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Abstract. The subject is the ill-posedness degree of some inverse problems for the
transient heat conduction. We focus on three of them: the completion of missing
boundary data, the identification of the trajectory of a pointwise source and the recov-
ery of the initial state. In all of these problems, the observations provide over-specified
boundary data, commonly called Cauchy boundary conditions. Notice that the third
problem is central for the controllability by a boundary control of the temperature.
Presumably, they are all severely ill-posed, a relevant indicator on their instabilities,
as formalized by G. Wahba. We revisit these issues under a new light and with dif-
ferent mathematical tools to provide detailed and complete proofs for these results.
Jacobi Theta functions, complemented with the Jacobi Imaginary Transform, turn out
to be a powerful tool to realize our objectives. In particular, based on the Laptev work
[Matematicheskie Zametki 16, 741-750 (1974)], we provide a new information about
the observation of the initial data problem. It is actually exponentially ill-posed.

AMS subject classifications: MASC 65N20, 65F22

Key words: Integral operators, regular kernels, Jacobi transform, separated variables approxima-
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1 Introduction

In many areas in sciences and engineering, computational methods for the identification
of missing boundary data, of pointwise source or of initial states from Cauchy measure-
ments in transient heat transfer seem recurrent (see [1, 2, 5, 8, 22]). They are among few
pertinent ways to proceed, if not the only ones. The distinctive property of these inverse
problems is their ill-posedness; they suffer from serious instabilities (see [3, 10, 23, 26]).
Careless numerical procedures used for the approximation of these unstable problems
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fail most often. We refer to [11] for a general exposition of the possible regularization
remedies. The scope here is the ill-posedness degree in the sense of [28] for the recon-
struction problems of either the boundary data, the pointwise source or the initial state.
In the proofs proposed here, we show how Jacobi Theta functions help to determine how
fast the singular values of the underlying operators decreases toward zero, for each of
the inverse problems under scrutiny.

The contents of the paper are as follows. Section 2 is a focus on the identification
of a missing boundary data, for the diffusion problem. Using Fourier series, we set the
inverse problem as a convolution equation; the kernel being an infinite sum of exponen-
tials. Practicing a zoom on this convolution kernel to especially see its shape at the initial
time requires a substantial transformation of it. Applying Laplace’s transform to the heat
equation, solving it explicitly and using the table of the inverse Laplace transform, we
derive a different expansion of that kernel, where the time is inverted in a way. This
new expression displays the flatness of the convolution kernel at the initial instant. This
statement is enough to ensure the severe ill-posedness or the severe instability of the data
completion problem. Section 3 introduces the Jacobi Theta functions and enumerates the
identities resulting from the Jacobi Imaginary Transform, resulting itself from Poisson’s
summation formula. Then we revisit the data completion kernel to show that its transfor-
mation can be directly deduced, as a particular example, from the ’inverse’ formulas on
Jacobi’s Theta functions. In Section 4, we investigate the non-linear problem of pointwise
source reconstruction and illustrate that the corresponding linearized inverse problem is
severely ill-posed. We turn in Section 5 to the observation problem, currently studied as
the adjoint of the exact control of the temperature by a boundary control (see [30]). The
novelty the analysis ends to is the exponential ill-posedness of the boundary controlla-
bility problem. There is no clues that this statement has been seen before.

2 Boundary data completion

Let a rod be geometrically represented by I, the segment (0,π) of the real axis and J =
(0,T) the time interval. We set Q= I× J. The generic point in I is denoted by x and the
time variable is t. Assume now be given a boundary condition η in L2(0,T). Then, we
consider the following heat equation

∂ty−y′′=0 in Q,

y(0,·)=η(·), y′(π,·)=0 on J,

y(·,0)=0 on I.

(2.1)

The symbol ′ is used for the space derivative ∂x. Putting the source data and the initial
state to zero is chosen only for simplicity.

The inverse problem of the boundary completion consists in recovering the data η at
extremity x=0, which is inaccessible, for some practical reason. Hopefully, it is achieved
by collecting observations on y at the other extremity x = π where measurements can
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be collected. This results in redundant boundary data at point x=π and in unavailable
condition at x=0.

