L^p Harmonic *k*-forms on Complete Noncompact Hypersurfaces in S^{n+1} with Finite Total Curvature

Jiuru Zhou*

School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China.

Received April 9, 2020; Accepted July 23, 2020; Published online June, 29 2021.

Abstract. In general, the space of L^p harmonic forms $\mathcal{H}^k(L^p(M))$ and reduced L^p cohomology $H^k(L^p(M))$ might be not isomorphic on a complete Riemannian manifold M, except for p = 2. Nevertheless, one can consider whether $\dim \mathcal{H}^k(L^p(M)) < +\infty$ are equivalent to $\dim H^k(L^p(M)) < +\infty$. In order to study such kind of problems, this paper obtains that dimension of space of L^p harmonic forms on a hypersurface in unit sphere with finite total curvature is finite, which is also a generalization of the previous work by Zhu. The next step will be the investigation of dimension of the reduced L^p cohomology on such hypersurfaces.

AMS subject classifications: 53C21

Key words: *L^p* harmonic *k*-form, hypersurface in sphere, total curvature.

1 Introduction

Recall that on a complete Riemannian manifold *M* with dimension *n*, a differential form $\alpha \in \Omega^k(M)$, $(0 \le k \le n)$ is called an L^p differential form if

$$\int_{M} |\alpha|^{p} \mathrm{d}v < +\infty, \text{ i.e., } |\alpha| \in L^{p}(M),$$

and we define

$$\Omega^k(L^p(M)) := \{ \alpha \in \Omega^k(M) \mid |\alpha| \text{ and } |d\alpha| \in L^p(M) \}.$$

In order to establish the corresponding de Rham cohomology, one considers the space of L^p closed forms

$$Z^{k}(L^{p}(M)) := \{ \alpha \in \Omega^{k}(L^{p}(M)) \mid d\alpha = 0 \},$$

^{*}Corresponding author. *Email address:* zhoujiuru@yzu.edu.cn (J. Zhou)

where the equation $d\alpha = 0$ holds in weak sense, i.e.,

$$\int_{M} \langle \alpha, \delta \beta \rangle = 0, \text{ for any } \beta \in \Omega_{0}^{k}(M),$$

and the space of L^p exact forms

$$B^k(L^p(M)):=\mathrm{d}\Omega^{k-1}(\mathrm{d}).$$

Then one can defined k-th de Rham space of unreduced L^p -cohomology as

$$H^{k}_{ur}(L^{p}(M)) := \frac{Z^{k}(L^{p}(M))}{B^{k}(L^{p}(M))},$$

and k-th de Rham space of reduced L^p -cohomology as

$$H^k(L^p(M)) := \frac{Z^k(L^p(M))}{B^k(L^p(M))},$$

where $\overline{B^k(L^p(M))}$ is the closure of $B^k(L^p(M))$. For more information on L^p cohomology theory, please refer to [3,9,15] and references therein.

For compact manifolds, Hodge Theorem says that de Rham cohomology can be computed by harmonic forms. This motivates us to study L^p harmonic forms. Notice that on a compact Riemannian manifold a harmonic form α satisfies $\Delta \alpha = 0$, where $\Delta := -(\delta d + d\delta)$ is the Hodge Laplacian, and this is equivalent to $d\alpha = 0, \delta\alpha = 0$. By the Gaffney cut-off trick, the same equivalence holds for L^2 harmonic forms on a complete Riemannian manifold [18], and $\mathcal{H}^k(L^2(M))$ is isomorphic to $H^k(L^2(M))$; however, in general, it is not the case for L^p ($p \neq 2$). Actually, Alexandru-Rugina [1] found L^p integrable *k*-forms α satisfying $\Delta \alpha = 0$, which are neither closed nor co-closed, on hyperbolic space \mathbb{H}^n for $n \geq 3$. From this we see that the L^p ($p \neq 2$) and L^2 harmonic theory are much different. In this paper, similar to [14, 3622], we define the space of L^p harmonic *k*-forms to be

$$\mathcal{H}^k(L^p(M)) := \{ \alpha \in \Omega^k(L^p(M)) \mid d\alpha = 0, \delta \alpha = 0 \},\$$

and define

$$\mathcal{H}_k(L^p(M)):=\ker(\Delta)\cap\Omega^k(L^p(M))$$

Besides, Alexandru-Rugina [1] observed that for manifolds with bounded geometry, there is a continuous embedding

$$\mathcal{H}_k(L^p(M)) \hookrightarrow H^k(L^p(M))$$

Hence, if the dimension of $H^k(L^p(M))$ is finite, then so is the dimension of $\mathcal{H}_k(L^p(M))$. However, the opposite implication is unknown. Hence, one can ask the following question: