Lower Bounds on the Number of Cyclic Subgroups in Finite Non-Cyclic Nilpotent Groups

Wei Meng^{1,*}and Jiakuan Lu²

 ¹ School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China;
² School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China.

Received October 18, 2021; Accepted June 13, 2022; Published online October 11, 2022.

Abstract. Let *G* be a finite group and c(G) denote the number of cyclic subgroups of *G*. It is known that the minimal value of *c* on the set of groups of order *n*, where *n* is a positive integer, will occur at the cyclic group Z_n . In this paper, for non-cyclic nilpotent groups *G* of order *n*, the lower bounds of c(G) are established.

AMS subject classifications: 20D10, 20D20

Key words: *p*-groups, cyclic subgroups, Nilpotent groups.

1 Introduction

Throughout this paper all groups are finite. For a group *G* of order *n*, let c(G) denote the number of cyclic subgroups of *G* and d(n) denote the number of divisors of *n*. A well-known result on group theory says that a cyclic group of order *n* has a unique subgroup of order *d*, for any divisor of *n*, so a cyclic group of order *n* has exactly d(n) (necessarily cyclic) subgroups. Richard [14] proved that $c(G) \ge d(n)$, with equality if and only if *G* is a cyclic group. Another basic result of group theory states that c(G) = |G| if and only if *G* is an elementary abelian 2-group. Tărnăuceanu [16, 17] described the finite groups with c(G) = |G| - r (r = 1, 2). Regarding the results about c(G) = |G| - r. Belshoff, Dillstrom and Reid [2,3] established a more remarkable bound. They showed that $|G| \le 8r$. Cocke and Jensen [4] proved that if *G* is not a 2-group then $|G| \le 6r$. Jafari and Madadi [9] proved that for any a divisor *m* of |G|, *G* has at least d(m) cyclic subgroups whose orders divide *m*. Garonzi and Lima [5] studied the function $\alpha(G) = \frac{c(G)}{|G|}$. They explored basic properties of $\alpha(G)$ and pointed out a connection with the probability of commutation.

^{*}Corresponding author. Email addresses: mlwhappyhappy@163.com (Meng W), jklu@gxnu.edu.cn (Lu J)

Let $\mathfrak{s}(G)$ denote the number of subgroups of *G*. It's well-known that if *G* is a *p*-group of order p^n , then $\mathfrak{s}(G) \leq \mathfrak{s}(Z_p^n)$. Qu [13] proved that if *p* is odd and *G* is non-elementary abelian *p*-group, then

$$\mathfrak{s}(G) \leq \mathfrak{s}(M_p \times Z_p^{n-3}),$$

where $M_p = \langle a, b | a^p = b^p = c^p = 1, [a, b] = c, [a, c] = [b, c] = 1 \rangle$. Tărnăuceanu [18] showed that if *G* is a non-elementary abelian 2-group of order 2^n , then

$$\mathfrak{s}(G) \leq \mathfrak{s}(D_8 \times Z_2^{n-3}).$$

Aivazidis and Müller [1] determined the structure of those finite non-cyclic *p*-groups whose number of subgroups is minimal. Recently, we [12] generalized the results of Aivazidis and Müller on all finite non-cyclic nilpotent groups.

In the light of above investigations, it is a natural question that to ask for a given order which non-cyclic groups have the minimal number of cyclic subgroups. In this paper, this question is answered among all non-cyclic nilpotent groups. In fact, we obtain the lower bounds of c(G), where *G* is a non-cyclic nilpotent of order *n*. Our main results are the following theorems.

Theorem 1.1. Let p be a prime, G a non-cyclic p-group of order p^n .

- (1) If $p^n = 2^3$, then $\mathfrak{c}(G) \ge 5$, with equality if and only if $G \cong Q_8$.
- (2) If $p^n \neq 2^3$, then $\mathfrak{c}(G) \ge (n-1)p+2$, with equality if and only if $G \cong Z_{p^{n-1}} \times Z_p$, M_{p^n} or Q_{16} .

Theorem 1.2. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be a positive integer and $s = \min\{i \in \{1, \dots, k\} | \alpha_i > 1\}$, where $p_1 < p_2 < \dots < p_k$ are distinct primes. Suppose *G* is a non-cyclic nilpotent group of order *n*, then there exists a suitable $q \in \pi(n)$, such that *Q* is non-cyclic and $p_s \le q \le 3p_s - 2$, where $Q \in Syl_q(G)$. Furthermore,

- (1) If $q^{\lambda} = 2^3$, then $\mathfrak{c}(G) \ge 5 \cdot d(\frac{n}{8})$, with equality if and only if $G \cong Q_8 \times Z_{\frac{n}{8}}$.
- (2) If $q^{\lambda} \neq 2^3$, then $\mathfrak{c}(G) \ge [(\lambda 1)q + 2] \cdot d(\frac{n}{q^{\lambda}})$, with equality if and only if $G \cong Z_q \times Z_{\frac{n}{q}}$, $M_{q^{\lambda}} \times Z_{\frac{n}{\lambda}}$ or Q_{16} .

All unexplained notations and terminologies are standard and can be found in [6, 8, 15]. In addition, $\pi(n)$, the set of the prime divisors of n; Z_n , the cyclic group of order n; Q_{2^n} , the generalized quaternion of order 2^n ; Z_p^n , the elementary abelian group of order p^n ; $M_{p\lambda} = \langle a, b | a^{p^{\lambda-1}} = b^p = 1, a^b = a^{1+p^{\lambda-2}} \rangle$. $A \times B$ means a direct product of A and B.

2 Preliminaries

Lemma 2.1. ([7]) Let p be an odd prime, G a p-group of order p^n with $exp(G) = p^{n-\alpha} (n \ge 3)$. If $\alpha \ge 1$, then $c_k(G) \equiv 0 \mod p$, where $2 \le k \le n-\alpha$.