Now, consider that h= h(t) is given in L2(J). The boundary condition η (at x= 0) is
unknown, it is the missing data to be recovered from observation on y at x=π,

Dη(t) :=yη(π,t)=h(t), ∀t∈ J. (2.2)

Neumann condition given in (2.1) together with (2.2) are the Cauchy conditions at x=π.
The lack of boundary data at x=0 is known to rise high difficulties. The focus here is on
the ill-posedness degree. Following the definition in [28], the inverse problem is said to
be severely ill-posed if the singular-values (µn)n≥0 of the operator D decays faster than
any negative power of n. This means that the sequence (nνµn)n≥0 decays towards zero
for all ν> 0. Slightly different definitions may be encountered in the literature; they are
all variants of the basic one in [28]. We hold the definition we follow here as a pertinent
one and is sufficient to our goal. We provide in the subsequent a mathematical proof of
the severe ill-posedness of the problem.

Using Fourier series for the computation of the solution yη , we come up with an
integral form

yη(x,t)=
1

π ∑
k≥0

(
(2k+1)

∫

(0,t)
η(s)e−(k+1/2)2(t−s) ds

)
sin(k+

1

2
)x, ∀(t,x)∈Q.

As a result, the observation operator D is as follows

(Dη)(t)=(K⋆η)(t)=
∫

(0,t)
K(t−s)η(s)ds,

with the kernel K defined to be

K(t)=
1

π ∑
k≥0

(−1)k(2k+1)e−(k+1/2)2 t, ∀t∈ J.

The condensed problem (2.2) turns out to be a Volterra equation and D is a convolution
operator with kernel K(·).

The specialized literature shows that the ill-posedness degree of equation (2.2) is
tightly related to the smoothness of the convolution kernel K(·) on J (see [12, 27]) and in
particular to its behavior in the vicinity of t=0. A direct result is that K=K(t,s), looked
at a bivariate function, can be approximated, with high accuracy, by a finite sequence
of separated functions. This has to do with the concept of Kolmogorov approximation
numbers of the operators (see [24]). This is the pursued aim.

Let us first of all notice straight away that, by applying the discrete version of the
dominated convergence theorem, K(·) is indefinitely differentiable in ]0,T]. Hence, the
important issue is not only to investigate the differentiability at point t= 0+ but also to
know whether K is flat or not. To get an insight on what happen, we use matlab to depict



118 F. Ben Belgacem, M.-D. Kateb, V. Robin / J. Math. Study, 51 (2018), pp. 115-130

0 0.2 0.4 0.6 0.8 1
-0,3

-0.1

0.1

0.3

0.5

0 0.2 0.4 0.6 0.8 1
-3

-1

1

3

5

Figure 1: The representative curves of the kernel and its first derivatives, K,K′ (left) and K′′,K′′′ (right).
They are all flat at the vicinity of zero.

in Figure 1 the representative curves of K so as of its three first derivatives K′,K′′ and K′′′.
They confirms the expectation.

We rigorously show in the sequel that behavior of the kernel K. We therefore need to
transform the expression of K. The dominated convergence theorem allows therefore to
prove the desired flatness of K to the right of the origin.

Lemma 2.1. There holds that

K(t)=

√
π

t3 ∑
k≥0

(−1)k(2k+1)e−
((2k+1)π)2

4t , ∀t∈]0,T].

Proof. Let L be the Laplace transform with respect to the time variable. Set ŷη = Lyη .
Hence, for all p≥0, the function ŷη(·,p) is solution of the elliptic boundary value problem

pŷη(·,p)− ŷ′′η (·,p)=0 in I,

ŷη(0,p)= η̂(p), ŷ′η(π,p)=0.

This problem can be explicitly solved. Making all calculations, we obtain that

D̂η(p)= ŷη(π,p)=
η̂(p)

cosh(π
√

p)
.

