Multipliers of Dirichlet-Type Subspaces of Weighted Bloch Spaces

Conghui Shen¹ and Jingshi Xu^{2,*}

 ¹ College of Mathematics and Data Science, Minjiang University, Fuzhou 350108, China;
² Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, School of Mathematics and Computing Science,

Guilin University of Electronic Technology, Guilin 541004, China.

Received July 24, 2021; Accepted October 4, 2021 Published online August 31, 2022.

Abstract. In this paper, we characterize the multipliers on the intersection of the Dirichlet-type space and the logarithmic Bloch space, and the intersection of the Dirichlet-type space and the logarithmic space of analytic functions of bounded mean oscillation.

AMS subject classifications: 47B38, 30H10, 32A35

Key words: Multiplier, Carleson measure, Dirichlet-type space, weighted Bloch space.

1 Introduction

Let \mathbb{D} denote the unit disk of the complex plane \mathbb{C} and let $\partial \mathbb{D}$ be the boundary of \mathbb{D} , the unit circle. Denote by $\mathcal{H}(\mathbb{D})$ the space of all analytic functions in \mathbb{D} . Let $f \in \mathcal{H}(\mathbb{D})$, for 0 , set

$$M_p^p(r,f) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta,$$

and

$$M_{\infty}(r,f) = \sup_{|z|=r} |f(z)|.$$

The Hardy space \mathcal{H}^p ($0) is defined by those <math>f \in \mathcal{H}(\mathbb{D})$ such that

$$||f||_{H^p} = \sup_{0 < r < 1} M_p(r, f) < \infty.$$

^{*}Corresponding author. Email addresses: shenconghui2008@163.com (Shen C), jingshixu@126.com (Xu J)

For the detail of the theory about the Hardy space \mathcal{H}^p , we refer the reader to [8,11,22].

The Dirichlet-type space \mathcal{D}^p_{α} is the set of all $f \in \mathcal{H}(\mathbb{D})$ such that

$$||f||_{\mathcal{D}^p_{\alpha}}^p = \int_{\mathbb{D}} |f'(z)|^p dA_{\alpha}(z) < \infty,$$

where $\alpha > -1$, $dA_{\alpha}(z) = (\alpha+1)(1-|z|^2)^{\alpha}dA(z)$, and $dA(z) = \frac{1}{\pi}dxdy$ is the normalized Lebesgue area measure. It is well known that if $p < \alpha+1$, then $\mathcal{D}_{\alpha}^{p} = A_{\alpha-p}^{p}$, the Bergman space (see [9]). If $p > \alpha+2$, then $\mathcal{D}_{\alpha}^{p} \subseteq \mathcal{H}^{\infty}$. Therefore, when $\alpha+1 \le p \le \alpha+2$, \mathcal{D}_{α}^{p} is a proper Dirichlet-type space. In this paper, we are interested in the space \mathcal{D}_{p-2+s}^{p} when 0 < s < 1.

The Bloch space \mathcal{B} consists of those $f \in \mathcal{H}(\mathbb{D})$ for which

$$\|f\|_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

The logarithmic Bloch space \mathcal{B}_{log} is defined by those $f \in \mathcal{H}(\mathbb{D})$ for which

$$\|f\|_{\mathcal{B}_{\log}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| \log \frac{2}{1 - |z|^2} < \infty.$$

The space of analytic functions of bounded mean oscillation *BMOA* (see [12]) is the set of all functions $f \in \mathcal{H}^1$ such that

$$\|f\|_{BMOA}^{2} = \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^{2} (1 - |\varphi_{a}(z)|^{2}) dA(z) < \infty,$$

where $\varphi_a(z) = \frac{a-z}{1-\bar{a}z}$ is the Möbius transformation which interchanges the point *a* and 0.

The logarithmic space $BMOA_{log}$ consists of those $f \in \mathcal{H}^1$ for which

$$||f||_{BMOA_{\log}}^{2} = \sup_{a \in \mathbb{D}} \left(\log \frac{2}{1-|a|} \right)^{2} \int_{\mathbb{D}} |f'(z)|^{2} (1-|\varphi_{a}(z)|^{2}) dA(z) < \infty.$$

If $f \in BMOA_{log}$, then the growth estimate for f is given by (see Lemma 2.4 in [19])

$$|f(z)| \leq C \log \log \frac{4}{1-|z|} ||f||_{BMOA_{\log}}, \qquad z \in \mathbb{D}.$$

It is known that the spaces *BMOA*, \mathcal{B}_{log} and *BMOA*_{log} are subspaces of the Bloch space \mathcal{B} .

Given $g \in \mathcal{H}(\mathbb{D})$, the multiplication operator M_g is defined by

$$M_g f(z) = g(z)f(z), \quad z \in \mathbb{D}, \quad f \in \mathcal{H}(\mathbb{D}).$$

Let *X*, *Y* be Banach spaces of analytic functions in \mathbb{D} . Let M(X,Y) be the space of multipliers from *X* to *Y*, in other words,

$$M(X,Y) = \{g \in \mathcal{H}(\mathbb{D}) : fg \in Y, \forall f \in X\}.$$

230