
J. Math. Study
doi: 10.4208/jms.v55n4.22.01

Vol. 55, No. 4, pp. 337-357
December 2022

A Thermodynamically-Consistent Phase Field
Crystal Model of Solidification with Heat Flux

Cheng Wang1 and Steven M. Wise2,∗

1 Department of Mathematics, The University of Massachusetts, North Dartmouth,
MA 02747, USA ;
2 Department of Mathematics, The University of Tennessee, Knoxville, TN 37996,
USA.

Received July 12, 2021; Accepted December 6, 2021;
Published online September 27, 2022.

Abstract. In this paper we describe a new model for solidification with heat flux us-
ing the phase field crystal (PFC) framework. The equations are thermodynamically
consistent in the sense that the time rate of change of the entropy density is positive
in the bulk and at the boundaries of the domain of interest. The resulting model con-
sists of two equations, a heat-like equation and a mass-conservation equation that de-
scribes how the atom density changes in time and space. The model is simple, yet
it can properly capture the variation in the free energy landscape as the temperature
is changed. We describe the procedure for constructing a temperature-atom-density
phase diagram using this energy landscape, and we give a simple demonstration of
solidification using the model.
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1 Introduction

The phase field crystal (PFC) model was introduced in [13, 14] as continuum description
of solidification in a unary material. It was formulated as a mass conservative version of
the classical Swift-Hohenberg equation, but, later, the model was re-derived, via certain
reasonable simplifications, from the dynamical density functional theory (DDFT) [15]. In
particular, assuming a constant, uniform temperature field T, one expresses the Helmholtz
free energy density via

F=
∫

Ω

{
f (T,ρ)+

Tκ f ,ρ,o

2
(ρ−ρo)C(ρ−ρo)

}
dx,
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where Ω is some spatial domain of interest, ρ : Ω→ [0,∞) is the number density field of
the unary material in Ω, the constant ρo > 0 is a reference density, κ f ,ρ,o > 0 is a positive
constant, f is the homogeneous Helmholtz free energy density, and C is a symmetric,
potentially nonlocal, two-point correlation operator. The free energy density, f , is often
taken to satisfy an ideal “gas” model:

f (T,ρ)=ρkBT ln
(

ρ

ρo

)
−kBT(ρ−ρo),

where kB is the Bolzmann constant. Often, one makes a (Taylor) polynomial approxima-
tion of the logarithmic term about the reference density to make the model more tractable.
However, it is the singular nature of the logarithmic term that guarantees the positivity
of the solutions, and this is an important feature in the numerical and PDE analyses.
At constant temperature, one can argue that the dynamics of the model should satisfy a
diffusion-dominated mass conservation equation of the form

ρ̇=−∇· J, J=−Mρ∇µ, (1.1)

where J is the diffusion flux, M>0 is a mobility, and µ is the chemical potential:

µ :=δρF= kBT log(ρ)+Tκ f ,ρ,oC(ρ−ρo), (1.2)

where we have assumed, for simplicity, that the boundary conditions are periodic. As
a consequence of these assumptions, the total free energy is dissipated as the system
evolves toward equilibrium, and the dissipation rate is

Ḟ=−M
∫

Ω
ρ|∇µ|2 dx≤0.

Of course, it would be necessary to justify the property that ρ>0 (or at least ρ≥0) point-
wise for the model to make sense. Numerical analyses of similar gradient flow models,
that is, models that have logarithmic energy potentials, have been performed in [5,10–12,
19, 20, 23, 28].

The PFC modeling framework has a couple of basic, distinctive features. First, the
solutions to the PFC-type models exhibit (at least) two distinct phases. One is a spatially
oscillatory phase, which is identified with the solid phase, and the other is a spatially
uniform phase, which is usually identified as the liquid (or gas) phase. The peaks of the
solutions in the oscillatory phase are interpreted as the “locations” of the atoms, and typ-
ically, one can choose C so that the peaks are arranged in a desired crystal structure [21].
Second, PFC models operate at atomic length scales but diffusive time scales. Thus, the
framework can capture long-time phenomena.

In this paper, we will devise a new model for solidification and melting using the
phase field crystal framework. In particular, we will not assume that the temperature is
uniform in space and time. For an adiabatically isolated system, this requires that the