Owing to the convolution theorem of the Laplace transform, we have D̂η(p)= K̂(p)η̂(p).
This yields

K̂(p)=
1

cosh(π
√

p)
=

2e−π
√

p

1+e−2π
√

p
=2 ∑

k≥0

(−1)ke−(2k+1)π
√

p.
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Calling for the table of Laplace transform shows that (see [4, Chapter V, Section 5.6, ex-
ample 1, page 245]),

2e−(2k+1)π
√

p=L
(
(2k+1)

√
π

t3
e−

(2k+1)2π2

4t

)
, ∀t>0.

This achieves the result and the proof is complete.

Proposition 2.1. For all integer ν, we have that

lim
t→0+

t−νK(t)=0, K(ν)(0+)=0.

Proof. Using the dominated convergence theorem we are able to check out that for all
integer ν,

|K(t)|≤Cνtν, ∀t∈]0,T].

This is a sufficient indication of the flattened shape of K at the vicinity of t=0. The proof
is complete.

A straightforward consequence is that the data completion problem is severely ill-
posed and falls short of exponential ill-posedness.

Corollary 2.1. Problem (2.2) is severely ill-posed.

Proof. On account of the regularity of K in Proposition 2.1 and following [12], the singular-
values (µn)n∈N of the operator D, ordered decreasingly, decay toward zero faster than
n−ν for any ν>0. This is the indicator of severe ill-posedness. The proof is complete.

Remark 2.1. Problem (2.2) may not be exponentially ill-posed. K is clearly not ana-
lytic near t= 0. There is no further indication that the singular-values (µn)n≥0 decrease
like e−βnν

for some β>0 and ν>0.

3 Jacobi’s Theta transform

Theta functions enter in a the large category of special functions. Similar to most of
special functions, they have an important role in the area of mathematical physics and
they enjoy a central utility in the theory of elliptic functions (see [29]). Those we will
use thoroughly in our exposition are variants of the fundamental Jacobi theta function
introduced in the early 19th century (see [17, 1828]). We consider here two of these Jacobi
theta functions, depending on two arguments, τ and z,

ϑ1(τ,z)=2 ∑
k≥0

(−1)keiπ(k+ 1
2 )

2τ sin(2k+1)z,

ϑ3(τ,z)=1+2 ∑
k≥1

eiπk2τ cos(2kz).
(3.1)
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τ and z are complex variables. Both sums are uniformly converging within the domain
ℑ(τ)>0 and z∈C and these two functions are therefore analytic. Notice that ϑ1 and ϑ3

are the notations introduced by Jacobi himself for these functions. We do not provide the
two remaining functions ϑ2 and ϑ4 since they won’t be used.

The key result for these functions, we will use repeatedly, is the so-called Jacobi Imag-
inary transform formula, a flavor of which has been supplied in Lemma 2.1. The proof
is based on the Poisson summation formula and may be found in [29, chapter XXI, page
475].

Lemma 3.1 ([29]). The following Jacobi identities hold

ϑ1(τ,z)=
−i√
−iτ

e−i z2

πτ ϑ1(−
1

τ
,− z

τ
),

ϑ3(τ,z)=
1√
−iτ

e−i z2

πτ ϑ3(−
1

τ
,− z

τ
).

4 Pointwise source identification

The inverse problem we focus on is the determination of pointwise source from some
given observations. It has been addressed in the non-exhaustive list [8, 9]. The heat
equation to work with reads as

∂tya−y′′a = g(t)δx−a(t) in Q,

y′a(0,·)=0, y′a(π,·)=0 on J,

ya(·,0)=0 on I.

