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Abstract. Efficient and unconditionally stable high order time marching schemes are
very important but not easy to construct for nonlinear phase dynamics. In this paper,
we propose and analysis an efficient stabilized linear Crank-Nicolson scheme for the
Cahn-Hilliard equation with provable unconditional stability. In this scheme the non-
linear bulk force are treated explicitly with two second-order linear stabilization terms.
The semi-discretized equation is a linear elliptic system with constant coefficients, thus
robust and efficient solution procedures are guaranteed. Rigorous error analysis show
that, when the time step-size is small enough, the scheme is second order accurate in
time with a prefactor controlled by some lower degree polynomial of 1/ε. Here ε is the
interface thickness parameter. Numerical results are presented to verify the accuracy
and efficiency of the scheme.
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1 Introduction

In this paper, we consider numerical approximation for the Cahn-Hilliard equation





φt=−γ∆(ε∆φ−
1

ε
f (φ)), (x,t)∈Ω×(0,T],

φ|t=0=φ0(x), x∈Ω,
(1.1)
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with Neumann boundary condition

∂nφ=0, ∂n(ε∆φ−
1

ε
f (φ))=0, x∈∂Ω. (1.2)

Here Ω ∈ Rd,d = 2,3 is a bounded domain with a locally Lipschitz boundary, n is the
outward normal, T is a given time, φ(x,t) is the phase-field variable. Function f (φ) =
F′(φ), with F(φ) is a given energy potential with two local minima, e.g. the double well
potential

F(φ)=
1

4
(φ2−1)2.

The two minima of F produces two phases, with the typical thickness of the interface
between two phases given by ε. γ is a time relaxation parameter, its value is related to
the time unit used in a physical process.

Eq. (1.1) is a fourth-order partial differential equation, which is not easy to solve using
a finite element method. However, if we introduce a new variable µ, called chemical

potential, for −ε∆φ+
1

ε
f (φ), Eq. (1.1) can be rewritten as a system of two second order

equations 



φt=γ∆µ, (x,t)∈Ω×(0,T],

µ=−ε∆φ+
1

ε
f (φ), (x,t)∈Ω×(0,T],

φ|t=0=φ0(x), x∈Ω.

(1.3)

The corresponding Neumann boundary condition reads

∂nφ=0, ∂nµ=0, x∈∂Ω. (1.4)

The Cahn-Hilliard equation was originally introduced by Cahn-Hilliard [6] to de-
scribe the phase separation and coarsening phenomena in non-uniform systems such as
alloys, glasses and polymer mixtures. If the term ∆µ in equation (1.3) is replaced with −µ,
one get the Allen-Cahn equation, which was introduced by Allen and Cahn [2] to describe
the motion of anti-phase boundaries in crystalline solids. The Cahn-Hilliard equation and
the Allen-Cahn equation are two widely used phase-field model. In a phase-field model,
the information of interface is encoded in a smooth phase function φ. In most parts of
the domain Ω, the value of φ is close to local minima of F. The interface is a thin layer of
thickness ε connecting regions of different local minima. It is easy to deal with dynam-
ical process involving morphology changes of interfaces using phase-field models. For
this reason, phase field models have been the subject of many theoretical and numerical
investigations (cf., for instance, [7–9,12,14,15,17,19,22,23,30,35]).

However, numerically solving the phase-field equations is not an easy task, since
the small parameter ε in the Cahn-Hilliard equation makes the equation very stiff and
requires a high spatial and temporal grid resolution. To design an energy stable scheme,


