show the regularity of the solutions of the equation which has been studied by Lu in [16]. We also improved our previous result in [20].

Our main result is

Theorem 1.1. If Eq. (1.1) has a weak solution in $\mathcal{PSH}_{\omega,k}(M) \cap C(M)$, then this solution is in $C^{2,\alpha}$.

Similar to [19], we will consider the corresponding parabolic equation

$$\begin{cases} \frac{\partial u}{\partial t} = \log \frac{\omega_u^k \wedge \omega^{n-k}}{\omega^n} - \log f(x, u), \\ u \Big|_{M \times \{0\}} = u_0, \end{cases}$$
(1.2)

where we suppose $u_0 \in \mathcal{PSH}_{\omega,k}(M) \cap C^{2,\alpha}(M)$. Here $u_0 \in \mathcal{PSH}_{\omega,k}(M)$ means that u_0 is an (ω,k) -plurisubharmonic function. The regularity of the weak solution follows from an approximation argument based on the regularity of the flow. The definition of (ω,k) plurisubharmonic function can be found in Definition 2.1. We will prove the short time existence and regularity in Section 3, and then prove the main result in Section 4.

2 Preliminaries

In this section, we introduce some notions and some recent results of (ω,k) -plurisubharmonic functions, following [2] (see also [8]).

First, we recall the elementary symmetric functions (see [2,5,10]). Let $\sigma_k(\lambda_1, \dots, \lambda_n)$ be the *k*-th elementary symmetric function, i.e.

$$\sigma_k(\lambda_1,\cdots,\lambda_n) = \sum_{1 \le i_1 < \cdots < i_k \le n} \lambda_{i_1} \cdots \lambda_{i_k},$$

where $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$, and $1 \le k \le n$. Let $\lambda_{\omega} \{a_{i\bar{j}}\}$ denote the eigenvalues of Hermitian symmetric matrix $\{a_{i\bar{i}}\}$ with respect to the Kähler form ω . We define

$$\sigma_k(a_{i\bar{j}}) = \sigma_k\left(\lambda_\omega\{a_{i\bar{j}}\}\right).$$