(4.1)

The source g(t)δx−a(t) is either not known at all or only partially known that is one among
the intensity g(·) or the position a(·) is not available. Consider that a sensor is installed
at the extreme point x=0 and that the measurement function h(·) of the temperature y is
known. Assume g(·) is known and that the trajectory a(·) of the source does not touch
the sensor. This means that a(·)≥ a for some constant a∈]0,π[. Then, we are left with the
inverse problem: find a(·) satisfying

Ba(t)=ya(0,t)=h(t), ∀t∈ J. (4.2)

The operator B is non-linear. Comprehensive identifiability analysis has been elaborated
in [3, 16, 18]. They conclude to the injectivity of B. Despite the fact that ill-posedness de-
gree of non-linear problem, here defined by B, may not be directly linked to its derivative
B′ (see [25]), we choose to investigate the linearized version of it. Most often, solving (4.2)
calls for iterative procedures —Newton, Gradient algorithms. At each iteration, one has
to cope with a linearized problem defined by B′. This is why we are rather interested in
the linearized operator.
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Assume that g∈ L2(J) and a∈ L∞(J). For a mathematical study of the ill-posedness
degree, we calculate a closed form of the solution y using Fourier series. It is given by

ya(t,x)=
1

π

∫ t

0
g(s)ds+

2

π ∑
k≥1

(∫ t

0
e−k2(t−s)g(s)cos(ka(s))ds

)
cos(kx).

This allows to provide an integral expression of the non-linear operator B which is also
the non-linear convolution operator with the kernel

(Ba)(t)=
1

π

∫ t

0
g(s)ds+

2

π ∑
k≥1

∫ t

0
e−k2(t−s)g(s)cos(ka(s))ds.

We will know more about the operator B at the vicinity of a ∈ L∞(J) after studying its
Fréchet derivative D :=B′a. This derivative is expressed as follows: for all f ∈L2(J),

(D f )(t)=− 2

π ∑
k≥1

∫ t

0
ke−k2(t−s)sin(ka(s))g(s) f (s)ds=− 2

π

∫ T

0
G(t,s)g(s) f (s)ds.

We have set here

G(t,s)=I(0,∞)(t−s)∑
k≥1

ke−k2(t−s)sin(ka(s)), ∀t,s∈ J.

The symbol I(0,∞) is for the indicator function of (0,∞).
Working in a Hilbert framework is better than doing so in Banach spaces. We there-

fore consider D as an operator mapping L2(J) into itself. We can also study it when it
operates from L∞(J) into L2(J). In that context, the spectral theory we have in mind is re-
placed by the concept of Kolmogorov approximation numbers of the operators (see [24]).

The spectral analysis of D is linked to the smoothness of the full kernel

K(t,s)=− 2

π
g(s)G(t,s), ∀t,s∈ J.

The hardest part of it consists in finding out the regularity at the vicinity of the diagonal
line t−s=0 in the plan (t,s). The Jacobi Imaginary transform is there to help us with this
issue.

Proposition 4.1. There holds that : for all (t,a)∈]0,∞[×R.

∑
k≥1

ke−k2 t sin(ka)=
1

4

√
π

t3

(
−∑

k≥0

(2kπ−a)e−
(2kπ−a)2

4t +∑
k≥1

(2kπ+a)e−
(2kπ+a)2

4t

)
.

Proof. According to Lemma 3.1, and after setting τ= it
π and z= a

2 , we get

ϑ3(
it

π
,
a

2
)=

√
π

t
e−

a2

4t ϑ3(
iπ

t
,
iπa

2t
).
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Under explicit form, this formula reads as

1+2 ∑
k≥1

e−k2tcos(ka)=

√
π

t
e−

a2

4t

(
1+2 ∑

k≥1

e−
k2π2

t cosh(
kπa

t
)

)
.

Replacing cosh in terms of exponentials and reordering yields to

1+2 ∑
k≥1

e−k2t cos(ka)=

√
π

t

(
e−

a2

4t +∑
k≥1

e−
(2kπ−a)2

4t +∑
k≥1

e−
(2kπ+a)2

4t

)

=

√
π

t

(
∑
k≥0

e−
(2kπ−a)2

4t +∑
k≥1

e−
(2kπ+a)2

4t

)
.

Deriving with respect to a concludes to the desired result. The proof is complete.

Remark 4.1. Kernels in Proposition 4.1 are plotted in Figure 2 for several trajectories
when g=1. If necessary, zooms are realized at the time origin t=0. The flat behavior of
these kernels is hence visible either for fixed or moving sources. Notice that the less flat
curves are those related to the sources located near the observation point x=0.
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Figure 2: Kernels of Proposition 4.1 for fixed sources at x = a (left). The same kernel for a moving
source represented by the black curve (right). The red curve is the trajectory t→ a(t).

