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Abstract. We study the growth of solutions of higher order complex linear differential
equations in an angular domain of the unit disc instead of the whole unit disc. Some
estimations of [p,q]-order of solutions of the higher order differential equations in an
angular domain are found in this paper.

AMS subject classifications: 34M10, 30D35

Key words: Complex differential equation, analytic function, [p,q]-order, angular domain, unit
disc.

1 Introduction and main results

For a function f meromorphic in the unit disc ∆={z : |z|<1}, the order of growth is given
by

ρ( f )= limsup
r→1−

log+T(r, f )

log 1
1−r

.

If f is an analytic function in ∆, then the order of growth of f is often given by

ρM( f )= limsup
r→1−

log+ log+ M(r, f )

log 1
1−r

,

where
M(r, f )=max

|z|=r
z∈∆

| f (z)|, log+x=max{logx,0}.
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It follows from the following inequality in [20, Theorem V.13]

T(r, f )≤ log+M(r, f )≤
1+3r

1−r
T

(

1+r

2
, f

)

, r∈ (0,1),

that
ρ( f )≤ρM( f )≤ρ( f )+1.

It is possible that there exists f such that ρ( f ) 6= ρM( f ); for example, f (z)= exp{( 1
1−z )

λ}
satisfies ρ( f )=λ−1 and ρM( f )=λ, where λ>1 is a constant, which can be found in [20, p.
205].

In order to state our results, some notations are needed. For any r ∈ (0,∞), exp1r =
expr, expn+1r=exp(expn r), log1r= logr, logn+1r= log(logn r), n≥1 is integer. exp0(r)=
r= log0r, exp−1r= log1r. Second, we recall some definitions.

Definition 1.1 ([10]). For f meromorphic in ∆, set

D( f )= limsup
r→1−

T(r, f )

log 1
1−r

.

If D( f )=∞, we say that f is admissible. If D( f )<∞, we say that f is non-admissible.

For the function of fast growth in ∆, we also need the definition of iterated p−order,
which can be found in [4].

Definition 1.2. Let f be a meromorphic function in ∆. Then

ρp( f )= limsup
r→1−

log+
p T(r, f )

log 1
1−r

,

where p≥1 is integer. If f is an analytic function in ∆, then the iterated p-order is also given by

ρM,p( f )= limsup
r→1−

log+
p+1 M(r, f )

log 1
1−r

.

Obviously, ρ1( f )≤ρM,1( f )≤ρ1( f )+1 for any analytic functions in ∆. However, it follows
from [20, Theorem V.13] that ρp( f ) = ρM,p( f ) for p≥ 2. In general, ρ2( f ) or ρM,2( f ) are
called hyper-order of f in ∆. In this paper, we assume that the reader is familiar with the
fundamental results and standard notation of the Nevanlinna’s theory of meromorphic
functions in ∆, see [15] and [25] for more details.

Definition 1.3 ([2, 3]). Let 1≤ q≤ p or 2≤ q= p+1, and f be a meromorphic function in ∆.
Then the [p,q]-order of f is defined as

ρ[p,q]( f )= limsup
r→1−

log+
p T(r, f )

logq
1

1−r

.


