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Abstract. We investigate the Cauchy problem for the sixth order p-generalized Benney-
Luke equation. The local well-posedness is established in the energy space Ḣ1(Rn)∩
Ḣ3(Rn) for 1≤ n ≤ 10, by means of the Sobolev multiplication law and the contrac-
tion mapping principle. Moreover, we establish the energy identity of solutions and
provide the sufficient conditions of the global existence of solutions by analyzing the
properties of the energy functional.
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1 Introduction

In this paper, we are interested in considering the Cauchy problem for the p-generalized
Benney-Luke equation

Φtt−∆Φ+
√

ε(a∆2Φ−b∆Φtt)+ε(B∆2Φtt−A∆3Φ)+ f (Φ)=0, (1.1)
Φ(0,x)=Φ0(x), Φt(0,x)=Φ1(x), (1.2)

where Φ(x,t) denotes an unknown function of x ∈Rn (1≤ n≤ 10) and t∈R+, ∆ is the
Laplace operator, ∇ is the Hamilton operator, ε,a,b,A, and B are positive constants. The
nonlinear term is defined as

f (Φ)= ε fp(Φ)+β fm(Φ), β∈R,
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where
fp(Φ)=Φt∆pΦ+2∇pΦ·∇Φt, fm(Φ)=∇(|∇Φ|m∇Φ),

and ∇p and ∆p are denoted as

∇pΦ=((∂x1 Φ)p,...(∂xn Φ)p), (1.3)

and

∆pΦ=∇·(∇pΦ)=
n

∑
i=1

∂xi(∂xi Φ)p, (1.4)

respectively. The constant m is positive and p satisfies

p∈N, or p=
m1

m2
≥1, m1, m2 are relative prime odd numbers, (1.5)

which guarantees the definition of ∆p is reasonable.
The Benney-Luke equation,

Φtt−∆Φ+µ(a∆2Φ−b∆Φtt)+ε(Φt∆Φ+2∇Φ·∇Φt)=0, (1.6)

is a model to describe the dispersive and the evolution of weakly nonlinear, long water
waves of small amplitude, which was first derived by Benney and Luke when a= 1

6 and
b= 1

2 with no surface tension (α=a−b+ 1
3=0) (see [2]). Later, via the theory of weakly non-

linear long wave propagation in shallow water, Pego and Quintero [9] showed that the
evolution of three-dimensional water waves with surface tension can be reduced to study
the solution Φ(x,t) of the isotropic equation (1.6). Where Φ is the velocity potential on
the domain, ε (nonlinearity coefficient) is the amplitude parameter and µ=(h0/L)2 shows
the long-wave parameter (dispersion coefficient). h0 presents the equilibrium depth and
L stands for horizontal length of motion. After rescaling the variables, we can suppose
the constants a and b are positive and such that a−b=α− 1

3 ̸=0, where α is the Bond num-
ber. A significant fact is that the Benney-Luke equation (1.6) can formally reduce to the
Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation or the Boussinesq
equation in appropriate limits when we seek wave forms propagating predominantly in
one direction slowly evolving in time and having weak transverse variation (see [7, 9]
). The results about solitary waves, nonlinear stability and exact solutions for (1.6) were
researched in [1, 5, 7–11, 14, 15, 17, 20].

Recently, Quintero [13] proved the existence and analyticity of the lump solutions
(finite energy solitary waves) for the following generalized Benney-Luke equation

Φtt−∆Φ+µ(a∆2Φ−b∆Φtt)+ε(Φt∆pΦ+2∇pΦ·∇Φt)=0, (1.7)

where ∇p and ∆p are denoted as (1.3) and (1.4) respectively. For the Cauchy problem of
the equation (1.7), by means of the Strichartz estimates and the properties of the commu-
tators of Kato-Ponce type, González [4] established the local and global well-posedness