Another preliminary point to deal with is concerned with the regularity of the ker-
nel K, when identified to the following mapping t 7→ K(t,·). We begin by studying the
(sub)kernel G.

Lemma 4.1. Let ℓ be an arbitrary integer. Then, the derivative ∂ℓt G belongs to L∞(J× J).

Proof. The critical point is to clarify the behavior of G near the diagonal line t−s=0. This
is the reason why we split the derivative ∂ℓt G as follows

∂ℓt G(t,s)=I(α,∞)(t−s)∂ℓt G(t,s)+I(0,α)(t−s)∂ℓt G(t,s)=G+
ℓ
(t,s)+G−

ℓ
(t,s).
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The real number α is positive and small. G+
ℓ

is supported away of the diagnonal while the

support of G−
ℓ

is the narrow strip (of width α/
√

2) embracing the diagonal t−s=0. Each
function G+

ℓ
and G−

ℓ
will be handled in a specific way. We start by G+

ℓ
. The following

statement is straightforward

|G+
ℓ
(t,s)|≤I(0,∞)(t−s)∑

k≥1

k2ℓ+1e−k2(t−s)|sin(ka(s))|≤ ∑
k≥1

k2ℓ+1e−αk2
<∞.

By the Lebesgue dominated theorem, commuting the derivative ∂ℓt and the infinite sum

∑k≥1 is authorized. A by-product is that G+
ℓ
∈L∞(J× J).

Addressing G−
ℓ

requires the transformation given in Proposition 4.1. It can be ex-
panded as

G−
ℓ
(t,s)=G−

ℓ,1(t,s)+G−
ℓ,2(t,s), if t−s≤α.

The notations corresponds in an abvious way to the two terms of the expansion of the
kernel G. The targeted result is proceeded gradually.
(i) We begin by the derivatives of the (first) infinite sum

G−
0,1(t,s)=−1

4
I(0,α)(t−s)

√
π

(t−s)3 ∑
k≥0

(2kπ−a(s))e
− (2kπ−a)2

4(t−s) = ∑
k≥1

γk(t,s).

Calculate the successive derivatives of the general term γk(·,·) yields

∂ℓt γk(t,s)=
I(0,α)(t−s)√

t−s
P2ℓ+1

(
1

t−s
,(2kπ−a(s))

)
e
− (2kπ−a)2

4(t−s) .

P2ℓ+1 is a bivariate polynomial with degree ≤ 2ℓ+1 with respect to each variable. The
fact that 0≤ a(·)≤π induces the following bound

|∂ℓt γk(t,s)|≤
I(0,α)(t−s)√

t−s
|P|2ℓ+1

(
1

t−s
,2kπ

)
e
− ((2k−1)π)2

4(t−s) .

The coefficients of the polynomial |P|2ℓ+1 are the absolute values of those of P2ℓ+1. By the
dominated convergence theorem, this bound proves not only the uniform convergence
of the series (∂ℓt γk)k≥1 on the domain 0 ≤ t−s ≤ α but also its complete flatness at the
diagonal line. Indeed, we have

lim
t−s→0

G−
ℓ,1(t,s)=0.

As a result G−
ℓ,1 is bounded and belongs thus to L∞(J× J).

(ii) The derivatives of the second infinite series

G−
0,2(t,s)=

1

4
I(0,α)(t−s)

√
π

(t−s)3 ∑
k≥1

(2kπ+a(s))e
− (2kπ+a)2

4(t−s) .

are monitored following the same lines as for the first. This concludes to the same state-
ment that G−

ℓ,2∈L∞(J× J).
The proof is then complete.
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To provide a relevant bound on the singularvalues of the compact operator D we need
the following result known as Allahverdiev’s formula (see [14, Theorem 2.1, page 28 ])

µn = min
rank Dn≤n

‖D−Dn‖L(L2(J),L2(J)). (4.3)

We have the following

Lemma 4.2. Let ν be a positive real number. There exists Cν>0 for which the singular-values of
D satisfy

µn ≤
Cν

nν
, ∀n≥0.

