Orthogonal Exponentials of Planar Self-Affine Measures with Four-Element Digit Set

Hong Guang Li*

College of Mathematics and Computational Science, Huai Hua University, Huai Hua 418000, China

Received July 4, 2021; Accepted February 21, 2022; Published online August 31, 2022.

Abstract. Let $\mu_{M,\mathcal{D}}$ be a self-affine measure generated by an expanding real matrix $M = \begin{pmatrix} a & e \\ f & b \end{pmatrix}$ and the digit set $\mathcal{D} = \{(0,0)^t, (1,0)^t, (0,1)^t, (1,1)^t\}$. In this paper, we consider that when does $L^2(\mu_{M,\mathcal{D}})$ admit an infinite orthogonal set of exponential functions? Moreover, we obtain that if e = f = 0 and $a,b \in \{\frac{p}{q},p,q \in 2\mathbb{Z}+1\}$, then there exist at most 4 mutually orthogonal exponential functions in $L^2(\mu_{M,\mathcal{D}})$, and the number 4 is the best possible.

AMS subject classifications: 28A80, 42C05

Key words: Infinite orthogonal set, self-affine measure, orthogonal exponentials.

1 Introduction

Let μ be a compactly supported Borel probability measure on \mathbb{R}^n . μ is called a spectral measure if there exists a discrect set $\Lambda \subseteq \mathbb{R}^n$ such that the collection of exponential fuctions $E(\Lambda) := \{e^{2\pi i \langle \lambda, x \rangle} : \lambda \in \Lambda\}$ forms an orthonormal basis for $L^2(\mu)$. The set Λ is then called a spectrum for μ .

The existence of a spectrum for μ is a basic problem in harmonic analysis, it was initiated by Fuglede in his seminal paper [10]. The first singularly continuous spectral measure was discovered by Jorgensen and Pedersen [12]. This surprising discovery has received a lot of attention, and the research on the spectrality of self-affine measures has become an interesting topic. Also, new spectral measures were found in [2,8,9,13,15,16] and references cited therein.

For a more general Bernoulli convolution $\mu_{\rho,N}$, Hu and Lau [11] showed that the necessary and sufficient condition that $L^2(\mu_{\rho,2})(0 < \rho < 1)$ contains an infinite orthogonal

^{*}Corresponding author. Email address: 1hg20052008@126.com (Li H)

set of exponential functions is that $(\frac{p}{q})^{\frac{1}{r}}$ for some positive integers p,q,r, with p,q being odd and even, respectively. Recently, the spectral problem of Bernoulli convolution was solved by Dai [1]. He showed that $\mu_{\rho,2}$ is a spectral measure if and only if the contraction rate ρ is the reciprocal of an even integer. These results are generalized further to the N-Bernoulli measures [3,5,22].

Unlike the one dimensional case, there are few results in higher dimension. Deng and Lau [6] proved that if $M = diag(\rho,\rho)(|\rho| > 1)$, with $\mathcal{D} = \{(0,0)^t,(1,0)^t,(0,1)^t\}$, then $L^2(\mu_{\rho,\mathcal{D}})$ contains an infinite orthogonal set of exponential functions if and only if $|\rho| = (\frac{p}{3q})^{\frac{1}{r}}$ for $p,q,r \in \mathbb{N}$ with gcd(p,3q) = 1 and $\mu_{M,\mathcal{D}}$ is a spectral measure if and only if $\rho \in 3\mathbb{Z}$. Recently, for M = diag(a,b)(a,b > 1) and above \mathcal{D} , Dai, Fu and Yan [4] obtained some more general results.

For non-spectral problem of self-affine measure, Dutkay and Jorgensen [7] proved that if M = diag(p,p), with $p \in \mathbb{Z} \setminus 3\mathbb{Z}$ and $\mathcal{D} = \{(0,0)^t, (1,0)^t, (0,1)^t\}$, then there are no 4 mutually orthogonal exponential functions in $L^2(\mu_{M,\mathcal{D}})$. Following this discovery, the theory of non-spectral measures has been extensively studied, The readers may see [17–19] and references cited therein.

The question of existence of orthogonal families of complex exponentials was raised, and answered, first for dim=1 in the case of families of Cantor constructions [12]. It turns out that, when an affine fractal is specified as a self-similar measure μ , then the answer to the question of existence of an orthogonal Fourier basis (ONB) in $L^2(\mu)$ is sensitive to choice of scaling numbers. For dim=2, possible Fourier bases exists when the scaling matrix satisfies specific algebraic conditions. The present paper [4, 6, 7] addresses this question for planar constructions of such measures μ . For the planar cases, there is a host of additional issues entering into the structure of Fourier bases in $L^2(\mu)$. This paper concerned with the nature of the set of Fourier frequencies, in the case when a Fourier ONB exists. Let $\mu_{M,\mathcal{D}}$ be a class of self-affine measures which satisfies

$$\mu_{M,\mathcal{D}}(\cdot) = \frac{1}{\sharp \mathcal{D}} \sum_{d \in \mathcal{D}} \mu_{M,\mathcal{D}}(M(\cdot) - d), \tag{1.1}$$

where $M = \begin{pmatrix} a & e \\ f & b \end{pmatrix}$ with |det(M)| > 1, is an expanding matrix, and

$$\mathcal{D} = \left\{ \left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right\}.$$

Our main results are the following three theorems.

Theorem 1.1. If $e, f \neq 0$ and a+b=0, then $L^2(\mu_{M,\mathcal{D}})$ admits an infinite orthogonal set of exponential functions if and only if det(M) is in the set $\{\pm(\frac{p}{a})^{\frac{1}{r}}: p \in 2\mathbb{Z}^+, q \in 2\mathbb{Z}^+ - 1, r \in \mathbb{Z}^+\}$.

Theorem 1.2. If e = f = 0, i.e. M = diag(a,b), then $L^2(\mu_{M,\mathcal{D}})$ admits an infinite orthogonal set of exponential functions if and only if there exist a number of a,b that are in the set $\{\pm (\frac{p}{q})^{\frac{1}{r}} : p \in 2\mathbb{Z}^+, q \in 2\mathbb{Z}^+ - 1, r \in \mathbb{Z}^+\}$.