Existence of Renormalized Solutions of Nonlinear Elliptic Problems in Weighted Variable-Exponent Space

Youssef Akdim* and Chakir Allalou

Laboratoir LSI, Faculté polydisciplinaire, Taza Gare B. P. 1223, Taza Maroc. Received 28 May, 2015; Accepted 13 July, 2015

Abstract. In this article, we study a general class of nonlinear degenerated elliptic problems associated with the differential inclusion $\beta(u) - div(a(x,Du) + F(u)) \ni f$ in Ω where $f \in L^1(\Omega)$. A vector field a(.,.) is a Carathéodory function. Using truncation techniques and the generalized monotonicity method in the framework of weighted variable exponent Sobolev spaces, we prove existence of renormalized solutions for general L^1 -data.

AMS subject classifications: 35J15, 35J70, 35J85

Key words: Weighted variable exponent Sobolev spaces, truncations, Young's Inequality, elliptic operators.

1 Introduction

Let Ω be a bounded open set of \mathbb{R}^N ($N \ge 1$) with Lipschitz boundary if $N \ge 2$, where the variable exponent $p:\overline{\Omega} \to (1,\infty)$ is a continuous function, and ω be a weight function on Ω , i.e. each ω is a measurable a.e. positive on Ω . Let $W_0^{1,p(\cdot)}(\Omega,\omega)$ be the weighted variable exponent Sobolev space associated with the vector ω . We are interested in existence of renormalized solutions to the following nonlinear elliptic equation

$$(E,f)\begin{cases} \beta(u) - div(a(x,Du) + F(u)) \ni f & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

with a right-hand side f which is assumed to belong either to $L^{\infty}(\Omega)$ or to $L^{1}(\Omega)$ for Eq. (E, f). Furthermore, F and β are two functions satisfying the following assumptions:

http://www.global-sci.org/jms

©2015 Global-Science Press

^{*}Corresponding author. *Email addresses:* akdimyoussef@yahoo.fr (Y. Akdim), chakir_alalou@yahoo.fr (C. Allalou)

(A₀) $F: \mathbb{R} \to \mathbb{R}^N$ is locally lipschitz continuous and $\beta:\mathbb{R} \to 2^{\mathbb{R}}$ a set valued, maximal monotone mapping such that $0 \in \beta(0)$, Moreover, we assume that

$$\beta^0(l) \in L^1(\Omega), \tag{1.1}$$

for each $l \in \mathbb{R}$, where β^0 denotes the minimal selection of the graph of β . Namely $\beta_0(l)$ is the minimal in the norm element of $\beta(l)$

$$\beta_0(l) = \inf\{|r| / r \in \mathbb{R} \text{ and } r \in \beta(l)\}.$$

Moreover, $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function satisfying the following assumptions :

(A₁) There exists a positive constant λ such that $a(x,\xi) \cdot \xi \ge \lambda \omega(x) |\xi|^{p(x)}$ holds for all $\xi \in \mathbb{R}^N$ and almost every $x \in \Omega$.

(A₂) $|a_i(x,\xi)| \le \alpha \omega^{1/p(x)}(x)[k(x) + \omega^{1/p'(x)}(x)]\xi|^{p(x)-1}]$ for almost every $x \in \Omega$, all i = 1, ..., N, every $\xi \in \mathbb{R}^N$, where k(x) is a nonnegative function in $L^{p'(\cdot)}(\Omega)$, p'(x) := p(x)/(p(x)-1), and $\alpha > 0$.

(**A**₃) $(a(x,\xi)-a(x,\eta))\cdot(\xi-\eta) \ge 0$ for almost every $x \in \Omega$ and every $\xi, \eta \in \mathbb{R}^N$.

We use in this paper the framework of renormalized solutions. This notion was introduced by Diperna and P.-L. Lions [7] in their study of the Boltzmann equation. This notion was then adapted to an elliptic version of (E, f) by L. Boccardo *et al.* [5] when the right hand side is in $W^{-1,p'}(\Omega)$, by J.-M. Rakotoson [17] when the right hand side is in $L^1(\Omega)$, and finally by G. Dal Maso, F. Murat, L. Orsina and A. Prignet [10] for the case of right hand side is general measure data. The equivalent notion of entropy solution has been introduced by Bénilan *et al.* in [4]. For results on existence of renormalized solutions of elliptic problems of type (E, f) with a(,) satisfying a variable growth condition, we refer to [19], [12], [2] and [1]. One of the motivations for studying (E, f) comes from applications to electrorheological fluids (see [18] for more details) as an important class of non-Newtonian fluids.

For the convenience of the readers, we recall some definitions and basic properties of the weighted variable exponent Lebesgue spaces $L^{p(x)}(\Omega, \omega)$ and the weighted variable exponent Sobolev spaces $W^{1,p(x)}(\Omega, \omega)$. Set

$$C_+(\overline{\Omega}) = \{ p \in C(\overline{\Omega}) : \min_{x \in \overline{\Omega}} p(x) > 1 \}.$$

For any $p \in C_+(\overline{\Omega})$, we define

$$p^+ = \max_{x \in \overline{\Omega}} p(x), \quad p^- = \min_{x \in \overline{\Omega}} p(x).$$

For any $p \in C_+(\overline{\Omega})$, we introduce the weighted variable exponent Lebesgue space $L^{p(x)}(\Omega, \omega)$ that consists of all measurable real-valued functions *u* such that

$$L^{p(x)}(\Omega,\omega) = \left\{ u: \Omega \to \mathbb{R}, measurable, \int_{\Omega} |u(x)|^{p(x)} \omega(x) dx < \infty \right\}.$$

376