Proof. The kernel G can be expanded on the Tchebycheff polynomials (Tℓ)ℓ≥0 so that

G(t,s)= ∑
0≤ℓ≤n−1

aℓ(s)Tℓ(t)+ǫn(t,s)=Gn(t,s)+ǫn(t,s), ∀t,s∈ J× J.

The smoothness of G explains the error estimate (see [15])

‖ǫn‖L∞(J×J)≤
Cν

nν
. (4.4)

Now, define the kernel Kn by

Kn(t,s)=− 2

π
g(s)Gn(t,s), ∀t,s∈ J.

Using (4.4) implies the following bound

‖K−Kn‖L2(J×J)≤
Cν

nν
.

Select Dn, the integral operator with the kernel Kn. It is easily seen that the range of Dn

is spanned by (Tℓ)0≤ℓ≤n−1. Its rank is then ≤n. The result is ensued from identity (4.3).
The proof is complete

Theorem 4.1. Problem (4.2) is severely ill-posed.

5 Initial state recovery

The third problem we study is concerned with the recovery of the initial state of the heat
equation from some observations at the extreme point of the rod. A narrow connection
does exist between this problem and the controllability of the heat equation by a Neu-
mann boundary condition. They are adjoint of each other. Here again Theta functions
with the Jacobi Imaginary transform turn out to be well-fitting tools for the exploration
of ill-posedness degree of both problems.
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Let be given an initial state ψ∈ L2(I). Denote y∈ L2(J;H1(I)) the unique solution of
the boundary value problem

∂tyψ−∂2
xxyψ=0 in Q,

y′ψ(0,·)=0, y′ψ(π,·)=0 on J,

yψ(·,0)=ψ on I.

(5.1)

Let h(·) be given in L2(J). The observation equation is expressed as: find ψ∈ L2(J) such
that

Bψ :=yψ(0,t)=h(t), ∀t∈ J. (5.2)

This inverse problem is the adjoint of the controllability of the heat equation ; the control
being a Neumann condition at x=0. Ill-posedness results have been proven for a Dirichlet
type control in [6]. The spectral properties of some infinite structured matrices such as
Cauchy and Pick matrices play an important role in the analysis elaborated there. We
follow a more direct way to state an improved exponential ill-posedness.

The operator B is bounded from L2(I) in L2(J). We intend to put it in an integral
form and to study its kernel. The explicit expression of B comes from Fourier series
(see [13, 22]). Given that the sequence (cos(kx))k≥1 is an orthogonal basis in L2(I), we
may expand ψ as

ψ(x)= ∑
k≥0

ψk cos(kx) in I.

Substitute it into problem (5.1) and after achieving necessary computations, B may be put
presented as follows,

(Bψ)(t)= ∑
k≥0

e−k2tψk =
∫

I
H(t,x)ψ(x)dx.

The kernel of the integral operator is hence defined by

H(t,x)=
1

π
+

2

π ∑
k≥1

e−k2t cos(kx), in I× J.

Inversion of B amounts to solving the Cauchy sideways problem. This inverse problem
has at most one solution (see [19]). Then B is into and its kernel is the trivial subspace, i.e.,
N (B)= {0}. This tells that the singular-values (µn)n≥0 of B are all positive. Investigat-
ing the singular-values of B can therefore be carried out by studying the non-vanishing
eigenvalues (λn)n≥0 of the operator A=BB∗ which is also an integral operator

(Aη)(t)=
∫

J
G(t,s)η(s)dx, ∀η∈L2(J).

The kernel function G of A is given by

G(t,s)=
∫

I
H(t,x)H(s,x)dx=

1

π
+

2

π ∑
k≥1

e−k2(t+s), ∀t,s∈ J.
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Easy calculations ascertain that G belongs to L2(J× J) and A is in the class of Hilbert-
Schmidt operators. Asymptotics of (µn =

√
λn)n≥0 (the singular-values of B) are condi-

tioned by the smoothness of G. Actually G is indefinitely smooth away form the origin
(t,s) = (0,0). The key is the behavior of G at the vicinity of the vertex (0,0). We pro-
ceed in the sequel to shed some light on this issue. Jacobi’s Theta functions are capable
of supplying us with the answer and to lift uncertainty about the behavior of G at the
origin.

