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Abstract. Flow inside a lid-driven cavity (LDC) is studied here to elucidate bifurcation
sequences of the flow at super-critical Reynolds numbers (Recr1) with the help of ana-
lyzing the time series at most energetic points in the flow domain. The implication of
Recr1 in the context of direct simulation of Navier-Stokes equation is presented here for
LDC, with or without explicit excitation inside the LDC. This is aided further by per-
forming detailed enstrophy-based proper orthogonal decomposition (POD) of the flow
field. The flow has been computed by an accurate numerical method for two different
uniform grids. POD of results of these two grids help us understand the receptivity
aspects of the flow field, which give rise to the computed bifurcation sequences by un-
derstanding the similarity and differences of these two sets of computations. We show
that POD modes help one understand the primary and secondary instabilities noted
during the bifurcation sequences.
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1 Introduction

The 2D flow in a square LDC (of side L) is a canonical problem to study flow dynamics
numerically for incompressible Navier-Stokes equation due to its unambiguous bound-
ary conditions and very simple geometry. The flow is essentially shear-driven, with the
lid given a constant-speed translation (U), giving rise to corner singularities on the top

∗Corresponding author. Email addresses: llestandi@u-bordeaux.fr (L. Lestandi), swagata@iitk.ac.in
(S. Bhaumik), krishnachand.beaero14@pec.edu.in (GRKC. Avatar), azaiez@enscbp.fr (M. Azaiez),
tksen@iitk.ac.in (T.K. Sengupta)

http://www.global-sci.org/jms 150 c©2018 Global-Science Press



Lucas Lestandi et al. / J. Math. Study, 51 (2018), pp. 150-176 151

wall, as depicted in the top frame of Figure 1. Such singularity gives rise to Gibbs’ phe-
nomenon [1, 5], which is milder for low order methods [16, 29]. Low order highly diffu-
sive methods [6,16] are incapable of computing unsteady flows at high Reynolds number
(Re=UL/ν, where ν is the kinematic viscosity). In Ghia et al. [16], results for a wide range
of Re up to 10000 are presented as steady flow. However, numerical results obtained
by high accuracy combined compact difference scheme indicate creation of a transient
polygonal vortex at the core, with permanent gyrating satellite vortices around it [38,42],
for the same Re. It is well known that compact schemes for spatial discretization behave
properly as compared to other methods, and Gibbs’ phenomenon [35] is not experienced
for the singular LDC problem due to numerical smoothing of the derivatives near the
Nyquist limit [31, 39].

Steady solutions have been reported [14, 16] for Re far exceeding the values reported
in the literature for the first Hopf Bifurcation (Recr1). Unsteady flows have been obtained
as a solution of bifurcation problem [26, 43], by studying linear temporal instability of
the steady solution obtained numerically. Simulations of full time-dependent Navier-
Stokes equation [25, 38] reveal that the flow loses stability via Hopf bifurcation, as Re
increases. Critical Re and frequencies obtained from DNS and eigenvalue analysis do
not match. Such differences are also noted for different DNS results. However, DNS
approach is preferable, due to its superiority of spatio-temporal multi-modal analysis
over normal mode analysis of eigenvalue approach. In the latter, one postulates explicitly
that all points in the domain have identical variation with respect to time. This is strictly
incorrect, as one is dealing with space-time dependent growth of disturbances during the
onset of unsteadiness.

It is shown [25, 41, 42] that Recr1 depends upon accuracy of the method and how the
flow is established in DNS. Impulsive start of the flow triggers all frequencies at the onset
and hence preferred [38, 42]. Obtaining final limit cycle at one Re from the limit cycle
solution from another Re [25] is inappropriate [22]. First Hopf bifurcation obtained by
DNS is dependent upon source of numerical error, mainly on the aliasing error for flow
inside LDC [42]. This also depends upon the discretization, which in turn determines the
creation of wall vorticity. A finer grid will create larger wall vorticity, but will have lesser
truncation error. For the same numerical method, using same time step, a finer grid will
have lesser aliasing and truncation errors, and hence numerical Recr1 will be higher for
finer grid. However, this can also be studied with the help of explicit excitation to show
the near universality of Recr1.

Linear instability of equilibrium flow and DNS have been used to evaluate the onset
of unsteadiness, i.e., obtaining Recr1 for LDC. These methods yield values of Recr1 differ-
ently. For example, Recr1 =8018 in [2] and 8031.93 in [28] have been reported. Cazemier
et al. [8] reported Recr1 at 7972 using a finite volume method. In Bruneau and Saad [6],
the critical Re is suggested to be in the range of 8000 ≤ Recr1 ≤ 8050, obtained using a
third order upwind finite difference scheme. The authors do not provide any bifurcation
diagram to substantiate this observation. Sengupta et al. [41] have described multiple
Hopf bifurcations, showing the first one at 7933 and the second at 8187, using uniform