Lemma 5.1. We have that: for all t,s∈ (0,T),

G(t,s)=
1

π
+

2

π ∑
k≥1

e−k2(t+s)=
1√

π(t+s)

(
1+2 ∑

k≥1

e−
(kπ)2

t+s

)
.

Proof. The Jacobi Theta Transformation on ϑ3, provides

ϑ3(τ,0)=
1√
−iτ

ϑ3(−
1

τ
,0).

Choosing τ= it
π provides that for all t∈]0,∞[,

1+2 ∑
k≥1

e−k2t=

√
π

t

(
1+2 ∑

k≥1

e−
(kπ)2

t

)
.

The proof is complete.

The purpose is now to obtain asymptotics of the eigenvalues of the operator A=B∗B.
The core question is therefore the influence of the term (t+s)−1/2, in the expression of the
kernel G. Notice that G has a form close to a class of integral operators examined in the
early 70’s by A. A. Laptev in [20]. A modern approach appears in [7, 2006] that simplifies
and extend those results to the Banach spaces where the concept of Kolmogorov numbers
is used. Recall that Kolmogorov numbers and the singular-values of a linear operator are
equivalent in Hilbert scales (see [24]). We will follow this methodology. First of all, we
need an important result about the separated expansion of the kernel (t+s)−1/2,

1√
π(t+s)

= ∑
0≤ℓ≤n−1

aℓ(t)bℓ(s)+rn(t,s), ∀t,s∈ J. (5.3)

The sequences (aℓ)0≤ℓ≤n , (bℓ)0≤ℓ≤n−1 belong both to L2(J). The error estimate we give
here can be found in [7].

Lemma 5.2. There exist a sequence (aℓ(t),bℓ(s))0≤ℓ≤n−1 such that (5.3) holds with the following
error estimation

‖rn‖L2(J×J)≤Ce−̺
√

n.

The constants (C,̺) are independent upon n.
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Theorem 5.1. There exist ( fℓ(t),gℓ(s))0≤ℓ≤n−1⊂ L2(J)×L2(J) such that

G(t,s)= ∑
0≤ℓ≤n

fℓ(t)gℓ(s)+ǫ′n(t,s), ∀t,s∈ J.

The following estimate holds

‖ǫ′n‖L2(J×J)≤C′e−̺′
√

n.

Proof. Let r∈ J be a small real number to be fixed later on. Consider the partition of unity

1=I1(t,s)+I2(t,s)+I3(t,s), ∀t,s∈ J.

The function I1 is the indicator of the small square [0,r]×[0,r], I2 is the characteristic
function of the strip [0,r]×[r,1] and I3 is finally for the strip [r,1]×[0,1]. Basically, the
proof is obtained after expanding each of the three functions Gi=GIi, 1≤ i≤3.
(i) For the expansion of G3, it is easy to see that

G3(t,s)=
1

π
+

2

π ∑
1≤k≤n−1

(e−k2t
I(r,1)(t))(e

−k2s
I(0,1)(s))+ǫ3(t,s), ∀t,s∈ J.

Bounding ǫ3(·,·) in L2(J× J) is conducted in a progressive way

‖ǫ3‖L2(J×J)≤ ∑
k≥n

‖e−k2t‖L2(r,1)‖e−k2s‖L2(0,1)≤ ∑
k≥n

e−k2r

2k2
≤ 1

2n2 ∑
k≥n2

e−kr =
e−n2r

2n2(1−e−r)
.

(ii) The decomposition of G2 is realized following the same lines as above. In fact, we
write that

G2(t,s)=
1

π
+

2

π ∑
1≤k≤n−1

(e−k2t
I(r,1)(t))(e

−k2s
I(r,1)(s))+ǫ2(t,s), ∀t,s∈ J.

with the estimate on ǫ2,

‖ǫ2‖L2(J×J)≤ ∑
k≥n

‖e−k2t‖L2(0,r)‖e−k2s‖L2(r,1)≤
e−n2r

2n2(1−e−r)
.

(iii) The last expansion is for G1. Keeping the exponential family (e−k2t)k≥0 in the expres-
sion of G1 fails to provide an interesting error bound. We hence call for Lemma 5.2 to
tansform it,

G1(t,s)=
I1(t,s)√
π(t+s)

+
2I1(t,s)√

π(t+s)
∑
k≥1

e−
(kπ)2

t+s =
I1(t,s)√
π(t+s)

+ǫ1(t,s), ∀t,s∈ J.

Plugging expansion (5.3) into the above identity produces the following formula

G1(t,s)= ∑
0≤k≤n−1

(ak(t)I(0,r)(t))(bk(s)I(0,r)(s))+[rn+ǫ1](t,s), ∀t,s∈ J.
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Estimate for rn(·,·) is predicted in Lemma 5.2. It remains to bound ǫ1(·,·) with respect to
the norm of L2(J× J). It is derived as follows

ǫ1(t,s)=
2I1(t,s)√

π(t+s)
∑
k≥1

e−
(kπ)2

2r ≤ 2I1(t,s)√
π(t+s)

∑
k≥1

e−
kπ2

2r ≤ 2√
π(t+s)

e−
π2

2r

1−e−
π2

2r

.

If we switch to the L2-norm then we obtain

‖ǫ1‖L2(J×J)≤
4√
π

e−
π2

2r

1−e−
π2

2r

.

This achieves the third step.

Putting together different expansions of G1,G2 and G3, and after re-ordering we de-
rive that

G(t,s)=(G1+G2+G3)(t,s)= ∑
0≤k≤3n−1

fk(t)gk(s)+ǫ′n(t,s), ∀t,s∈ J.

To get the bound on the residual function ǫ′n(·,·), we observe that

‖ǫ′n‖L2(J×J)=‖rn+ǫ1+ǫ2+ǫ3‖L2(J×J)≤Ce−̺
√

n+
4√
π

e−
π2

2r

1−e−
π2

2r

+
e−n2r

n2(1−e−r)
.

The constant C is of course insensitive to r. Ultimately, selecting r so that r=1/n leads to
the final majoration

‖ǫ′‖L2(J×J)≤Ce−̺
√

n+
e−n

n2(1−e−
1
n )

+
4√
π

e−
π2n

2

1−e−
π2n

2

≤C′e−̺′
√

n.

The proof is complete.

Reproducing the same argumentation as for the former inverse problem of pointwise
source detection we derive an exponential decreasing rate of the singularvalues of B.

Corollary 5.1. The singularvalues (µn)n≥0 of the operator B decrease like e−̺′
√

n. The
observation problem (5.2) is exponentially ill posed.

Remark 5.1. Investigating the ill-posedness degree of the controllability problem by Neu-
mann or Dirichlet boundary data has been addressed in some works (see [13,22,23]). The
most advanced results we know of are found in [6]. It is shown there that the singularval-
ues (µn)n≥0 decrease faster than any negative power n−ν,ν> 0. The analysis conducted
here concludes to additional informations on the decreasing rate of (µn)n≥0.
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6 Conclusion

The methdology developed is handy and seems successful for analyzing the compact-
ness of some integral operators, constructed by kernels generated from the heat equa-
tion. Jacobi Theta functions and their Imaginary transforms turn out to be strongly fitted
to help clarifying some inverse and control questions linked to the diffusion boundary
value problems. Hopefully, the mathematical arguments exposed through this paper
will be re-insvested for dispersion coupled problem as one can find in [18] and refer-
ences therein. They might serve to solve further issues related to the diffusion problems.
We think in particular of the sensitive question of the exact determination of the control
cost† for shortime null-controllability of the heat equation. Volterra integral equations
with kernels defined by elliptic functions similar to Jacobi Theta functions may also be
concerned.
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